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Abstract

Blackgram is an important pulse crop in India, but abiotic stresses and poor management often limit its productivity. This study, for the first
time, optimized genetic coefficients for 12 blackgram genotypes, providing a valuable resource for accurate simulation and crop modelling
applications. Crop simulation models such as Decision Support System for Agrotechnology Transfer (DSSAT-CROPGRO) are valuable tools for
evaluating varietal responses under diverse environmental conditions. However, accurate simulation requires genotype-specific genetic
coefficients, which are largely unavailable for blackgram, limiting the effective application of such models. To address this gap, we calibrated
and validated the CROPGRO-Drybean model under rainfed conditions during the Kharif season (2022-23) at the Main Agricultural Research
Station (MARS), University of Agricultural Sciences (UAS), Dharwad. Genetic coefficients were optimized for 12 blackgram genotypes (DBG-5,
DBG-19, DBG-31, DBG-33, DBG-34, DBG-93, DBG-16, DBG-96, DBG-90, DBG-95, DBG-61 and DU-1) using 3 replicated datasets from two sowing
dates (May 30 and June 27) for calibration and the remaining two other sowing dates (June 13 and July 18) for validation. Results showed that
simulated values closely matched with observed data, with deviations within + 10 %. Phenological deviations ranged from 0 % to + 2.4 % for
anthesis and - 1.3 % to + 1.3 % for maturity, while grain yield deviations ranged from - 3.1 % to + 5.8 %. Model performance was further
supported by low root mean squared error (RMSE) values (0 - 1.41 days for phenology, 16.97 - 127.28 kg ha™ for yield) and consistently high
index of agreement (d = 0.889 - 1.0).
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Introduction worldwide, integrating soil, crop, weather and management
processes for applications ranging from precision management
to regional climate impact assessments (5). In particular, the
CROPGRO model within DSSAT has been widely applied to
legumes such as soybean, chickpea and groundnut in India (3, 6,
7) and more recently to mungbean and Indian bean (8). DSSAT
has also been applied to blackgram under projected climate
scenarios, demonstrating its potential (9). However, these
applications remain limited to a few cultivars and
environments, highlighting the absence of genotype-specific
coefficients across diverse soils and regions.

Blackgram (Vigna mungo L.) is one of the important pulse crops
cultivated extensively in various agroclimatic zones of India. The
productivity and growth of blackgram are intricately linked to
prevailing weather conditions and agronomic management,
besides genetic characters of the genotypes (1). Fluctuations in
temperature, variations in rainfall patterns and other
meteorological factors significantly influence the crop’s
development and vyield, as they directly affect its genetic
potential and physiological expression (2). In the context of
climate change, where excess rainfall, droughts and other

weather extremes pose constant challenges, accurate crop This limitation is particularly critical for blackgram,
modelling becomes imperative. which is predominantly grown under rainfed conditions in semi-

arid India, where frequent moisture stress, late sowing and low
input use make production highly vulnerable to climate
variability. Expanding DSSAT use for blackgram is therefore
essential to improve yield prediction and guide climate-resilient
management. Conducting robust field experiments across
multiple environments is often resource-intensive and time-
consuming, whereas crop simulation models such as DSSAT

Crop simulation models play an important role in
modern agriculture by predicting crop growth under diverse
environmental conditions, identifying production constraints
and evaluating adaptation strategies (3, 4). The Decision
Support System for Agrotechnology Transfer (DSSAT)
ecosystem is one of the most widely used frameworks
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provide an efficient alternative. To run the model for any crop in
a given location, however, genotype-specific coefficients are
essential. Once optimized, these coefficients can be applied to a
range of applications, including sowing window analysis, yield
gap estimation and future climate impact assessments.
Calibration and validation are essential steps in crop modeling
to optimize genotype-specific coefficients and ensure model
accuracy. Calibration involves adjusting genetic coefficients so
that simulated values closely match observed field data, while
validation assesses model performance against an independent
dataset (8). Therefore, this study was undertaken to address this
gap by calibrating and validating the CROPGRO-drybean model
for 12 blackgram genotypes under rainfed conditions in north
interior Karnataka, to develop reliable genetic coefficients for
future modeling applications.

