Review Article

Effects of medicinal plants on radiolabeling and biodistribution of diagnostic radiopharmaceuticals: A systematic review

Pegah Khosravian¹, Saeid Heidari-Soureshjani²*, Qian Yang³

¹ Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
² Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
³ Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany

Abstract

Radiopharmaceuticals are drugs that contain radioisotopes used for diagnostic and therapeutic purposes. There are evidences that medicinal herbs and their constituents can modify the radiolabeling, biodistribution, and pharmacokinetics of radiopharmaceuticals through drug interaction. To have an overview of the effects and the underlying mechanisms of medicinal plants on the radiolabeling and bioavailability of radiopharmaceuticals, we conducted this study to summarize the current findings in this field. The scientific literature was systematically collected from databases and analyzed. Studies showed that medicinal plants and their constituents can alter radiolabeling and biodistribution via several mechanisms. Interactions with proteins in red blood cells at the same sites, chelating action of stannous and pertechnetate ions, antioxidant action impeding or decreasing stannous ion oxidation, direct oxidation of stannous ions, generation of reactive oxygen species (ROS) which oxidize stannous ions and damage induced in the cell membrane. Most the medicinal plants can decrease the radioactivity of radiopharmaceuticals, but some of them like Peumus boldus, Punica granatum, Nectandra membranacea, Mentha crispia, Rosmarinus officinalis and derivatives such as eugenol and epigallocatechin gallate have increasing effects. In addition, altering feature in some of them is tissue dependent.

Keywords: Medicinal plants; Radiolabeling; Biodistribution; Radiopharmaceuticals

Introduction

In the traditional medicine, many approaches such as aromatherapy, hypnotherapy, yoga, massage therapy, use of medicinal plants, etc. have been used for diagnosing and treatment of patients (1-7). These approaches are more safe than the methods that have been used in modern medicine. Medicinal plants are one of most commonly used approaches for treatment of diseases that their effects have...
been indicated in the various studies (8-14). Although medicinal plants can be effective, inexpensive, and efficient treatments for various disorders and frequently used by human beings (15-22), sometimes the biological effects of these natural medicines are not fully known. For example, several studies showed that the biodistribution, radiolabeling or the pharmacokinetics of radiopharmaceuticals can be modified by some medicinal plants (23-27). If drug interactions on biodistribution and labeling are not addressed, poor image quality and misvisualization in nuclear medicine tests could lead to misdiagnosis with a possible need to repeat the test, therefore so increasing the radiation complication to the patient and the staff. Consequently this problem cause mistreatment in the patients (28).

Radiopharmaceuticals are applied for drugs labeled with radioactive tracers for therapeutic or diagnostic purposes in medicine. Radioactive labels are radioactive compounds in which one or more atoms have been replaced by a radionuclide so by virtue of its radioactive decay and they used for direct cell labeling. Radioisotopes such as carbon, phosphorus, hydrogen, sulfur, and iodine have been applied widespread to trace the path of biochemical reactions (29). Radioactive tracers are used for diagnostic procedures and can be used in a number of tests. For example, technetium-99m (99mTc), in autoradiography and nuclear medicine, including positron emission tomography (PET), single photon emission computed tomography (SPECT) and scintigraphy (30). In addition, radioactive tracers are used to track the distribution of substances within a cell or tissue (31,32). Radiopharmaceuticals have a wide range application in diagnostic nuclear medicine procedures such as lung perfusion and ventilation, brain blood flow, thyroid scan and thyroid uptake, bone, liver, brain scan, hepatobiliary, pancreas, and kidney scans, bone marrow, cardiac imaging procedures, localization of gastrointestinal bleeding, tumor localization studies, and non-imaging studies of blood volume and iron metabolism (33). The radiolabeling of blood constituents is widely used and has great importance in nuclear medicine for both diagnostic imaging and targeted radionuclide therapy (34). Several studies have suggested that radiolabeling of blood constituents with radiopharmaceuticals could be performed to evaluate the biological effects of medicinal plant extracts (23,35,36). Besides, some the synthetic drugs and medicinal herbs can alter the biodistribution of radiopharmaceutical and the analysis of scintigraphic images and physicians must be cautious about this problem (24,37). Hence, this study was conducted to review the effects and mechanisms of medicinal plants, their derivatives and compounds on radiolabeling and bioavailability of diagnostic radiopharmaceuticals.

