Distribution of alkaloids in woody plants

Authors

  • Isabel Desgagné-Penix Université du Québec à Trois-Rivières

DOI:

https://doi.org/10.14719/pst.2017.4.3.320

Keywords:

Alkaloid, plant secondary metabolism, woody plant, natural products, trees, shrubs, specialized metabolites

Abstract

Alkaloids are nitrogen-containing compounds found in plants. Most are highly valued for their role in wide array of ailments such as anti-malarial, anti-cancerous, analgesics, and many more. In lights of tremendous interest in recent years on the chemistry and pharmacological properties of alkaloids, comprehensive data have been collected. Forest industries have recently started to develop sustainable ways to increase the value of its residues including the extraction and commercialization of high-valued plant natural compounds such as alkaloids. This review presents the distribution of alkaloids among woody plants (trees and shrubs).

Downloads

Download data is not yet available.

Author Biography

Isabel Desgagné-Penix, Université du Québec à Trois-Rivières

Biochemistry Professor

Department of Chemistry, Biochemistry and Physics

References

1. Hesse M. Alkaloids: Nature's Curse Or Blessing?: Verlag Helvetica Chimica Acta; 2002.

2. Wink M. Biochemistry of plant secondary metabolism. Annual plant reviews. 2010;40.

3. Dewick PM. Medicinal natural products: a biosynthetic approach. 3rd ed: John Wiley and Sons Ltd; 2009. 539 p. https://doi.org/10.1002/9780470742761

4. Desgagne-Penix I, Farrow SC, Cram D, Nowak J, Facchini PJ. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol Biol. 2012;79(3):295-313. https://doi.org/10.1007/s11103-012-9913-2

5. Isah T. Anticancer Alkaloids from Trees: Development into Drugs. Pharmacogn Rev. 2016;10(20):90-9. https://doi.org/10.4103/0973-7847.194047

6. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society. 1971;93(9):2325-7. https://doi.org/10.1021/ja00738a045

7. Ashihara H, Sano H, Crozier A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry. 2008;69(4):841-56. https://doi.org/10.1016/j.phytochem.2007.10.029

8. Koyama Y, Tomoda Y, Kato M, Ashihara H. Metabolism of purine bases, nucleosides and alkaloids in theobromine-forming Theobroma cacao leaves. Plant Physiology and Biochemistry. 2003;41(11–12):977-84. https://doi.org/10.1016/j.plaphy.2003.07.002

9. Niemenak N, Onomo PE, Fotso, Lieberei R, Ndoumou DO. Purine alkaloids and phenolic compounds in three Cola species and Garcinia kola grown in Cameroon. South African Journal of Botany. 2008;74(4):629-38. https://doi.org/10.1016/j.sajb.2008.03.003

10. Epifano F, Fiorito S, Genovese S. Phytochemistry and pharmacognosy of the genus Acronychia. Phytochemistry. 2013;95:12-8. https://doi.org/10.1016/j.phytochem.2013.07.013

11. Tillequin F. Alkaloids in the genus Sarcomelicope. Recent Research Develop Phytochemistry. 1997;1:675–87.

12. Moore JM, Moore JF, Fodor G, Jones AB. Detection and Characterization of Cocaine and Related Tropane Alkaloids in Coca Leaf, Cocaine, and Biological Specimens. Forensic science review. 1995;7(2):77-101.

13. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, et al. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem. 2001;49(9):4208-13. https://doi.org/10.1021/jf010567e

14. Hirayama C, Konno K, Wasano N, Nakamura M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochemistry and Molecular Biology. 2007;37(12):1348-58. https://doi.org/10.1016/j.ibmb.2007.09.001

15. Wahba Khalil SK, Elkheir YM. Dimethyltryptamine from the leaves of certain Acacia species of northern Sudan. Lloydia. 1975;38(2):176-7.