Materials and Methods
Experimental site

The field experiment was conducted during the Kharif season (2022
-23) under the MULLaRP scheme at the MARS, University of
Agricultural Sciences (UAS), Dharwad. The site is located at 15°26' N
latitude, 75° 07" E longitude and an altitude of 678 m above mean
sea level. The study was carried out on deep black soils under
rainfed conditions. The experimental site location is provided in
Supplementary Fig. S1.

Experimental design and treatments

The field experiment followed a split-plot design with 2 factors: 4
sowing windows (i.e. Dy 30/05/2022, D,: 13/06/2022, Ds: 27/06/2022
and Ds: 18/07/2022) and 12 blackgram genotypes (DBG-5, DBG-19,
DBG-31, DBG-33, DBG-34, DBG-93, DBG-16, DBG-96, DBG-90, DU-1
and DBG-95). Row and plant spacing were maintained at 30 cm and
10 cm respectively.

Weather data

Daily weather data, including rainfall (mm), minimum and
maximum temperatures (°C) and solar radiation (MJ m? day™), were
recorded at the Meteorological Observatory, MARS, Dharwad.
These data were used to create the DSSAT model’s weather file
(.\WTH) for the calibration and validation process. The table below
presents the monthly weather parameters for Dharwad in 2022

(Table1).
Soildata

The soil module within the DSSAT model requires data on soil
texture, color, slope (%), pH, organic carbon (OC, %), bulk density
(BD, g cm?), field capacity and permanent wilting point across
different depths (Table 2). The experiment was conducted on black
clay soil. Soil data were obtained from the ICAR Krishi Geoportal
website (10).

Crop management and experimental files

Five datasets were prepared for DSSAT: i) Adile: Yield data and crop
attributes at the time of harvest of crop. ii) T-file: Time-series data on
phenology and growth stages. iii) X-file: Crop management details,
including sowing date, planting method (line sowing), plant
population, spacing (30 cm x 10 cm), sowing depth (5 cm), tillage
operations and fertilizer applications. Fertilizer management
included a basal application of diammonium phosphate (DAP, 18-
46-0) at the rate of 100 kg ha™, uniformly broadcast at sowing, which
supplied 18 kg N ha* and 46 kg phosphorus pentoxide (P,05) ha™.
No potassium (K) was applied, as the soil was rich in available K. iv)
Weather file: Daily weather on Tmax, Tmin, radiation and rainfall
and v) Soil file: profile depth, soil color, slope, nitrogen phosphorus
potassium (NPK) content, pH, EC and soil organic matter. A
schematic representation of the DSSAT model application process
is provided in supplementary Fig. S2.

Calibration and validation of the DSSAT-CROPGRO model

The DSSAT-CROPGRO model was calibrated and validated
using experimental data from Kharif 2022 for 12 blackgram
genotypes. Calibration was performed with sowing dates of May
30 and June 27, while validation used June 13 and July 18. Key
parameters assessed included days to anthesis, days to
physiological maturity and yield at harvest maturity. In this
study, calibration was carried out using the GenCalc tool
integrated with DSSAT, which iteratively adjusts coefficients
until simulated and observed values are in close agreement (11-
13). Final acceptance of coefficients was based on predefined
statistical thresholds of percent deviation within + 10 %, Root
Mean Square Error (RMSE) minimized, d-statistics > 0.8 and
Normalized Root Mean Square Error (NRMSE) < 15 % across
calibration environments. For validation, independent datasets

Table 1. Monthly meteorological data during the year 2022 at the MARS, UAS, Dharwad

Solar radiation

Mean temperature (°C)