Search strategies

The words radiopharmaceutical, alongside with, radiolabeling, biodistribution and bioavailability in combination with some herbal terms such as medicinal plant, phyto* and herb* were used to search for relevant publications indexed in the Institute for Scientific Information (ISI) and PubMed.

A standard form was designed, which included items such as the aim or the title of the study, intervention, outcome, variables, journal name, period, and number. The article's contents that were relevant to this study were recorded on the form and entered into the study upon agreement of the researchers involved in this study. Then the plants and the plant-based products that were reported to be effective in labeling and distribution of diagnostic radiopharmaceuticals were selected. The articles whose full texts were not accessible, studies with neutral effects, non-English language articles, review articles, and studies that were not related to the purpose of this study were excluded after all researchers in this study agreement was achieved. Fig. 1 illustrates how the articles were selected for final analysis.

Fig. 1. Flowchart of the process of selecting the articles for final analysis.
Results

The previous studies indicated that that medicinal plants and their derivatives can alter radiolabeling and biodistribution. Most the medicinal plants could decrease the radioactivity of radiopharmaceuticals, but some of plants such as *Peurum boldus*, *Punica granatum*, *Nectandra membranacea*, *Mentha crispa*, *Rosmarinus officinalis* have increasing effects (Table 1).

In addition, there are some phytochemicals and herbal combinations that affect radiolabeling and biodistribution of radiopharmaceuticals (Table 2).

Several factors that categorized in physical and chemical factors may affect drug delivery and the radiolabeling of a chemical compound (65-68). For instance, pharmaceutical variables, such as sedimentation problems or instability of the cell chelator, choice of anticoagulant, level of stannous ion and oxidation of radiopharmaceuticals, difficulties with collecting sufficient cells, or problems may arise which are patient-related (drug interference or the presence of disease) can affect the radiolabeling and misdistribution of radiopharmaceuticals (69). Medicinal herbs and constituents can reduce the labeling and distribution of diagnostic radiopharmaceuticals in several ways (Fig. 2). Interactions with the blood constituents protein at same sites of radiopharmaceuticals binding and disrupted the radiolabeling efficiency. The other way is direct inhibition (chelating action) of the stannous and pertechnetate ions (23). Because chelator activity has an important pharmacokinetic role in the development of labeling and bioavailability of radiopharmaceuticals targeting (70). Both the antioxidant and oxidant agents (or generation them in chemical interaction) in medicinal plants, in turn, can reduce the cell's labeling. Direct oxidation with the presence of oxidant agents or generation of free radicals that could oxidize the stannous ion (62). In addition, medicinal plants have polyphenols that are micronutrients with antioxidant activity. On the other hand, RBC labeling procedure with radiopharmaceuticals such as 99mTc depends on the presence of stannous (+2) ions (40). Antioxidant property of medicinal plants can block the action of stannous ions, antioxidant action impeding or decreasing the stannous ion oxidation and binding to them in labeling and fixation procedure; so decreasing the binding of radiopharmaceuticals in plasma proteins (23,71). The last way is an alteration of the plasma membrane structure and receptors or changing in the transport systems of stannous and pertechnetate ions into cells. So, they alter the transport of ions (stannous and pertechnetate ions) through the cellular membrane (23,58). Pertechnetate anions across membranes of human blood constituents have a vital role in radiolabeling. The pertechnetate anion may reach the interior of the blood cells constituents (stannous and pertechnetate ions pass through the membrane) via the band-3 anion transport system (72). In other words, medicinal plants and their derivatives act in the transport of the pertechnetate ion via the cellular membrane of determined organs (73). The herbs chemical compounds can alter the blood cells membrane morphology (59), and it is one of the altering mechanisms of radiopharmaceutical labeling on the cells. Another result of this study suggests that the medicinal herbs and their components can act on the biodistribution of radiopharmaceuticals in specific organs (28).

