Vermicomposting of aquatic weeds: A quick review

Abstract

Aquatic plants play an important role in ecosystem functioning and services but they can also be deleterious if present in excess. The different anthropogenic activities result in accumulation of nutrients in aquatic ecosystems leads to eutrophication with massive weed growth and associated diverse adverse effects. Effective control/management of weeds in different aquatic systems is not only difficult but of short duration. The commonly used methods to manage/control the aquatic weeds are biological, chemical and mechanical, in addition to habitat manipulation. However, these methods can be highly disruptive causing adverse environmental effects and are relatively inefficient. On the other hand different species of earthworms can feed on wide range of weeds and convert them into stable product called vermicompost, rich in plant nutrients. Among different aquatic weeds the most extensively vermicomposted weed is water hyacinth (Eichhornia crassipes (Mart.) Solms), using different earthworm species. Among different earthworm species used for vermicomposting of aquatic weeds, Eisenia fetida (Savigny) is the most commonly used species. Vermicomposting is an efficient ecobiotechnological process that converts the aquatic weeds into nutrient rich material that can acts as suitable plant growth media for sustainable agroecosystems. Further large scale utilization of aquatic weed based vermicompost in horticulture can solve their management and disposal issues along with restoration of organic matter and nutrient depletion at low input basis.

Downloads

Download data is not yet available.

Author Biography

Ishtiyaq Ahmed Najar, Department of Environmental Sciences, G.D College, Ganderbal, Kashmir, Jammu and Kashmir 191201, India

Department of Environmental Science

Assistant Professor

References

1. Bianchini J I, Cunha-Santino M B, Milan J A M, Rodrigues C J, Dias J H P. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia. 2010;644:301-312.

2. Ishtiyaq A N, Anisa B K, Abdul H. Evaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques. Pollut. 2017; 3(3): 349-362. doi:10.7508/pj.2017.03. 001.

3. Najar I A, Khan A B. Earthworm communities of Kashmir Valley, J&K, India. Trop Ecol. 2011a; 52(2):151-162.

4. Najar I A, Khan A B. Vermicomposting of fresh water weeds (macrophytes by Eisenia fetida (Savigny, 1826), Aporrectodea caliginosa trapezoides (Duges, 1828) and Aporrectodea rosea rosea (Savigny. Dyn Soil Dyn Plant. 2012a; 6(S1):73-77.

5. Najar I A, Khan A B. Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ Earth Sci. 2012b;66(8): 2367-2378. doi; 10.1007/s12665-011-1458-1.

6. Najar I A. Studies on earthworm communities of Kashmir Valley, their application in management of fresh water weeds (macrophytes) and use of vermicompost in horticulture. Ph.D thesis, Pondicherry University. 2012.

7. Smith R G, McSwiney C P, Grandy A S, Suwanwaree P, Snider R M, Robertson G P. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil and Tillage Res. 2008; 100: 83-88.

8. Najar I A, Khan A B. Assessment of pollution status of Khushalsar Lake, Kashmir, India using multivariate statistical techniques. Pollut Res. 2011b; 30(2):131-136.

9. Najar I A, Khan A B. Factors affecting distribution of earthworms in Kashmir Valley: a multivariate statistical approach. Proc Zool Soc. 2014; 67(2):126-135. doi:10.1007/s12595-013- 0081-4.

10. Ernst G, Emmerling C. Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur J Soil Biol. 2009; 45: 247-251.

11. Jouquet P, Plumere T, Thu T D, Rumpel C, Duc T T, Orange D. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Appl Soil Ecol. 2010; 46: 125-133.

12. Dominguez J, Aira M, Gomez-Brandon M. The role of earthworms on the decomposition of organic matter and nutrient cycling. Ecosistemas. 2009; 18(2): 20-31.

13. Najar I A, Khan A B. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environ Sci Pollut Res. 2013a; 20:6406-6417.doi: 10.1007/s11356-013-1687-9

14. Kizilkaya R, Karaca A, Turgay OC, Cetin S C. Earthworm interactions with soil enzymes. In Biology of earthworms, ed. A. Karaca. Berlin: Springer; 2011.

