Heavy metals and their general toxicity for plants

  • Darinka Gjorgieva Ackova Faculty of Medical Sciences, University "Goce Delcev" Stip, R. Macedonia

Abstract

Heavy metals are important environmental pollutants, and their toxicity is a serious problem of great concern for environmental, ecological, nutritional and toxicological reasons. Metals can affected long list of physiological and biochemical processes in plants and their toxicity varies with plant species, particular metal, metal concentration and it chemical form. Throughout the world, researches have been conducted extensive investigations to determine the effects of toxic heavy metals on plants. The process is still going on and the need of intensification of the research programmes for better understanding of heavy metal toxicity is evident.

Downloads

Download data is not yet available.

Author Biography

Darinka Gjorgieva Ackova, Faculty of Medical Sciences, University "Goce Delcev" Stip, R. Macedonia
Pharmacy

References

1. Hawkes SJ. What is a “Heavy metal”? J Chem Edu. 1997; 74:1369-74. http://pubs.acs.org/doi/abs/10.1021/ed074p1374

2. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010; 8:199-216. https://doi.org/10.1007/s10311-010-0297-8

3. Wong JWC. Heavy metal contents in vegetables and marketgarden soils in Hong Kong. Environ Technol. 1996; 17:407–14. https://doi.org/10.1080/09593331708616400

4. Gjorgieva D, Kadifkova-Panovska T, Bačeva K, Stafilov T. Assessment of Heavy Metal Pollution in R. Macedonia Using a Plant Assay. Arch Environ Contam Toxicol. 2011; 60: 233-40. http://doi: 10.1007/s00244-010-9543-0

5. Awashthi SK. Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi. 2000.

6. WHO. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. WHO, 2007. http://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf

7. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG. Uptake and effects of five heavy metals on seed germination and plant growth in alfa alfa (Medicago sativa L.). Bull Environ Contam Toxicol. 2001; 66:727–34. https://doi.org/10.1007/s001280069

8. Cook CM, Sgardelis SP, Pantis JD, Lanaras T. Concentrations of Pb, Zn and Cu in Taraxacum spp. in relation to urban pollution. Bull Environ Contam Toxicol. 1994; 53:204-10. https://doi.org/10.1007/BF00192034

9. Reeves RD, Baker AJM. Metal-accumulating plants. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York; 2000. p. 193–229.

10. Hagemeyer J. Ecophysiology of plant growth under heavy metal stress. In Prasad MNV, editor. Heavy metal stress in plants: From molecules to ecosystems. 2nd ed. Berlin: Springer; 2004. p.201-22.

11. Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol. 2005; 17:35–52. https://doi.org/10.1590/S1677-04202005000100004

12. An Y-J. Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 2006; 62:1359-65. https://doi.org/10.1016/j.chemosphere.2005.07.044

13. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A. Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Poll. 2007; 149:239-45. https://doi.org/10.1016/j.envpol.2006.12.023

14. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V. Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monitor Assess. 2008; 138:107-18. https://doi.org/10.1007/s10661-007-9747-6

15. Gűleryűz G, Arslan H, Çelik C, Gűcer Ş, Kendall M. Heavy metal content of plant species along Nilűfer stream in industrialized Bursa City, Turkey. Water Air Soil Pollut. 2008; 195: 275-84. https://doi.org/10.1007/s11270-008-9745-5

16. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N. Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem. 2008; 27:786–92. https://doi.org/10.1897/07-294.1

17. Gjorgieva D, Kadifkova Panovska T, Ruskovska T, Bačeva K, Stafilov T. Mineral nutrient imbalance, total antioxidants level and DNA damage in common bean (Phaseolus vulgaris L.) exposed to heavy metals. Physiol Mol Biol Plants. 2013B; 19: 499-507. https://doi.org/10.1007/s12298-013-0196-0

18. Versieren L, Evers S, AbdElgawag H, Asard H, Smolders E. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environ Toxicol Chem. 2017; 36: 220-30. https://doi.org/10.1002/etc.3529

19. Gruenhage L, Jager IIJ. Effect of heavy metals on growth and heavy metals content of Allium porrum and Pisum sativum. Angew Bot. 1985; 59:11–28.

20. Kabata-Pendias A, Pendias H, editors. Trace elements in soils and plants. 2nd ed.Boca Raton, Florida, USA: CRC Press Inc; 1992.

21. Schulze E-D, Beck E, Muller-Hohenstein K. Plant Ecology. Berlin-Heidelberg: Springer; 2005.

22. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity inplants: a review. Environ Pollut.1997; 98:29–36.