16. Duke D. Phytochemical and Ethnobotanical Databases. [Online Database] 2015

17. Clement BA, Goff CM, Forbes TDA. Toxic amines and alkaloids from Acacia rigidula. Phytochemistry. 1998;49(5):1377-80. https://doi.org/10.1016/S0031-9422(97)01022-4

18. Patcher IJ, Zacharias DE, Ribeiroi O. Indole Alkaloids of Acer saccharinum (the Silver Maple), Dictyoloma incanescens, Piptadenia colubrina, and Mimosa hostilis. Journal of Organic Chemistry. 1959;24(9):1285-7. https://doi.org/10.1021/jo01091a032

19. Rivero-Cruz JF, Lezutekong R, Lobo-Echeverri T, Ito A, Mi Q, Chai HB, et al. Cytotoxic constituents of the twigs of Simarouba glauca collected from a plot in Southern Florida. Phytotherapy research : PTR. 2005;19(2):136-40. https://doi.org/10.1002/ptr.1642

20. Cebrian-Torrejon G, Kahn SA, Ferreira ME, Thirant C, Rojas de Arias A, Figadere B, et al. Alkaloids from Rutaceae: activities of canthin-6-one alkaloids and synthetic analogues on glioblastoma stems cells. MedChemComm. 2012;3(7):771-4. https://doi.org/10.1039/c2md20047c

21. Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chemical & pharmaceutical bulletin. 2004;52(8):916-28. https://doi.org/10.1248/cpb.52.916

22. Avula B, Sagi S, Wang YH, Wang M, Ali Z, Smillie TJ, et al. Identification and Characterization of Indole and Oxindole Alkaloids from Leaves of Mitragyna speciosa Korth Using Liquid Chromatography-Accurate QToF Mass Spectrometry. Journal of AOAC International. 2015;98(1):13-21. https://doi.org/10.5740/jaoacint.14-110

23. Zanolari B, Ndjoko K, Ioset JR, Marston A, Hostettmann K. Qualitative and quantitative determination of yohimbine in authentic yohimbe bark and in commercial aphrodisiacs by HPLC-UV-API/ MS methods. Phytochemical analysis : PCA. 2003;14(4):193-201. https://doi.org/10.1002/pca.699

24. Authority EFS. Scientific Opinion on the evaluation of the safety in use of Yohimbe (Pausinystalia yohimbe (K. Schum.) Pierre ex Beille). EFSA Journal. 2013;11(7):3302. https://doi.org/10.2903/j.efsa.2013.3302

25. Jonville M-C, Dive G, Angenot L, Bero J, Tits M, Ollivier E, et al. Dimeric bisindole alkaloids from the stem bark of Strychnos nux-vomica L. Phytochemistry. 2013;87:157-63. https://doi.org/10.1016/j.phytochem.2012.11.002

26. Schmidt A, Mordhorst T, Nieger M. Investigation of a betainic alkaloid from Punica granatum. Natural product research. 2005;19(5):541-6. https://doi.org/10.1080/14786410500034949

27. Zyryanova OA, Terazawa M, Koike T, Zyryanov VI. White Birch Trees as Resource Species of Russia: Their Distribution, Ecophysiological Features, Multiple Utilizations. Eurasian Journal of Forest Research. 2010;13(1):25-40.

28. Liu H-L, Luo R, Chen X-Q, Ba Y-Y, Zheng L, Guo W-W, et al. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC–ESI-MSn and UFLC–ESI-MS/MS and their application to Piper nigrum L. Food Chemistry. 2015;177:191-6. https://doi.org/10.1016/j.foodchem.2015.01.033

29. Tawara JN, Blokhin A, Foderaro TA, Stermitz FR, Hope H. Toxic piperidine alkaloids from pine (Pinus) and spruce (Picea) trees. New structures and a biosynthetic hypothesis. The Journal of Organic Chemistry. 1993;58(18):4813-8. https://doi.org/10.1021/jo00070a014

30. Gerson E, Kelsey R. Variation of Piperidine Alkaloids in Ponderosa (Pinus poderosa) and Lodgepole Pine (P. contorta) Foliage from Central Oregon. Journal of chemical ecology. 1998;24(5):815-27. https://doi.org/10.1023/A:1022369416745

31. Virjamo V, Julkunen-Tiitto R. Shoot development of Norway spruce (Picea abies) involves changes in piperidine alkaloids and condensed tannins. Trees. 2014;28(2):427-37. https://doi.org/10.1007/s00468-013-0960-3

32. Gerson EA, Kelsey RG, St Clair JB. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study. Annals of botany. 2009;103(3):447-57. https://doi.org/10.1093/aob/mcn228

33. Custodio DL, Florencio da Veiga Junior V. Lauraceae alkaloids. RSC Advances. 2014;4(42):21864-90. https://doi.org/10.1039/C4RA01904K

