E-'H E E PLANT SCIENCE TODAY
Vol 13(1): 1-7
https://doi.org/10.14719/pst.10125

RESEARCH ARTICLE

Genome-wide association studies (GWAS) for resistance to
Meloidogyne graminicola in an association panel of
Oryza rufipogon

eISSN 2348-1900

o

Anupam Sekhon', Narpinderjeet Kaur Dhillon?, Dharminder Bhatia® & Harwinder Singh Buttar*

!Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141 004, Punjab, India
2Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141 004, Punjab, India
3Gurdev Singh Khush Institute of Genetics, Plant Breeding and Biotechnology, Punjab Agricultural University, Ludhiana 141 004, Punjab, India
“Punjab Agricultural University-Krishi Vigyan Kendra, Nurmahal, Jalandhar 140 406, Punjab, India

*Correspondence email - harwinder-pp@pau.edu

Received: 18 June 2025; Accepted: 13 October 2025; Available online: Version 1.0: 10 January 2026; Version 2.0: 26 January 2026

Cite this article: Anupam S, Narpinderjeet KD, Dharminder B, Harwinder SB. Genome-wide association studies (GWAS) for resistance to Meloidogyne
graminicola in an association panel of Oryza rufipogon. Plant Science Today. 2026; 13(1): 1-7. https://doi.org/10.14719/pst.10125

Abstract

The rice root-knot nematode (RRKN), Meloidogyne graminicola, is an obligate pathogen responsible for considerable yield losses in both
upland and rainfed lowland rice cultivation in India. Identifying and mapping quantitative trait loci (QTLs) associated with resistance to M.
graminicola could provide a sustainable and cost-effective management strategy for farmers. Genetic resources for resistance to M.
graminicola are limited in Asian rice (Oryza sativa) cultivars. Therefore, a study was conducted to identify potential sources of resistance in
wild rice. In this study, 93 accessions of Oryza rufipogon were screened for resistance to RRKN, alongside the susceptible check PR126, under
artificial inoculation conditions over 2 years at the Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India.
The evaluation of RRKN resistance was based on the root galling index (RGI), soil nematode population and reproduction factor (Rf). A
genome-wide association study (GWAS) for RRKN traits identified significant associations for RGI on chromosomes 1, 2, 5, 6 and 11. For soil
nematode population, significant associations were found on chromosomes 2, 4, 5, 6 and 7. Notably, QTLs on chromosomes 2 and 6 were
consistently detected across traits and models, providing robust candidate regions for resistance. Among these, SNP S6_23144943 on
chromosome 6 showed consistent association across all models and may represent a stable genetic source of resistance. These loci highlight
the polygenic nature of resistance to M. graminicola in wild rice and represent valuable resources for marker-assisted breeding.

Keywords: quantitative trait loci; rice breeding; root galling index; soil nematode population; wild rice

densities in the soil (7, 8). However, switching to another crop, even
for part of the growing season, may impose an unacceptable cost for
many small-scale rice farmers in Asia, where rice is the staple food.
Although nematicides may provide some control over
M. graminicola, this approach is not a practical solution, particularly
for small-scale farmers, as these chemicals are costly and can be
harmful to the environment. Furthermore, many chemicals used for
nematode control, such as DBCP (1, 2-dibromo-3-chloropropane)
and EDB (ethylene dibromide), have already been banned from the
market (9). In this context, cultivating resistant or tolerant rice
varieties could provide an effective, costefficient and

Introduction

The rice root-knot nematode, M. graminicola, has emerged as a
significant bottleneck in the production of Asian rice (1). This
endoparasite sedentary nematode infests a wide range of rice
production systems, lowland, upland, irrigated, rainfed and deep-
water conditions. It is known to cause considerable economic yield
losses (2-5). Managing M. graminicola involves a combinatorial
approach comprising of cultural, biological and chemical control
methods. To mitigate yield losses caused by M. graminicola, effective
management strategies include crop rotation, continuous flooding,
the use of resistant rice varieties and practices that promote healthy

soil conditions. Nematicides may be used in severe infestations, but
their use requires careful consideration due to potential
environmental impacts. All these practices have their limitations.
However, continuous flooding can effectively decrease nematode
populations in the soil by preventing infective second-stage juveniles
(J2) from entering rice roots. Despite this, its use is limited due to the
growing scarcity of water for agricultural purposes (6). Crop rotation
with poor or non-hosts of M.graminicola, such as mung bean,
mustard and sesame, can effectively lower nematode population

environmentally sustainable approach for keeping M. graminicola
population densities below economically damaging threshold
levels.

