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Abstract   

One of the major challenges that the world is facing currently is the inade-

quate amount of food production with high nutrient content in accordance 

with the increase in population size. Moreover, availability of cultivable area 

with fertile soil is reducing day by day owing to ever increasing population. 

Further, water scarcity and expensive agricultural equipment have led to 

the use of agrochemicals and untreated water. Excessive use of chemical 

fertilizers to increase crop yield have resulted in deleterious effects on the 

environment, health and economy, which can be overcome to a great ex-

tent by employing biological fertilizers. There are various microbes that 

grows in the rhizospheric region of plants known as plant growth-promoting 

rhizobacteria (PGPR). PGPR act by direct and indirect modes to stimulate 

plant growth and improve stress reduction in plants.  PGPRs are used for 

potential agriculture practices having a wide range of benefits like increase 

in nutrients content, healthy growth of crops, production of phytohor-

mones, prevention from heavy metal stress conditions and increase in crop 

yield. This review reports recent studies in crop improvement strategies 

using PGPR and describes the mechanisms involved. The potential mecha-

nisms of PGPR and its allies pave the way for sustainable development to-

wards agriculture and commercialization of potential bacteria.   
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Introduction   

Around 5.2 billion hectare of cultivable land are affected by various abiotic 
stresses such as drought, salinity and extreme temperature stresses (1, 2). 

Due to different stresses, plants undergo different physiological and mor-

phological changes (3). In some plants, leaf growth is reduced due to high 

salinity and loss of water absorption capacity (4). Several studies on toxicity 

of heavy metals such as lead, cadmium, cobalt, arsenic were also studied (5, 

6). These heavy metals are naturally occurring elements that have higher 

density than water. Plant needs certain metals in a limited amount for their 

growth, and some of the metal that is present in the soil mixes up with the 

soil particles and the remaining metal particles accumulate in the soil in 

high amounts that increases the toxicity in the soil. Metal toxicity also 

affects the function, activities and physiological state of plants. 

 Plant growth promoting rhizobacteria (PGPR) are the free-living soil 

bacteria and due to root exudates, they are capable of colonizing the rhizo-
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spheric region of plants. There are two major classes of 

rhizobacteria, intracellular PGPR (iPGPR) and extracellular 

PGPR (ePGPR) (7). In general, extracellular plant growth 

promoting bacteria exist in/on the rhizospheric region, 

rhizoplane and intracellular spaces in the root cortex while 

the intracellular plant growth promoting bacteria exists 

inside root cells generally called as nodular structures (8). 

 Many research have shown several benefits of 

PGPRs in improving plant growth and development (9). 

Under extreme environmental conditions, rhizospheric 

bacteria have been found to be beneficial for developing 

abiotic stress tolerance and crop improvement (10). Inocu-

lation of PGPR strains to plants that are under high salinity 

alleviates the growth of the plant by tolerating such stress-

es. Strains like Pseudomonas putida improves drought 

stress tolerance in chickpea (Cicer arietinum), similarly 

other strains like Bacillus thuringiensis in soyabean results 

in modification in the root structure under water deficit 

conditions (11, 12). For eradication of heavy metals, metal 

resistant rhizobacteria can serve as an effective method 

for sequestering of heavy metal. Strains such as Kluyvera 

ascorbata showed high levels of heavy metal resistance 

and better seedlings growth under heavy metal stress. 

Other strains, such as P. putida and Azospirillum are char-

acterized by the development of metal toxicity (8). PGPRs 

improve and increase the uptake of nutrients by plants 

from the soil (13, 14). Neutralizing plant stresses (both bio-

tic and abiotic), an important effect of PGPR reduces or 

prevents the harmful effects of phyto-pathogenic organ-

isms. PGPRs play important role in enhancing crop 

productivity through mechanism of phytostimulator, bio-

fertilizer, biopesticides and rhizoremediation (13, 15, 16). 

 PGPRs promote the growth of plant by enhancing 

the uptake of nutrient and improving the growth expan-

sion and inducing the level of hormones in plants. They act 

either directly or indirectly to stimulate plant growth and 

enhance stress tolerance. Direct modes of action include 

nitrogen fixation, and production of phytohormones, 

thereby neutralizing various abiotic stresses. Indirect 

mechanisms prevent or suppress the negative effects on 

the plant that increase the natural resistance of the host. 