23. Mohanpuria P, Rana NK, Yadav SK. Cadmium induce doxidative stress influence on glutathione metabolic genes of Camella sinensis (L.) O. Kuntze. Environ Toxicol. 2007; 22:368–74. https://doi.org/10.1002/tox.20273

24. Pandey N, Sharma CP. Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci. 2002; 163:753–58. https://doi.org/10.1016/S0168-9452(02)00210-8

25. Guo J, Dai X, Xu W, Ma M. Over expressing GSHI and As PCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 2008;72:1020–26. https://doi.org/10.1016/j.chemosphere.2008.04.018

26. Miller JE, Hassete JJ, Koppe DE. Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant.1973; 28:166–71. https://doi.org/10.1111/j.1399-3054.1973.tb01170.x

27. Morzck EJr, Funicclli NA. Effect of lead and on germination of Spartina alterniflora loisel seeds at various salinities. Environ Exp Bot.1982; 22:23–32. https://doi.org/10.1016/0098-8472(82)90005-3

28. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ.1990; 13:195–206. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x

29. Kumar G, Singh RP, Sushila. Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in a lead enriched environment. Wat Air Soil Poll.1993; 66:163–71. https://doi.org/10.1007/BF00477067

30. Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 1996; 47:259-66. https://doi.org/10.1093/jxb/47.2.259

31. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 2017; 81:253-64. https://doi.org/10.1007/s10725-016-0202-y

32. Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 2004; 52:199-223. https://doi.org/10.1016/j.envexpbot.2004.02.009

33. Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, SudhakarC. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 2005; 60:97-104. https://doi.org/10.1016/j.chemosphere.2004.11.092

34. Meharg AA, Macnair MR. Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot. 1992; 43:519–24. https://doi.org/10.1093/jxb/43.4.519

35. Garg N, Singla P. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett. 2011; 9: 303–21. https://doi.org/10.1007/s10311-011-0313-7

36. Miteva E. Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal. 2002; 33:1917–26. https://doi.org/10.1081/CSS-120004832

37. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN. Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol. 2006; 40: 5010–14. https://doi.org/10.1021/es052559a

38. Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytol. 2009; 181: 777–94. https://doi.org/10.1111/j.1469-8137.2008.02716.x

39. Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology/Plant Physiology. 2012; vol. 3: article 182. https://doi.org/10.3389 /fphys.2012.00182

40. Cline DJ, Thorpe C, Schneider JP. Effects of As(III) binding on alpha-helical structure. J Am Chem Soc. 2003; 125:2923-29. https://doi.org/10.1021/ja0282644

41. Ramadan D, Cline DJ, Bai S, Thorpe C, Schneider JP. Effects of As(III) binding on β-hairpin structure. J Am ChemSoc. 2007; 129:2981–88. https://doi.org/10.1021/ja067068k

42. Cakmak I, Marshner H. Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ, editor. Plant nutrition-from genetic engineering field practice. Netherlanad: Kluwer; 1993. p. 133–37.

43. Fontes RLS, Cox FR. Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutri.1998; 21:1723–30. https://doi.org/10.1080/01904169809365517

44. Prasad KVSK, Pardha Saradhi P, Sharmila P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot. 1999; 42:1–10. https://doi.org/10.1016/S0098-8472(99)00013-1

45. Busher AS, Schenk MK. Toxicity level for phytoavailable zinc in compost peat substrates. Sci Hortic, Amsterdam. 2000; 83:339-52. https://doi.org/10.1016/S0304-4238(99)00086-2

46. Ebbs SD, Kochian LV. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual. 1997; 26:776–81. https://doi.org/10.2134/jeq1997. 00472425002600030026x

47. Dietz KJ, Baier M, Kramer U. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, Berlin, Heidelberg. 1999.

48. Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006; 15: 523-30.

49. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: an overview. Indian J Pharmacol. 2011; 43: 246-53. https://doi.org/10.4103/0253-7613.81505

50. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7: 60-72. https://doi.org/10.2478/intox-2014-0009

51. Gjorgieva D, KadifkovaPanovska T, Ruskovska T, Bačeva K, Stafilov T. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Research International (subject Toxicology) 2013a; Volume 2013: Article ID 276417. https://doi.org/10.1155/2013/276417

52. Pérez Alvarez S, Sida-Arrerola JP, Chávez ES, Ardisana EFH. Expression analysis and biochemical characterization of beans plants biofortificated with zinc. Saudi J Biol Sci. 2017; 24:1322-26. https://doi.org/10.1016/j.sjbs.2016.12.014
Published
2018-01-01
How to Cite
GJORGIEVA ACKOVA, Darinka. Heavy metals and their general toxicity for plants. Plant Science Today, [S.l.], v. 5, n. 1, p. 14-18, jan. 2018. ISSN 2348-1900. Available at: <http://horizonepublishing.com/journals/index.php/PST/article/view/355>. Date accessed: 19 jan. 2018. doi: https://doi.org/10.14719/pst.2018.5.1.355.
Section
Mini Reviews