34. Silva JRdA, CarmoI DFMd, Reis ÉM, Machado GMC, Leon LL, Silva BOd, et al. Chemical and biological evaluation of essential oils with economic value from Lauraceae species. J Braz Chem Soc. 2009;20(6):1071-6. https://doi.org/10.1590/S0103-50532009000600011

35. Chowdhury BK, Sethi ML, Lloyd HA, Kapadia GJ. Aporphine and Tetrahydrobenzylisoquinoline Alkaloids in Sassafras albidum. Phytochemistry. 1976;15:1803-4. https://doi.org/10.1016/S0031-9422(00)97502-2

36. Masnon FF, Hassan NP, Ahmad F. Aporphine alkaloids of Cinnamomum mollissimum and their bioactivities. Natural product communications. 2014;9(1):31-2.

37. Rowe J, Conner A. Extractives in eastern hardwoods: a review. Gen Tech Rep. 1979;FPL-18:1-67.

38. Devappa RK, Rakshit SK, Dekker RFH. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnology Advances. (0).

39. Barbosa P, Gross P, Provan GJ, Pacheco DY, Stermitz FR. Allelochemicals in foliage of unfavored tree hosts of the gypsy moth, Lymantria dispar L.: 1. Alkaloids and other components of Liriodendron tulipifera L. (Magnoliaceae), Acer rubrum L. (Aceraceae), and Cornus florida L. (Cornaceae). Journal of Chemical Ecology. 1990;16(5):1719-30. https://doi.org/10.1007/BF01014103

40. Cleaver L, Nimgirawath S, Ritchie E, Taylor W. The alkaloids of Elmerrillia papuana (Magnoliaceae): Structure and synthesis of elmerrillicine. Australian Journal of Chemistry. 1976;29(9):2003-21. https://doi.org/10.1071/CH9762003

41. Pretzsch H, Grote R, Reineking B, Rotzer T, Seifert S. Models for forest ecosystem management: a European perspective. Annals of botany. 2008;101(8):1065-87. https://doi.org/10.1093/aob/mcm246

42. Garcia-Perez ME, Royer M, Herbette G, Desjardins Y, Pouliot R, Stevanovic T. Picea mariana bark: a new source of trans-resveratrol and other bioactive polyphenols. Food Chem. 2012;135(3):1173-82. https://doi.org/10.1016/j.foodchem.2012.05.050

43. Mulat DG, Latva-Maenpaa H, Koskela H, Saranpaa P, Wahala K. Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off-line HPLC/DAD-NMR. Phytochemical analysis : PCA. 2014;25(6):529-36. https://doi.org/10.1002/pca.2523

44. Roberts MF, Strack D, Wink M. Biosynthesis of Alkaloids and Betalains. Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism: Wiley-Blackwell; 2010. p. 20-91. https://doi.org/10.1002/9781444320503.ch2

45. Harmon AD, Weiss U, Silverton JV. The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya) (Meliaceae) [leaves and stems]. Tetrahedron. 1979;20:721-4. https://doi.org/10.1016/S0040-4039(01)93556-7

46. Powell RG, Weisleder D, Smith CR, Wolff IA. Structure of cephalotaxine and related alkaloids. Tetrahedron Letters. 1969;10(46):4081-4. https://doi.org/10.1016/S0040-4039(01)88620-2

47. Lopez-Meyer M, Nessler CL, McKnight TD. Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta medica. 1994;60(6):558-60. https://doi.org/10.1055/s-2006-959571

48. Cordell GA. Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry. 2013;91(0):29-51. https://doi.org/10.1016/j.phytochem.2012.05.012

49. Saidou Balde el H, Megalizzi V, Cao M, Angenot L, Kiss R, Van Damme M, et al. Isostrychnopentamine, an indolomonoterpenic alkaloid from Strychnos usambarensis, with potential anti-tumor activity against apoptosis-resistant cancer cells. Int J Oncol. 2010;36(4):961-5.

50. Goodwin S, Smith A, Horning E. Alkaloids of Ochrosia elliptica. Journal of the American Chemical Society. 1959;81:1903-8. https://doi.org/10.1021/ja01517a031

Downloads

Published

05-09-2017

How to Cite

1.
Desgagné-Penix I. Distribution of alkaloids in woody plants. Plant Sci. Today [Internet]. 2017 Sep. 5 [cited 2024 Apr. 24];4(3):137-42. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/320

Issue

Section

Mini Reviews

Most read articles by the same author(s)