These mechanisms also help plants to thrive under envi-

ronmental stresses or disease-based stress (17).  

Direct mechanism of PGPRs   

The direct mechanism facilitates the uptake of nutrients 

and/or increases the availability of nutrients through nitro-

gen fixation, production of phytohormones, and minerali-

zation of soluble nutrients. The uptake of minerals increas-

es due to the influx of ions in the root system. Studies over 

the last half century have found variants of PGPR, which 

have been used extensively so far, including the genera of 

Klebsiella, Pseudomonas, Azotobacter, Enterobacter, Vario-

vorax, Bacillus, Azospirillum (18). These bacterial communi-

ties possess valuable and essential nutrient properties 

such as nitrogen and phosphorus for the plant growth. 

Using different crops and species of rhizobacteria various 

studies and formulations have been developed around the 

world (19). 

Mechanism of Nitrogen fixation  

Biological nitrogen fixation is accomplished through a non
-symbiotic or symbiotic relationship between a host, path-

ogen and a plant. PGPR immobilizes atmospheric nitrogen 

in the soil and has a symbiotic relationship. Several studies 

have reported that inoculation with rhizosphere bacteria 

had shown to improve the soil quality and enhances nod-

ule formation (20, 21). These nitrogen-fixing PGPR inocu-

lants can increase the yield of cereal crops, maintain the 

level of nitrogen in cropland and improve stress tolerance 

and aid in disease management. The commercial inocu-

lants Azospirillum produced are very effective in increasing 

the yield of crops worldwide (22). In legume rhizobacteria, 

the release of ammonia is part of their nitrogen fixation 

process. There are some C3 and C4 plants, such as wheat, 

maize, rice, cotton, sugar cane and Jatropha which are 

involved in interaction with some PGPR and contribute to 

the growth of grain yield and vegetative phase (23). 

Mechanism of phosphate-solubilizing bacteria   

Phosphate solubilizing bacteria (PSB) are ubiquitous and 

belong to the PGPR group and their properties allow rhizo-

bacteria to dissolve phosphate in the soil (15, 24). There 

are various mechanisms used by PSB to convert insoluble 

phosphates to soluble form. The bacterial mechanism con-

sists of dissolving organic phosphates in the soil by the 

action of acids such as gluconic acid that is being synthe-

sized by soil bacteria (25, 26). The mineralization of phos-

phates is another important mechanism that is carried out 

by soil bacteria which synthesize extracellular phospha-

tase enzymes, such as phytases and nucleases to catalyze 

the hydrolysis of phosphoric esters, followed by release of 

the phosphate group (27). Solubilization and mineraliza-

tion both occur in the same bacterial strain. Several bacte-

ria which employ this mechanism to genera Azospirillum, 

Serratia, Azotobacter, Rhizobium, Burkholderia and Pseudo-

monas (28). The microorganisms involved in these three 

domains, include eukaryotes, bacteria and archaea. The 

important mechanisms for solubilizing inorganic phos-

phate are acidification, chelation, and enzymatic action. 

By secreting acidic and alkaline phosphatases, or by gen-

erating organic acids, they induce the mineralization of 

organic phosphates. Bacterial genera such as Burkhold-

eria, Rhizobium, Bacillus, Natrinema, Serratia and Pseudo-

monas have been reported to be potent and effective 

phosphate solubilizers. The combination of plant growth 

promoting bacteria with phosphate solubilizers or phos-

phate solubilizer alone is helpful in improving the uptake 

of phosphate by crops, thus improving their yield due to 

environmental and agricultural sustainability (29). 

Mechanism of Phytohormone production  

Phytohormones are low molecular weight plant growth 

regulators that are produced at one site and are then 

transferred to different sites where they play an important 

role in promoting the growth and development of plants 

(30, 31). Many PGPRs induce the production of phytohor-

mones and are involved in plant-microbe interaction and 

are responsible for root growth and architecture (9, 32). In 

rhizobacteria, Indole-3-acetic acid (IAA) is synthesized 
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from tryptophan, involved in root growth and development 

(33). Some rhizobacterial strains produce gibberellins that 

initiate plant shoot growth enhancement (34). Similarly, 

there are other strains e.g. Pseudomonas stutzerI, Steno-

trophomonas maltophilia and P. putida produce the plant 

hormone cytokinins, which lead to the production of root 

exudates, thereby increasing the availability of PGPR to 

plants (30). Other PGPR produces hydrogen cyanide, that 

acts as biocontrol agent and has potential to inhibit the 

deleterious pathogen for e.g. Pseudomonas (35). 