In this regards, radiolabeling and biodistribution also depend on the type of tissue (64). This can be due to differences in receptors in various body tissues. Although, some of the medicinal herbs didn't has an effect on radiolabeling of radiopharmaceuticals. Because labeling depends on the presence of reducing agent or chemical substances, so without such interfering substances, they can't interaction with the radiolabeling process (59,74).

Therefore, precaution must be considered in the interpretation of diagnostic radiopharmaceuticals results when patients are concomitant using these drugs and must be cautious about misdiagnosis and/or repetition of the examinations in nuclear medicine.

Although these results mainly were obtained with animal studies, caution must be considered in the interaction of the nuclear examination when the patient is using these medicinal herbs. So limitation in human studies was a weakness of the reviewed articles which can disturb generalizability of the study's results to the human population.

Conclusion

Studies showed that medicinal plants and constituents can alter radiolabeling and biodistribution via several mechanisms. They can interactions with the blood cells compartment proteins at same sites, chelating action on the stannous and pertechnetate ions, antioxidant action impeding or decreasing the stannous ion oxidation, direct oxidation of the stannous ions, generation of reactive oxygen species in the body that could oxidize the stannous ions and damage induced in the cell membrane. Limitation in human studies was a weakness of the reviewed articles which can disturb generalizability of the study's results to the human population. Most of them have decreasing in the radioactivity of radio pharmaceuticals, but some of them have increasing effects. In addition, altering feature in some of them is tissue dependent.
Table 1: Effects of medicinal plants on radiolabeling and biodistribution of radiopharmaceuticals

<table>
<thead>
<tr>
<th>References</th>
<th>Plants</th>
<th>Study Design</th>
<th>Type of administration</th>
<th>Main outcomes or mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oliveira et al. (25)</td>
<td>T. occidentalis</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decrease in the percentage of ATI via inhibition of the transport of the ions, competition for the same binding sites, creating damage in blood cells (BC) membrane and possible generation of reactive oxygen species that could oxidize the stannous ion.</td>
</tr>
<tr>
<td>Reiniger et al. (38)</td>
<td>P. boldus</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Increasing labeling of red blood cells and increase radioactivity bound to the red blood cell (RBC).</td>
</tr>
<tr>
<td>Braga et al. (39)</td>
<td>T. occidentalis, P. boldus and N. tabacum (tobacco)</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decrease in the percentage of ATI, Nicotianatabacum decreasing labeling of RBC and plasma proteins and Peumusboldus increase uptake of the radioactivity by blood cells but a slight decrease in the amount of 99mTc radioactivity.</td>
</tr>
<tr>
<td>de Oliveira et al. (40)</td>
<td>Myrtetus ilicifolia</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decrease in the percentage of ATI on blood elements. This changes due to the presence of oxidant agents in the Maytenus ilicifolia extract.</td>
</tr>
<tr>
<td>de Oliveira et al. (41)</td>
<td>Paullinia cupana</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Decreasing in the uptake of radioactivity by the RBC in insoluble fractions plasma (IF-P) and in insoluble fractions blood cell (IF-BC) and also alterations in the shape of RBC was observed.</td>
</tr>
<tr>
<td>Feliciano et al. (42)</td>
<td>Sechium edule</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Extract</td>
<td>Decrease of the radioactivity in BC, IF-BC and IF-P and slight decrease in the uptake of 99mTc by BC and a strong decrease in the fixation in IF-P with the macerated in vivo. But in vitro study, no alterations on the labeling of blood elements were reported.</td>
</tr>
<tr>
<td>Vidal et al. (43)</td>
<td>N. tabacum</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decreasing labeling of RBC and plasma proteins due to direct or indirect effect (reactive oxygen species) of tobacco by oxidation of the stannous ion, possible chelating action on the stannous and/or pertechnetate ions and possible damages caused in the plasma membrane.</td>
</tr>
<tr>
<td>Amorim et al. (44)</td>
<td>Punica granatum</td>
<td>Experimental (in vitro)</td>
<td>Infusion</td>
<td>Increase in the percentage of ATI in lungs, brain, spleen, heart, liver, stomach, muscle, femur, kidneys, pancreas, and testis through the generation of active metabolites.</td>
</tr>
<tr>
<td>Abreu et al. (23)</td>
<td>Psidium guajava</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>Decreasing the radiolabeling of BC via antioxidant action and alters the membrane structures involved in ion transport into cells.</td>
</tr>
<tr>
<td>Farias et al. (45)</td>
<td>Nectandra membranacea</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>Increase in the percentage of ATI of 99mTc by muscle, thyroid, heart, kidney and thyroid (%ATI/gran of tissue). So the extract could generate active metabolites able to influence the bioavailability of 99mTc.</td>
</tr>
<tr>
<td>Moreno et al. (35)</td>
<td>Ginkgo biloba</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Solution</td>
<td>Decreasing the uptake of the Na99mTcO4 in the duodenum. This may be due to scavengers of free radicals and chelating agents in the extract.</td>
</tr>
<tr>
<td>Moreno et al. (46)</td>
<td>Ginkgo biloba</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Extract</td>
<td>Decrease uptake of the Na99mTcO4 in the duodenum. It is possible that in vivo treatment with extract may generate active metabolites that could alter the ultrastructure of cells and the biodistribution of the Na99mTcO4.</td>
</tr>
<tr>
<td>Moreno et al. (28)</td>
<td>Uncaria tomentosa</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Decreasing in the uptake of this Na99mTcO4%ATI/organ was observed in the heart. But the extract can increasing uptake radiobiocomplex %ATI/g in the Pancreas and muscles.</td>
</tr>
<tr>
<td>Santos et al. (47)</td>
<td>Hypericum perforatum</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decreasing in radioactivity distribution and interfering with the fixation on the IF-P and IF-BC in young rats (not in elderly one).</td>
</tr>
<tr>
<td>Santos et al. (48)</td>
<td>Mentha perforatum</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>Increasing fixation observed in kidney, spleen, and thyroid the %ATI/g values by the generation of active metabolites.</td>
</tr>
<tr>
<td>Cekic et al. (49)</td>
<td>Brassica oleracea</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Methanolic extract</td>
<td>Decreasing in the percentage of injected dose per gram of tissue weight (% ID/g) particular in the kidney. The extract was not effected labeling blood components with 99mTc.</td>
</tr>
<tr>
<td>Rebello et al. (50)</td>
<td>Passiflora edulis</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Solution</td>
<td>Decreasing in the percentage of ATI/g of tissues from duodenum, spleen, pancreas, and blood and increasing in stomach tissue. The extract does not alter the labeling of blood constituents.</td>
</tr>
<tr>
<td>Souza et al. (51)</td>
<td>Cassia angustifolia</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Aqueous extract</td>
<td>Reducing %ATI/g of the Na99mTcO4 in the thyroid, liver, pancreas, lungs and blood. The extract did not modify the radiolabeling of the blood constituents.</td>
</tr>
</tbody>
</table>
Table 1: Contd.