15. Najar IA, Khan A B. Effect of vermicompost on growth and productivity of tomato (Lycopersicon esculentum) under field conditions. Acta Biol Malaysiana. 2013b; 2(1):12-21.

16. Najar I A, Khan A B, Abdul H. Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions. Int J Recycl Org Waste Agricult. 2015; 4(2):73-83. doi: 10.1007/s40093-015-0087-1.

17. Chauduri P, Pal T K, Bhattacharjee G, Dey S K. Nutrients changes during vermicomposting by Perionyx excavatus of the aquatic weed Trapa bispinosa. Philipp J Sci. 2001; 130(2):127-133.

18. Sannigrahi A k, Chakrabortty S, Borah B C. Large scale Utilization of Water Hyacinth (Eichhornia crassipes) as raw material for vermicomposting and surface mulching in vegetable cultivation. Ecol Environ Conserv. 2002; 8(3): 269-271.

19. Gajalakshmi S A, Ramasamy E V, Abbasi S A. Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Biores Technol. 2001; 76:177-181.

20. Gajalakshmi S A, Ramasamy E V, Abbasi S A. Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus eugeniae, Kinberg. Biores Technol. 2002; 82:165-169.

21. Deka P K, Paul S K, Bora H A. Vermitechnology for economic use and control of water hyacinth. Pollut Res. 2003; 22(3): 385-387.

22. Kaniuczak J, Kostecka J, Nowak M, Paczka G. Changes in chosen characteristics and macronutrient contents of the substrate with duckweed subjected to vermicomposting. Zeszyty Problemove Postepow Nauk Rolniczych. 2004; 49(8):95-102.

23. Girijia T, Shama P K, Abraham C T. Vermicomposting of aquatic weeds. Indian. J Aquatic Weed Sci. 2005; 37(1/2):155-156.

24. Gupta R, Mutiyar P K, Rawat N K, Saini M S, Garg V K. Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia fetida. Biores Technol. 2007; 98(13):2605-2610.

25. Kostecka J, Kaniuczak J. Vermicomposting of duckweed (Lemna minor L.) biomass by Eisenia fetida. J Elementol. 2008; 13(4):571-579.

26. Sannigrahi A K. Management of some aquatic weeds through vermicomposting. Indian J Environ Prot. 2009; 29(9): 809-811.

27. Chauhan A, Joshi P C. Composting of Some Dangerous and Toxic Weeds Using Eisenia fetida. J Am Sci. 2010; 6(3).

28. Najar I A, Khan A B. Vermicomposting of Azolla pinnata by using earthworm Eisenia fetida. The Bioscan. 2010; 5(2):239-241.

29. Zirbes L, Renard Q, Dufey J, Tu P K, Duyet H N, Lebailly P, Francis F, Haubruge E. Valorisation of a water hyacinth in vermicomposting using an epigeic earthworm Perionyx excavatus in Central Vietnam. Biotechnol Agron Soc Environ. 2011; 15(1): 85-93.

30. Patil J H, Sanil P H, Malini B M, Manoj V, Deepika D, Chaitra D. J Chem Pharm Res. 2012; 4(5):2585-2589.

31. Gandhi A, Sundari U S. Effect of vermicompost prepared from aquatic weeds on growth and yield of eggplant (Solanum melongena L.). J Biofertil Biopestici. 2012; 3(5):128. doi:10.4172/2155-6202.1000128.

32. Kannadasan N, Natarajan N, Anbusaravanan N, Sekar P, Krishnamoorthy R. Assessment of sustainable vermiconversion of water hyacinth by Eudrilus eugeniae and Eisenia fetida. J Appl Nat Sci. 2013; 5(2):451-454.

33. Umavathi S, Mathivanan R, Thangam Y, Revathi S. Effect of Eudrilus eugeniae in vermibioconversion of Eichhornia crassipes (Martius) Solms-Laubach. Environ Res Int. 2015; 1:10-17.