Phytohormone: Auxin  

Auxin is one of the most important type of plant growth 
enhancer in the form of Indole-3-acetic acid (IAA) and In-

dole-3-butyric acid (IBA) and their precursors. The produc-

tion of auxin by plants and microorganisms differs due to 

the biosynthetic pathway followed by them (33, 36). In gen-

eral, bacterial species have the maximum capacity for auxin 

synthesis. The activity of auxins to act as growth promoters 

depends on bacterial and plant species. Some of the rhizo-

sphere bacteria which can synthesize auxins includes Aer-

omonas punctata PNS-1, Serratia marcescens 90–166, 

Azospirillum brasilense Sp245, Pseudomomas putida, Pseu-

domomas moraviensis, Paenibacillus illinoisensis IB 1087 

and Pseudomonas extremaustralis IB-К13-1А. Various stud-

ies have shown that IAA acts as a plant growth promoter 

and mutant such as super root and yucca producing IAA 

have long hypocotyls, more number of lateral root and root 

hairs, and also on growth of excised stem and hypocotyls 

and auxin analogs in intact Arabidopsis seedlings (37). The 

adventitious roots production derived from the stem is the 

effect of auxin induction (38). 

Phytohormone: Gibberellins  

Gibberellin is the largest group of plant hormones as over 
100 different molecules of gibberellins with varying degrees 

of biological activity are known (39). Legumes are an im-

portant source of nitrogen fixation capable of producing 

gibberellins due to the presence of rhizobacteria within the 

nodule. When plants form nodules they require the pres-

ence of phytohormones such as auxin, cytokinin and small 

amounts of gibberellins (40). Bacillus licheniformis and Ba-

cillus pumilus are species of bacteria known for the produc-

tion of gibberellins (41). This hormone has the property of 

translocation from the roots to the aerial part of the plant. 

The effectiveness of gibberellin is increased in combination 

with auxin by stimulating the root system, improving nutri-

ent supply in the aerial part. Acetobacter diazotrophicus, 

Herbaspirillum seropedicae and Bacillus sp. have been con-

firmed in gibberellin production (42). 

Phytohormone: Cytokinin  

Some of the PGPR which synthesize cytokinin includes 

Pseudomonas stutzeri, Stenotrophomonas maltophilia 

and P. putida. Cytokinin is involved in the maintenance of 

plant cell division in culture and in various differentiation 

processes such as primary root growth, callus formation 

and shoot formation (43, 44). Totipotency is the distinguish-

ing feature of cytokinin from other plant growth regulators, 

which helps to maintain totipotent stem cells in their root 

and shoot meristem. In transgenic plants, endogenous cy-

tokinin overproduction induces diverse phenotypic altera-

tions in vitro. The interaction of auxins and cytokinins leads 

to the control of various essential developmental processes 

in plants, mainly in the apical dominance and the develop-

ment of roots and shoots. In the case of in vitro, the major 

regulator of organogenesis is the balance between auxin 

and cytokinin. In callus culture, a high auxin to cytokinin 

ratio initiates root formation, while a low ratio results in 

shoot formation (45, 46). 

Phytohormone: Ethylene  

Ethylene is a phytohormone that acts as a multifunctional 
regulator of plant growth. Depending on its time of applica-

tion, concentration and plant species, it acts as a promoter 

and inhibitor to plant growth (47). The precursor of eth-

ylene hormone is 1-aminocyclopropane-1-carboxylate 

(ACC), which is hydrolyzed by the enzyme ACC deaminase, 

generates ammonia and ketobutyrate. Under stress condi-

tions like flood, and water scarcity, the amount of ethylene 

is high which tends to inhibit the growth of the plant and 

especially seedlings (48). ACC deaminase regulates the pro-

duction of ethylene under stress conditions and promote 

plant growth by reducing harmful effects on plants (49). 