Resistance to M.graminicola has been identified in Oryza
longistaminata in African cultivated rice (0. glaberrima Steud.) (10,
11), as well as in Asian rice (Oryzasativa L.) (12-16). However, the
majority of Asian rice germplasm is susceptible to M. graminicola (3).
Efforts have been made to transfer resistance to M. graminicola from
African rice into Asian rice. Still, the interspecific progenies did not
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exhibit the same level of resistance as African rice (10). Sexual
incompatibility and hybrid sterility hinder the effort to combine
beneficial traits from these two rice species. Although hybrid fertility
can be restored through repeated backcrossing, there is a risk of
losing the desirable characteristics in the process (17).

Oryza rufipogon, the wild ancestral species of rice, has been
recognized as a valuable donor for yield-related traits and resistance
to several biotic and abiotic stresses (18, 19). We have already
identified resistance sources to M. graminicola in a collection of O.
rufipogon accessions (20). Based on this, we hypothesized that O.
rufipogon harbors novel alleles and stable QTLs conferring
resistance to M. graminicola, which can be exploited for rice
improvement. Therefore, the present study was undertaken to
evaluate diverse accessions of O.rufipogon for resistance under
controlled inoculation, to identify genomic regions associated with
resistance using GWAS and to detect stable QTLs across traits and
models that can serve as robust candidates for marker-assisted
breeding to enhance nematode resistance in cultivated rice.

Materials and Methods
Plant material

A collection of 93 O. rufipogon accessions was used in this study. Of
93 O. rufipogon accessions, 33 have their origin from Thailand, 23
from India, 9 from Cambodia, 8 from Nepal, 6 from Myanmar, 3 from
China, 2 from Srilanka, 2 from Papua New Guinea, 2 from Taiwan, 1
each from the Philippines, Malaysia, Indonesia, Bangladesh and
Australia. Seeds of all the accessions were received from the School
of Agricultural Biotechnology, Punjab Agricultural University (PAU),
India. A high- yielding cultivar, PR 126, recommended by PAU for
sowing under direct-seeded conditions but highly susceptible to
RRKN, was kept as a susceptible check. The germplasm set was
evaluated against Meloidogyne graminicola for 2 years in India, viz.
PAU.

Nematode inoculum and screening procedure

The nematode culture of M.graminicola was maintained on the
susceptible cultivar PR126 in a sterilized soil-sand mixture under
glasshouse conditions (28 + 2 °C; 70 - 80 % RH). Second-stage
juveniles (J;) were extracted from infected roots and soil using a
modified Cobb’s sieving and decanting method (21, 22). The
inoculum density was standardized to approximately 1000 freshly
hatched J, per plant, which were applied around the root zone of 21-
day-old seedlings transplanted into sterilized soil-filled pots (15 cm
diameter). Plants were maintained with a shallow water layer
(23 cm) and received recommended nutrient management
practices. Screening was carried out in a randomized complete
block design (RCBD) with 3 replications, each with at least 5 plants
per accession. Resistance to M. graminicola was assessed 45 days
after inoculation using 3 parameters: (i) RGI, recorded on a 1-5 scale
(23); (ii) soil nematode population (SnP), determined by extracting J.
from 250 cc of soil using the modified Cobb’s sieving and decanting
method (21, 22); and (iii) reproduction factor (Rf), calculated as the
ratio of final nematode population to the initial inoculum. Based on
these parameters, accessions were categorized into resistant and
susceptible classes.

Genome Wide Association Study (GWAS)

Genotypic data for the 93 O. rufipogon accessions were obtained
from previously generated restriction-site associated DNA

2

sequencing (RAD-seq) datasets (24). The raw reads were aligned to
the rice reference genome and single-nucleotide polymorphisms
(SNPs) were filtered using the following criteria: < 20 % missing data,
minor allele frequency (MAF) > 0.05 and exclusion of multi-allelic
SNPs and indels. After filtering, a set of 196652 high-quality SNPs was
used for GWAS. Genome-wide association analyses were conducted
using the GAPIT version 3.0 package (25). Three complementary
models were applied: the Generalized Linear Model (GLM), which
considered only fixed effects; the Mixed Linear Model (MLM), which
included both fixed and random effects (26); and the Fixed and
Random Model Circulating Probability Unification (FarmCPU), which
iteratively incorporates both impact (27). Principal components
were included as covariates to account for population structure and
a kinship matrix was used as a random effect. A threshold of -log10
(p) = 3.0 (p = 0.0002) was selected, corresponding to a LOD score of
3.0, a widely used threshold in GWAS of rice. While stricter
corrections, such as Bonferroni or FDR, can minimize false positives,
they may be overly conservative for complex traits like nematode
resistance. Therefore, SNPs consistently detected across models and
traits were considered robust associations.

