Plant Growth Promoting Rhizobacteria (PGPR) and Plutella xylostella (L.) (Lepidoptera: Plutellidae) interaction as a resistance inductor factor in Brassica oleracea var. capitata

  • Paula Cristina Brunini Crialesi Universidade Estadual Paulista - UNESP
  • Robson Thomaz Thuler Instituto Federal do Triangulo Mineiro, IFTM-Uberaba
  • Fernando Henrique Iost Filho Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz
  • Ana Maria Guidelli Thuler Universidade de Uberaba - UNIUBE
  • Manoel Victor Franco Lemos Universidade Estadual Paulista -UNESP
  • Sergio Antonio de Bortoli Universidade Estadual Paulista - UNESP


Resistance of Plutella xylostella populations to chemical insecticides has made its management difficult, and the utilization of resistant cabbage cultivars has been shown to be a useful alternative. The objective of this study was to demonstrate the induction of cabbage plant resistance to P. xylostella using PGPR and injuries caused by the pest larvae as elicitors. Therefore, we evaluated the insects’ responses utilizing a specific bioassay. Furthermore, this assay was used for selecting a PGPR strain that affects the insect’s biology, and to examine molecular and biochemical responses of the plants influenced by the plant-microbe-insect interaction. Among the strains used in this study, Kluyvera ascorbata showed the most relevant results by influencing biological characteristics of the insect. Thus, the following tests demonstrated that the cited strain possesses a high influence on plant metabolism when it undergoes different types of stress such as injuries caused by the pest. These findings were determined from the different responses obtained by the chemical analyses of the tested plants and from the differentiation in the genetic sequences obtained from plants inoculated with or without PGPR that were injured by the pest. The PGPR K. ascorbata alters the metabolism of cabbage plants, which directs a specific plant defense against P. xylostella.


Download data is not yet available.

Author Biographies

Robson Thomaz Thuler, Instituto Federal do Triangulo Mineiro, IFTM-Uberaba
Fernando Henrique Iost Filho, Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz

Master's Student

Departament of Entomology and Nematology

Ana Maria Guidelli Thuler, Universidade de Uberaba - UNIUBE
Manoel Victor Franco Lemos, Universidade Estadual Paulista -UNESP
Sergio Antonio de Bortoli, Universidade Estadual Paulista - UNESP


1. Dickson M H, Shelton A M, Eigenbrode S D, Vamosy M L, Mora M. Selection for resistance to diamondback moth (Plutella xylostella) in cabbage. Hort Sci. 1990;25:1643-6.

2. Lin J, Dickson M H, Eckenrode C J. Resistance of Brassica lines to the diamondback moth (Lepidoptera: Yponomeutidae) in the field, and inheritance of resistance. J Econ Entomol. 1984;77:293- 6. doi:

3. Lin J, Eckenrode E J, Dickson M H. Variation in Brassica oleracea resistance to diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol. 1983;76:1423-7. doi:

4. Eigenbrode S D, Shelton A M, Dickson M H. Two types of resistance to the diamondback moth (Lepidoptera: Plutellidae) in cabbage. Environ Entomol. 1990;19:1086-90. doi:

5. Ulmer B, Gillott C, Woods D, Erlandson M. Diamondback moth, Plutella xylostella (L.), feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines. Crop Prot. 2002;21:327-31. doi:

6. Raymond B, Federici B A. In defence of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiol Ecol. 2017;93(7):1-8. doi:

7. Vallad G E, Goodman R M. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004;44:1920–34. doi:

8. Hallmann J, Quadt-Hallmann A, Mahafee W F, Kloepper J W. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43:895-914. doi:

9. Tomczyk A. The use of plant growth-promoting rhizobacteria (PGPR) to decrease the susceptibility of cucumber to spider mites. IOBC Bul. 1999;22:251-4.

10. Mariano R L R, Romeiro R S. Indução de resistência sistêmica mediada por rizobactérias promotoras de crescimento de plantas. Controle Biológico: EMBRAPA; 2000. p. 305 -24.

11. Romeiro R S. PGPR e indução de resistência sistêmica em plantas a patógenos. Summa Phytopathol. 2000;26:177-84.

12. Sturz A V, Nowak J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol. 2000;15:183-90. doi:

13. Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D. PGPR-induced systemic resistance (ISR) in plant disease management. Bacteria in Agrobiology: Disease Management: Springer; 2013. p. 405-25.

14. Thuler R T, Barros R, Mariano R L R, Vendramim J D. Efeito de bactérias promotoras do crescimento de plantas (BPCP) no desenvolvimento de Plutella xylostella (L.) (Lepidoptera: Plutellidae) em couve. Científica. 2006;2:217-22.

15. Walling L L. The myriad plant responses. J Plant Growth Reg. 2000;19:195-216.

16. Kessler A, Baldwin I T. Pant responses to insect herbivory: The emerging molecular analysis. Annu Rev Plant Biol. 2002;53:299-328. doi:

17. Agrios G N. Plant Pathology. 5th eds. Department of Plant Pathology University of Florida United States of America. 2005.

18. Durrant W E, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185-209. doi:

19. Van Loon L C, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453-83. doi:

20. Cattelan A. Métodos qualitativos para determinação de características bioquímicas e fisiológicas associadas com bactérias promotoras do crescimento vegetal: Embrapa Soja; 1999.