Many genera of the PGPRs have ACC deaminase activity 

which includes Aneurinibacillus, Arthrobacter, Achromobac-

ter, Bacillus, Brevibacterium, Burkholderia, Citrobacter, En-

terobacter, Leclercia, Micrococcus, Ochrobactrum, 

Parastrephia, Pseudomonas, Ralstonia and Serratia. These 

PGPRs mitigate the adverse effect of stress manifested on 

plants by minimizing the ethylene emission to its optimum 

level and thus confers growth promotion and stress toler-

ance in stressed plants (50). 

Phytohormone: Abscisic acid  

Abscisic acid (ABA) plays an important role in many physio-

logical processes in plants. This hormone is necessary for 

regulation of several events during late seed development 

and is crucial for the response to environmental stresses 

such as desiccation, salt and cold. ABA acts like ethylene in 

stressed conditions and comes under the category of both 

plant growth promoter and inhibitor depending upon 

different conditions (51). Some of the species reported to 

induce ABA production in plants includes Bacillus megateri-

um, Azospirillum brasilense Sp 245, Bacillus licheniformis 

Rt4M10. Plant injected with A. brasilense Sp 245, B licheni-

formis Rt4M10 resulted increased ABA concentration and 

higher resistance against stressed condition (52). 

Exopolysaccharides production  

Exopolysaccharide (EPS) are extracellular carbohydrate 

polymer that are secreted by rhizobacteria (53). EPS works 

in two different ways, one by forming a capsule layer which 

is bound to the cell wall and the other by being released 

into surrounding cells such as extracellular slime layer. The 

synthesis of EPS is due to stress response (54). EPS per-

forms various important activities such as plasma substitu-

tion and bioremediation, biofilm formation, gelling, anti-

bacterial activity against predators and maintain the main 

cellular functions, the kinetics of reduction of contami-
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nants, the prevention of desiccation of bacterial cells. EPS 

producing bacteria are capable to maintain higher soil 

moisture content and growth of plants even under severely 

dried sandy soils (55-57). 

Mechanism of Siderophore production  

Siderophores are low molecular weight compound (400-

1500 Dalton) produced by bacteria and plants. Bacterial 

siderophore has been classified into 5 categories namely 

hydroxamates, catecholates, peptide siderophores, myco-

bactin and citrate hydroxamates (58). In aerobic environ-

ments, iron exists in an insoluble form, where it exists in the 

trivalent state as the oxyhydroxide (59). Iron in this trivalent 

state is sparingly soluble and therefore it is not available to 

microorganisms and plants, which need iron in the form of 

Fe+2. In response to this, microorganisms use a pathway to 

take up this essential nutrient. This pathway is involved in 

the production of accessory low molecular weight mole-

cules with an abnormally excessive empathy for Fe+3. The 

bacteria that produce siderophores act as biocontrol 

agents (60). These siderophores helps the plants to take up 

Fe+2, where Fe+3 ion and a siderophore forms a complex in 

the membrane in which Fe+3 is reduced to Fe+2, which is re-

leased into the cell by the siderophore (17). There are over 

500 siderophores known to date, which demonstrate the 

advantage of bacterial siderophores for plant growth (a) 

nutrient acquiring ability of sunflower plant under stress 

using Bacillus sporothermodurans (61), (b) reduction of 

heavy metal stress using siderophore producing Mesorhizo-

bium sp. (62), during this reduction process siderophores 

can be destroyed or recycled. The siderophores release iron 

by reduction via ferric reductase, or by chemical modifica-

tion or breakdown of the ferric siderophores complex by 

acetylation and esterase. They also prevent the phytopath-

ogens from acquiring the appropriate amount of iron, 

thereby limiting their ability to proliferate.  

Indirect mechanism of PGPRs  

PGPRs exhibits indirect biocontrol mechanism to suppress 

disease caused by pathogens. The indirect mechanism in-

cludes the stimulation of plant growth and the induction of 

acquired systemic resistance. Biotic stress is often faced by 

the cultivated and native plants when they are infected by 

many pathogens like viroids, fungi, bacteria, viruses, nema-

todes, protists and insects, resulting in significant loss in 

the crop productivity (63). The fungi cause the maximum 

biotic stress to the plant. PGPR, such as Bacillus subtilis, 

Bacillus amyloliquefaciens strain HYD-B17, Paenibacillus 

polymyxa strains B2, B3, B4, B. licheniformis strain HYTAP-

B18 and B. thuringiensis strains help in combating biotic 

stress conditions. Studies have shown that plants inoculat-

ed with such strains increase root structure under biologi-

cal stress conditions (64).  