Results and Discussion
Phenotypic variation and GWAS analysis

Of the 93 accessions evaluated, one accession (IR93070) exhibited a
highly resistant reaction. In comparison, 12 accessions showed a
resistant response, 17 accessions were moderately resistant, 44
accessions showed a moderately susceptible response and 19
accessions were highly susceptible. This wide phenotypic variation,
as assessed through both RGI and soil nematode population (SnP),
highlights the genetic diversity available within O. rufipogon. The use
of both RGI and SnP as phenotypic traits provides a more reliable
measure of resistance than earlier studies that relied solely on gall
scores (28).

Genome-wide association analysis of resistance traits

GWAS was conducted using 196,652 high-quality SNPs, along with
phenotypic data for RGI and SNP from 93 O. rufipogon accessions to
identify genomic regions associated with resistance to Meloidogyne
graminicola. A total of 11 QTLs were identified across seven
chromosomes using GLM, MLM and FarmCPU models (Table 1; Fig. 1
&2). The Manhattan plots (Fig. 1 for RGl and Fig. 2 for SnP) display the
distribution of SNP associations across the genome, highlighting
significant peaks on chromosomes 2 and 6. The corresponding Q-Q
plots (Fig. 3 & 4) showed a good fit to the expected distribution,
confirming the reliability of detected associations. These distinct
association peaks on chromosomes 2 and 6, supported by
consistent signals across models, suggest the presence of stable
QTLs contributing to resistance against M. graminicola in
O. rufipogon. The maximum number of SNPs was associated with
RGI using the FarmCPU model on chromosomes 1, 2, 5, 6 and 11,
whereas both GLM and MLM models consistently detected
associations on chromosomes 2 and 6. Among these, SNP
S6_23144928 on chromosome 6 had a relatively high minor allele
frequency (MAF = 0.42), suggesting its practical breeding relevance.
Based on all 3 models, 3 SNPs (S2_35534567, S6_23144943 and
S6_17170302) were consistently associated with RGI. Similarly,
GWAS for SnP identified 7 SNPs distributed across chromosomes 2,
4,5,6 and 7 with FarmCPU detecting all associations, while GLM and
MLM again confirmed associations only on chromosomes 2 and 6.
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Table 1. Significant SNP associations for RGI and soil nematode population (SnP) identified through GWAS using GLM, MLM and FarmCPU

models
. p value 4 ",
Sr. No. SNPID Chromosome Position GLM MLM FarmCPU MAF Trait
1 S1_19340782 1 19340782 0.000127 0.06451 RGI
2 S2_2241346 2 2241346 0.000152 0.06451 RGI
3 S2_9563684 2 9563684 0.00019 0.27419 SnP
4 S2_35534567 2 35534567 0.000296 0.000296 8.80E-05 0.09677 RGI, SnP
5 S4_22201160 4 22201160 0.000142 0.22043 SnP
6 S5_87587 5 87587 0.000131 0.22580 SnP
7 S5_977868 5 977868 0.000147 0.06451 RGI
8 S6_23144943 6 23144943 9.05E-05 9.05E-05 1.65E-05 0.42473 RGI, SnP
9 S6_17170302 6 17170302 0.000123 0.19892 RGI, SnP
10 S7_25207219 7 25207219 0.000102 0.19354 SnP
11 S11_5441870 11 5441870 0.000162 0.09677 RGI

¥MAF= Minor Allele Frequency,

SRGl=root galling index, SnP=soil nematode population

Note: SNPs in bold are consistently detected across traits (RGl and SnP) and across all 3 models (GLM, MLM, FarmCPU)

Fig. 2. Manhattan for SnP of rice root-knot nematode (M. graminicola) in 93 O. rufipogon accessions.
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Fig. 3. Q-Q plots for root galling index (RGI) of rice root-knot nematode (Meloidogyne graminicola) in 93 Oryza rufipogon accessions.
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Fig. 4. Q-Q plots for SnP of rice root-knot nematode (M. graminicola) in 93 O. rufipogon accessions.

Taken together, 3 SNPs on chromosomes 2 and 6 were found to be
consistently significant across both traits and models and these were
considered as putative QTLs for resistance to M. graminicola in O.
rufipogon. Notably, SNP S6_23144943 on chromosome 6 was
repeatedly detected across traits and models (Fig. 1 & 2), confirming
its strong association with both galling and nematode
multiplication. Its relatively high MAF (0.42) indicates that the allele is
common in the population, making it a suitable candidate for use in
breeding programs targeting resistance to M. graminicola.

The consistent detection of SNPs across multiple models
indicates robustness of the associations. Notably, SNP S6_23144943
on chromosome 6 was repeatedly detected across traits and all
three models, suggesting its strong role in resistance to both galling
and nematode multiplication. Its relatively high MAF (0.42) indicates
that the allele is common in the population, making it a suitable
candidate for use in breeding programs targeting resistance to M.
graminicola. Collectively, the Manhattan and Q-Q plots (Fig. 1-4)
illustrate the robustness and reproducibility of the GWAS signals

obtained for both traits.