34. Mishra M, Mohapatra A, Satapathy K B. A comparative study of vermicompost prepared from phytoremediated and naturally grown aquatic weeds on growth and yield of green gram [Vigna radiata (L.) Wilczek]. Int J Curr Res Biosci Plant Biol. 2016; 3(7):104-109.

35. Bernal DA, Hernandez M A L, Osben H R B, Ramos S M C, Mora M. Vermicompost as an alternative of management for water hyacinth. Rev Int Contam Ambie. 2016; 32 (4): 425-433. doi: 10.20937/RICA.2016.32.04.06.

36. Singh R, Sarma R, Satyendra K, Gupta R, Patil R. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria xananassa (Duch.). Bioresour. Technol. 2008; 99: 8502-8511.

37. Theunissen J, Ndakidemi P A and Laubscher C P. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Int. J. Phy. Sci. 2010; 5(13):1964-1973.

38. Munroe G. Manual of On-farm Vermicomposting and Vermiculture. Publication of Organic Agriculture Centre of Canada, Nova Scotia. 2007; 39p.

39. Souzaa M E P, Carvalhoa A M X, Deliberali D C, Juckscha I, Brown G G, Mendonc E S, Cardosoa I M. Vermicomposting with rock powder increases plant growth. Appl. Soil. Ecol. 2013; 69:56-60.

40. Doan T T, Ngo P T, Rumpe C, Nguyen B N, Jouquet P. Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic. 2013; 160:148-154.

41. Atiyeh R M, Arancon N Q, Edwards C A, Metzger J D. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour. Technol. 2000a; 75:175-180.

42. Edwards CA, Burrows I. The potential of earthworm compost as plant growth media. In: Edwards CA, Neuhauser (eds) Earthworms in environmental and waste management. SPB Academic Publishers. The Netherlands. 1988; 211-220.

43. Atiyeh RM, Dominguez J, Subler S, Edwards CA. Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouche) and the effects on seedling growth. Pedobiologia. 2000b; 44:709-724.

44. Wu Y, Zhang N, Wang J, Sun Z. An integrated crop vermiculture system for treating organic waste on fields. Eur. J. Soil Biol. 2012; 51:8-14.

45. Rajeev S, Dwivedi H S, Dwivedi P. Utilization of three obnoxious weeds (Parthenium hysterophorus, Lantana camara and Eichhornia crassipes) through vermicomposting and their response on vegetative growth of Soybean crop. Int. J. Adv. Res. Biol. Sci. 2016; 3(9):13-20.

46. Khan V M, Ahamad A, Yadav BL, Irfan M. Effect of Vermicompost and Biofertilizers on Yield Attributes and Nutrient Content and it’s their Uptake of Cowpea [Vigna unguiculata (L.)Walp.]. Int. J.Curr.Microbiol. App. Sci. 2017; 6(6): 1045-1050.

47. Sahoo H R, Gupta N. Of Vermicompost In Enhancing Growth And Development Of Piper Longum- A Ret Medicinal Plant. Sci. Agri. 2017; 17 (3): 77-81.

48. Roychowdhury D, Mondal S, Banerjee S K. The Effect of Biofertilizers and the Effect of Vermicompost on the Cultivation and Productivity of Maize - A Review. Adv. Crop. Sci. Tech. 2017;5:261. doi: 10.4172/2329-8863.1000261.
Published
2017-09-04
How to Cite
NAJAR, Ishtiyaq Ahmed. Vermicomposting of aquatic weeds: A quick review. Plant Science Today, [S.l.], v. 4, n. 3, p. 133-136, sep. 2017. ISSN 2348-1900. Available at: <http://horizonepublishing.com/journals/index.php/PST/article/view/311>. Date accessed: 18 nov. 2017. doi: https://doi.org/10.14719/pst.2017.4.3.311.
Section
Mini Reviews

Keywords

Aquatic; Earthworms; Plants, Weeds; Vermicomposting