Hydrogen cyanide production  

Hydrogen cyanide (HCN) production is induced indirectly 

by the production of siderophores, lytic enzymes etc. Hy-

drogen cyanide functions as biocontrol agents, chelation of 

metals and it indirectly increases the availability of phos-

phate (65). Bacteria, fungi, algae and plants produce HCN, 

which is toxic to plants by colonizing the roots of plants and 

reduces their growth. When the host plant was introduced 

to a cyanide-producing strain, this host-specific rhizobacte-

ria was used as a biological weed control agent, with no 

negative effects on the host plant  (66). Another advantage 

is the secretion of a secondary metabolite that functions in 

weed control as a biological control. HCN can also induce 

cell death by inhibiting the energy supply of cell and elec-

tron transport chains. Bacillus and Pseudomonas species 

are species with an HCN production mechanism (66). The 

production and synthesis of HCN by PGPR are independent 

of their genus and their impact suggested their possibility 

to use as biological fertilizers or biocontrol to enhance crop 

production. 

Induced systemic resistance  

Induced systemic resistance (ISR) is an extensive phenome-

non that has been studied and has potential to protect 

plants against any stresses and pathogens (67). The im-

proved defensive capacity is a physiological state that re-

sponds to stimuli in the environment. In the case of local 

infection, ISR triggers cascades of signaling pathways, acti-

vation of certain genes, resulting in protection of plants (67, 

68). Strains like, Serratia marcescens are helpful in plant 

growth and in inducing systemic resistance mechanisms to 

aid plant growth and to increase salt tolerance of wheat 

(69). Induced systemic resistance (ISR) is an indirect meth-

od of PGPR which is beneficial to plants by competing for 

production of parasitism, nutrient, metabolites and antibi-

otics. Systemic acquired resistance (SAR) is equivalent to 

ISR. This is because of induced systemic resistance, a re-

sistance developed by PGPR and SAR is the resistance 

caused by the pathogen infection in plants.  

PGPR- the benefitting technology, future as-
pects and scopes  

Bacteria have a variety of benefits that could be beneficial 

in commercial agriculture (70). Rhizobacteria and its bene-

ficial strains have improved productivity and agricultural 

yields by virtue of its mechanism and mode of action (Table 

1). The rhizobacteria not only acts as a biocontrol agent, 

but also in sustained maintenance, protecting plants and 

most importantly elicit positive effect on field conditions 

that were affected by stress conditions (8, 71).  

 Strategies have been developed using a PGPR prepa-
ration, so that the bacteria of interest benefit from coloni-

zation more than others. Under field conditions, inocula-

tion improves product quality, stability and compatibility. 

Mechanisms of binding to PGPR as well as to plant-

associated biofilm have been established for plant parts 

such as leaves, roots and seeds. This method has one ad-

vantage i.e. higher resistance to antibiotics, which im-

proves the chances of crop survival under stressful soil con-

ditions e.g. Pseudomonas, Azotobacter (84, 85). To promote 

microbial growth, Biochar (transport material for microbial 

inoculant) has the ability to increase crop yield, organic 

matter content, improving soil fertility by affecting the sur-

vival of microorganisms in the soil and maintaining nutri-
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ents thereby preventing plants from resisting fungal preda-

tors (86, 87).  

 The development of these methods along with the 

mode of action and/or mechanism of PGPR not only im-

proves the growth of plants, but also increases the yield in 

the field with less use of fertilizer. For strains showing posi-

tive response are potential agents and bio stimulants (88, 

89). The relationship between plants and pathogens has 

been studied for over years. PGPRs that promote growth of 

plants are very promising in combating negative responses 

of crops under stress conditions. Thus, it is clear that PGPR 

has great potential in sustainable crop management and 

mainly focuses on stimulating plant growth especially un-

der adverse conditions (90).    
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