<table>
<thead>
<tr>
<th>References</th>
<th>Herbal compounds/derivatives</th>
<th>Study Design</th>
<th>Type of administration</th>
<th>Type of radiopharmaceutical</th>
<th>Main outcomes or mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zora et al. (52)</td>
<td>Passiflora incarnata</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Syrup</td>
<td>Decreased significantly the percentage of ATI on BC, IF-P and IF-BC.</td>
<td></td>
</tr>
<tr>
<td>Benarroz et al. (36)</td>
<td>Cinnamomum zeylanicum</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Decreasing the labeling of RBC, IF-P, reducing %ATI, and IF-RBC due to the extract oxidation potential.</td>
<td></td>
</tr>
<tr>
<td>Garcia-Pinto et al. (53)</td>
<td>Matricaria recutita</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Aqueous extract</td>
<td>Decreasing the %ATI and the RBC labeling and radioactivity fixation.</td>
<td></td>
</tr>
<tr>
<td>Ucar et al. (54)</td>
<td>Rosmarinus officinalis</td>
<td>Experimental (in vitro)</td>
<td>Methanolic extract</td>
<td>Decreasing in the uptake of %ATI/g percent in bladder, kidney, and blood.</td>
<td></td>
</tr>
<tr>
<td>Holanda et al. (24)</td>
<td>Annona muricata</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Solution</td>
<td>Decreasing the %ATI/g in blood, kidneys, stomach, liver, testis femur and thyroid, so increasing uptake of Na(^{99m})TcO(_4).</td>
<td></td>
</tr>
<tr>
<td>Holanda et al. (37)</td>
<td>Aloe vera</td>
<td>Experimental (in vivo and in vitro)</td>
<td>Aqueous extract</td>
<td>Decreasing in the uptake of ATI/g percent in bladder, kidney, and blood.</td>
<td></td>
</tr>
<tr>
<td>Capriles et al. (55)</td>
<td>Solanum melongena</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decreasing the %ATI, IF-P and IF-BC via increase the valence of these ions to stannic (+4).</td>
<td></td>
</tr>
<tr>
<td>de Oliveira et al. (56)</td>
<td>Fucus vesiculosus</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Decreasing in the percentage of ATI of blood constituents and theradioactivity fixation.</td>
<td></td>
</tr>
<tr>
<td>de Paoli et al. (57)</td>
<td>Caryophyllus saromaticus</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>Decreasing in the uptake of ATI/g percent in bladder, kidney, and blood.</td>
<td></td>
</tr>
<tr>
<td>Neves et al. (58)</td>
<td>Arctium lappa</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>Decreasing the %ATI, IF-P and IF-BC via increase the valence of these ions to stannic (+4).</td>
<td></td>
</tr>
<tr>
<td>Rebello et al. (59)</td>
<td>Passiflora edulis</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Decreasing in the concentration of %ATI/g percent in bladder, kidney, and blood.</td>
<td></td>
</tr>
<tr>
<td>Terra et al. (60)</td>
<td>Artemisia vulgaris</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>Decreasing in the percentage of ATI on the blood compartments and on the blood cells proteins (IF-BC and IF-P) via erythrocyte membrane alternating.</td>
<td></td>
</tr>
<tr>
<td>Sabuncu et al. (61)</td>
<td>Camellia sinensis</td>
<td>Experimental (in vivo)</td>
<td>Ethanolic and aqueous extract</td>
<td>Radiolabeling was not changed in blood component but decreasing the uptake of Na(^{99m})TcO(_4) by stomach, liver and prostate.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Effects of phytochemicals and herbal combinations on radiolabeling and biodistribution of radiopharmaceuticals