21. Mariano R L R, Kloepper J W. Método alternativo de biocontrole: resistência sistêmica induzida por rizobactérias. Rev An Patol Plantas. 2000;8:121-37.

22. Germida J, De Freitas J, editors. Growth promotion of cabbage, lettuce and onion by fluorescent pseudomonads under growth chamber conditions. Improving plant productivity with rhizosphere bacteria Proceedings of the Third International Workshop on Plant Growth-Promoting Rhizobacteria CSIRO Division of Soils, Adelaide, S Australia; 1994.

23. Turner J T, Backman P A. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 1991;75:347-53. doi:

24. Lazarovits G, Nowak J. Rhizobacteria for improvement of plant growth and establishment. HortScience. 1997;32: 188-192.

25. Van Wees S C, Luijendijk M, Smoorenburg I, Van Loon L C, Pieterse C M. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molec Biol. 1999;41:537-49. doi:

26. Mariano R, Assis S, Silveira E. Preservação de bactérias fitopatogênicas. Mariano, RLR & Silveira, EB (Coords) Manual de Práticas em Fitobacteriologia 2a ed Recife UFRPE. 2005:35-45.

27. Tukey J W. Section of mathematics and engineering: some selected quick and easy methods of statistical analysis. New York Acad Sci. 1953;16:88–97. doi:

28. Sneath P H, Sokal R R. Numerical taxonomy. The principles and practice of numerical classification. 1973.

29. Thuler R T, De Bortoli S A, Hoffmann-Campo C B. Classificação de cultivares de brássicas com relação à resistência à traça-das-crucíferas e à presença de glucosinolatos. Pesqui Agropecu Bras. 2007;42:467-74. doi:

30. Betz J, Fox W. High-performance liquid chromatographic determination of glucosinolates in Brassica vegetables. ACS Publications; 1994.

31. Sambrook J, Russel D W. Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press; 2001.

32. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557-80. doi:

33. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596-9. doi:

34. Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-3402. doi:

35. Koornneef A, Pieterse C M J. Cross-talk in defense signaling. Plant Physiol. 2008;146:839-44. doi:

36. Zehnder G, Kloepper J, Yao C, Wey G. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol. 1997;90:381-96. doi:

37. Thorsteinson A J. The chemotactic influence of plant constituents on feeding by phytophagous insects. Entomol Exp Appl. 1958;1:23-7. doi:

38. Bodnaryk R P. Will low glucosinolate cultivars of the mustards Brassica juncea and Sinapis alba be vulnerable to insect pests? Can J Plant Sci. 1997;77:283-7. doi:

39. Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50. doi: 10.1146/annurev-arplant-042110-103854

40. Timmusk S, Wagner E G. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact. 1999;12:951-9. doi: 10.1094/MPMI.1999.12.11.951

41. Yang J, Kloepper J W, Choong-Min R. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1-4. doi:

42. Agrawal A. Plant defense: signal in insect eggs. Tree, 2000;9:357. doi:

43. Clarke J D, Volko S M, Ledford H, Ausubel F M, Dong X. Roles of salicylic acid, jasmonic acid and ethylene in cpr-induced resistance in Arabdopsis. Plant Cell 2000;12:2175-90. doi:

44. Ton J, Van Pelt J A, Van Loon L C, Pieterse C M. Differential effectiveness of salicylate and jamonate/ethylene-dependent induced resistance in Arabidopsis. Molec Plant Microbe In. 2002;15: 27-34. doi:

45. Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic acquired resistance. Plant Cell. 1996;8:1809-19. doi:

46. McDowell J M, Dangl J L. Signal in the plant immune response. Trends Biochem Sci. 2000;25:79-82. doi:

47. Apel K, Hirt H. Reactive Oxygen Species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99. doi: 10.1146/annurev.arplant.55.031903.141701

48. Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance. Annu Rev Phytopathol. 1997;35: 235–70. doi:

49. Mithen R. Glucosinolates – biochemistry, genetics and biological activity. Plant Growth Regul. 2001;34:91–103. doi: 10.1023/A:1013330819778

50. McConn M, Creelaman R A, Bell E, Mullet F E, Browse J. Jasmonate is essential for insect defense in Arabidopsis. PNAS. 1997;94:5473-7. doi:

51. Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjarvi J. Ozone-sensitive Arabidospsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell. 2000;12:1849-62. doi:

52. Guo H, Ecker J R. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 2004;7: 40-9. doi:

53. Taiz L, Zeiger E. Fisiologia vegetal:Artmed; 2009.

54. Smigocki A C, Wilson D. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2. Biotechnol Lett. 2004;26: 1809–1814. doi:

55. Kandel S, Morant M, Benveniste I, Blee E, Werck-Reichhart D, Pinot F. Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants. Induction by chemicals and methyl jasmonate. J Biol Chem. 2005;280:35881–9. doi:
How to Cite
CRIALESI, Paula Cristina Brunini et al. Plant Growth Promoting Rhizobacteria (PGPR) and Plutella xylostella (L.) (Lepidoptera: Plutellidae) interaction as a resistance inductor factor in Brassica oleracea var. capitata. Plant Science Today, [S.l.], v. 4, n. 3, p. 121-132, aug. 2017. ISSN 2348-1900. Available at: <>. Date accessed: 19 jan. 2018. doi:
Research Articles


diamondback moth; Kluyvera ascorbate; induction resistance; HPLC; sinigrin