The presence of significant SNPs across different
chromosomes (1, 2,4, 5,6, 7 and 11) suggests that multiple genomic
regions contribute to resistance. The identification of QTLs,
particularly on chromosomes 2 and 6, confirms the polygenic nature
of resistance to M. graminicola in wild rice. These results agree with
earlier reports of QTLs for partial resistance on chromosomes 1, 2, 6,
7,9and 11 in Asian rice (O. sativa) using recombinant inbred lines (29,
30). Likewise, a GWAS conducted in Indian wild rice accessions also
reported multiple loci for resistance (31), further validating wild
species as reservoirs of resistance alleles.

Breeding for nematode resistance remains the most cost-
effective and sustainable strategy to reduce nematode-induced
yield losses. Several resistance (R) genes and QTLs for sedentary
endoparasitic nematodes have been mapped in other crops (32, 33),
although only a few have been cloned (34, 35). In rice, the use of wild
relatives such as O. rufipogon and O. glaberrima has shown
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considerable potential as donors of resistance. Previous studies also
emphasized the value of these species as untapped sources of
nematode resistance (36). For example, O.glaberrima has been
reported as a promising donor for M. graminicola resistance (37),
supporting our present findings from O. rufipogon. Collectively, these
studies highlight the potential of introgressing resistance loci from
wild relatives into elite O.sativa cultivars. Candidate regions on
chromosomes 2 and 6 harbor genes related to NBS-LRR proteins,
WRKY transcription factors and auxin-responsive elements, all of
which are implicated in plant-nematode interactions. These
candidate genes warrant further fine mapping and transcriptomic
validation.

Beyond mapping resistance loci, understanding the
underlying molecular mechanisms is crucial. Transcriptomic and
functional genomic studies have revealed that M. graminicola
manipulates host pathways involved in auxin biosynthesis and
reactive oxygen species (ROS) regulation, which are essential in plant
defense (38). QTL mapping and GWAS studies specific to
M. graminicola remain limited compared to those of other
nematodes, such as Heterodera spp. and M. incognita. While marker-
assisted selection has been successfully applied in wheat and other
crops for nematode resistance (39), its use in rice is still
underdeveloped. The advantage of GWAS is that it can complement
QTL mapping by detecting novel alleles with small effect sizes,
making it particularly powerful for dissecting complex traits such as
nematode resistance (40). Interestingly, whereas earlier studies
primarily relied on galling scores (30, 41), our integration of both RGI
and soil nematode populations provides a more comprehensive
phenotypic assessment. This is one of the few GWAS studies in rice to
include soil J, count as a trait, which adds novelty and reliability to
theidentified QTLs.

The QTLs consistently identified on chromosomes 2 and 6
thus emerge as strong candidates for further functional validation.
Fine mapping and cloning of these loci, along with transcriptomic
profiling of resistant and susceptible accessions, will be essential to
confirm their role in nematode resistance. Once validated, these loci
can serve as starting points for pyramiding resistance genes through
marker-assisted backcrossing or genomic selection in rice breeding.
Similar strategies have been used successfully in other crops. For
example, the Mi-1.2 gene in tomato provides resistance to several
Meloidogyne spp. (34), while the Hsa-10g gene in African rice confers
resistance to the cyst nematode Heterodera sacchari (42). Numerous
other nematode resistance QTLs have been mapped in crops such
as soybean, potato and pepper, but such information remains
limited for M. graminicola in rice. In fact, previous studies identified
QTLs for partial resistance on chromosomes 1,2, 6,7,9 and 11 using
recombinant inbred lines from Bala x Azucena in Asian rice (34) and
12 QTLs with main effects and epistatic interactions were also
reported (12). In addition, a primary root-knot nematode resistance
locus on chromosome 11 in rice (O.sativa) has recently been
identified (43). Taken together, our results confirm that resistance to
M. graminicola in O. rufipogon is polygenic and that chromosomes 2
and 6 harbor robust loci that can be targeted for marker-assisted
selection. These findings not only validate earlier reports but also
introduce novel evidence using both RGI and soil nematode
populations as traits, thereby providing new avenues for functional
validation and resistance breedingin rice.

Conclusion

In our study, we report 3 consistent QTLs on chromosomes 2 and 6
that can be used for breeding nematode resistance in rice. To our
knowledge, no published studies have mapped QTLs for resistance
to M. graminicola in rice using the number of J2 in the roots as the
resistance trait. Additional studies on rice panels from different
geographic regions will expand the resistant gene pool, which can be
utilized in future rice breeding programs. In conclusion, the
identification of these SNPs has laid the foundation for gaining
valuable insights into the genetic architecture of resistance to
M. graminicola. Further validation and functional characterization of
these SNPs are necessary to confirm their role in nematode
resistance. Still, these findings pave the way for future genetic studies
and breeding strategies aimed at improving crop resistance to
nematode damage.
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