<table>
<thead>
<tr>
<th>References</th>
<th>Herbal compounds/derivatives</th>
<th>Study Design</th>
<th>Type of administration</th>
<th>Type of radiopharmaceutical</th>
<th>Main outcomes or mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giani et al. (62)</td>
<td>Buzhong Yi Qi Wan composed of Radix Astragalis, Radix codonopsis, Radix glycyrrhiza, Rhizoma atracylodis macrocephala, Radix angelicainsensis, Rhizoma cimicifugiae, Radix bupleuri, Pericarpium citri reticulatae, Rhizoma zingiberis recens and Fructus jujubae</td>
<td>Experimental (in vitro)</td>
<td>Aqueous extract</td>
<td>99mTc</td>
<td>Decreasing in radioactivity distribution by the BC was reported. Besides decreasing in radioactivity fixation by the IF-BC and IF-P via free radicals generation causing oxidation of the stannous ions and the fixation of 99mTc would be decreased.</td>
</tr>
<tr>
<td>Mattos et al. (26)</td>
<td>Vincristine derived from Vinca rosea Linn</td>
<td>Experimental (in vivo)</td>
<td>Extract</td>
<td>99mTc</td>
<td>Percentage of radioactivity decreased in the ovary, uterus, lymph nodes (inguinal and mesenteric), thymus, spleen, kidney, pancreas, liver, stomach, brain, heart and bone of the animals.</td>
</tr>
<tr>
<td>Dervis et al. (63)</td>
<td>Eugenol derived from Syzygium aromaticum, Pimenta racemosa and Cinnamomum verum</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Iodine-131 (^1)</td>
<td>The extract causes radioiodinated with 131I, which is a convenient radioisotope for therapy and potential for therapy and imaging due to its notable uptake.</td>
</tr>
<tr>
<td>Kamal et al. (27)</td>
<td>Resveratrol derived from herbs</td>
<td>Experimental (in vitro)</td>
<td>Extract</td>
<td>Technetium-99m labelled resveratrol loaded gold nanoparticles (Res-AuNP)</td>
<td>administration of (^{99m})Tc-Res-AuNP to colon tumor, demonstrating better in vivo targeting of colon adenocarcinoma with (^{99m})Tc-Res-AuNP when compared to (^{99m})Tc-resveratrol.</td>
</tr>
<tr>
<td>Toksoz et al. (64)</td>
<td>Epigallocatechin gallate (EGCG) derived from Camellia sinensis Theaceae</td>
<td>Experimental (in vitro)</td>
<td>Solution</td>
<td>(^{131})I</td>
<td>EGCG increasing radiolabeling in lung, liver, pancreas, and kidney. Besides max bi distribution was seen in lung and pancreas.</td>
</tr>
</tbody>
</table>
Acknowledgements
The authors would like to acknowledge Research
and Technology Deputy of Shahrekord University
of Medical Sciences for supporting this study.

Conflicts of interest
The authors declare no conflict of interest.

References
on physiological indices, anxiety and social functioning
in multiple sclerosis patients: A randomized trial.
VC01-VC5. https://doi.org/10.7860/JCDR/2016/18204.7916

2. Nikfarjam M, Dehkordi KS, Aghaei A, Rahimian G.
Efficacy of hypnotherapy in conjunction with
pharmacotherapy and pharmacotherapy alone on the
quality of life in patients with irritable bowel syndrome.

3. Shahbazi K, Solati-Dehkordi K, Dehkordi AH.
Comparison of hypnotherapy and standard medical
treatment alone on quality of life in patients with
irritable bowel syndrome: A randomized control trial.

4. Solati K. Effectiveness of cognitive-behavior group
therapy, psycho-education family, and drug therapy in
reducing and preventing recurrence of symptoms in
patients with major depressive disorder. Journal of
Chemical and Pharmaceutical Sciences. 2016;9(4):3414-
8.

5. Dehkordi KS, Nikfarjam M, Sanaei S. Effectiveness of
mindfulness-based stress reduction training and drug
therapy on quality of life in patients with irritable

Dehkordi AH. The effect of education on quality of life
in patients under interferon therapy. Hepatitis Monthly.

7. Solati K, Mousavi M, Kheiri S, Hasanpour-Dehkordi A.
The effectiveness of mindfulness-based cognitive
therapy on psychological symptoms and quality of life
in systemic lupus erythematosus patients: A
randomized controlled trial. Oman Medical Journal.

8. Rouhi-Boroujeni H, Asadi-Samani M, Moradi MT. A
review of the medicinal plants effective on headache
based on the ethnobotanical documents of Iran. Der

Asadi-Samani M, Ashtary-Larky D. Therapeutic and
pharmacological potential of Foeniculum vulgare Mill: A
review. Journal of Hermed Pharmacology. 2015;4(1):1-
9.

10. Mohsenzadeh A, Ahmadipour S, Ahmadipour S, Asadi-
Samani M. Iran’s medicinal plants effective on fever in
children: A review. Der Pharmacia Lettre. 2016;8(1):129-
34.

11. Parsaei P, Bahmani M, Naghdi N, Asadi-Samani M,
Rafieian-Kopaei MM, Boroujeni S. Shigellosis
phytotherapy: A review of the most important native
medicinal plants in Iran effective on Shigella. Der

12. Kooti W, Ghasemiboroon M, Asadi-Samani M,
Ahangarpour A, Zamani M, Amirzargar A, et al. The
effect of Halcoholic extract of celery leaves on the
delivery rate (fertilization and stillbirths), the number,
weight and sex ratio of rat offspring. Advances in

H, Solati K. A review of botany and pharmacological
effect and chemical composition of Echinophora species
https://doi.org/10.4103/pr.pr_22_17

14. Heidarian E, Movahed-Mohammadi G, Saffari J,
Ghahre-Samani K. Protective effect of hydroethanolic
extract of cress against hepatotoxicity due to
acetaminophen in rats. Journal of Mazandaran
University of Medical Sciences. 2013;23(102):78-90.

Fig. 2. Altering mechanisms of medicinal plants, derivatives and compounds on radiolabeling and bioavailability of
radiopharmaceuticals