Months (MJ m?day) Rainfall (mm) No. of rainy days Minimum Maximum
January 11.84 0.0 0 13.2 28.2
February 13.53 0.0 0 15.1 32.0
March 13.52 48.8 6 18.9 34.2
April 13.74 114.4 8 21.1 34.8
May 13.31 125.8 6 21.4 321
June 13.19 102.8 7 21.0 29.9
July 10.83 186.4 14 20.5 26.6
August 11.06 113.2 14 20.3 27.4
September 12.31 195.6 11 20.0 28.7
October 11.82 208.6 8 18.6 28.9
November 10.50 2.81 1 16.5 29.6
December 11.61 3.2 1 15.6 29.6
Total /Average 12.27 1101.6 76 18.51 30.16
Table 2. Physical and chemical properties of black clay soil in the Dharwad district for simulation
f . . Bulk . Field ..
Soil layer . Sand Silt Clay Stones Soilroot . Saturation : Lower limit
em) MMM o) o) (%) (%) growthfactor 1Y B (cmremy)  RTCN (emremy)  O€%
0-30 Ap 10 45 45 0 1.00 1.31 0.476 0.433 0.269 065 74
30-60 AB 10 45 45 0 0.8 131 0.476 0.433 0.269 065 74
60-90 AB 10 45 45 0 0.75 1.31 0.476 0.433 0.269 065 74
90-120 BssC 10 45 45 0 0.7 131 0.476 0.433 0.269 065 74
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from the contrasting sowing windows were used, representing
multi-environment conditions within the season.

Model evaluation

The model's performance was evaluated by calculating the
percentage deviation between simulated and observed values
for phenology and grain yield. A deviation within + 10 %
indicates a good simulation, while deviations greater than +10
% or less than -10 % are considered overestimations and
underestimations respectively (14). The following formula is
used to calculate the percent deviation,

Si— 0i

Percent Deviation (%) = — X 100 (1)

Where, Si=Simulated value; O= Observed value

Other model evaluation statistics used include the Index of
agreement (d), RMSE and NRMSE.

Index of agreement (d): It ranges from 0 (no agreement) to 1
(perfect agreement), indicating how well the model's output
matches observed data (15).

I(Si — 0i)®
T Z(ISi— 0] + |0i — O])? (2)

Index of agreement (d) =1

Where, O =Mean of observed values.

RMSE measures the average magnitude of error and is sensitive
to large errors (16).

RMSE= [EGi—00? (3)

Where, n=Number of observations

NRMSE expresses RMSE as a percentage of the mean observed
value, making it useful for comparing error magnitudes across
different variables or units (17).

RMSE
NRMSE (%) = —5— X 100 (4)

Results and Discussion
Calibration and derivation of genetic coefficients

The calibrated genetic coefficients for different blackgram
genotypes were obtained using the GenCalc tool and are presented
in Table 3 and supplementary Table S1 (18). These coefficients were
fine-tuned iteratively to achieve optimal alignment between
simulated and observed values, ensuring accurate representation
of growth and development in the CROPGRO model. Notably,
variations were observed across genotypes in traits such as
photoperiod sensitivity (PPSEN), days from emergence to flowering
(EM-FL) and seed-filling duration (SFDUR), reflecting the genetic
diversity among cultivars. Compared to the original genetic
coefficient, the calibrated values exhibited improved precision in
parameters influencing phenology, biomass accumulation and
yield formation. The optimized values will enhance the model's
ability to predict crop performance under different environmental
conditions, aiding in better genotype selection and agronomic
decision-making (12).

Model calibration and validation for phenology (days to
anthesis and maturity)

A close agreement between simulated and observed values was
noted for days to anthesis and physiological maturity across all
genotypes during both calibration and validation phases. Most
genotypes showed a difference of within + 1 day for days to
anthesis, with percent deviations ranging from 0 % to 2.4 % (Table
4), except for DBG-34 at the May 30 sowing date during calibration,
which had a 5 % deviation with a 2-day mean difference (i.e. 43 and
41 days after sowing (DAS) respectively) (supplementary Table S2).
Similarly, for days to physiological maturity, a difference of within +
1 day was observed, with percent deviations ranging from-1.3 %to
+13 % (Table 4). Some genotypes exhibited slightly higher
deviations, up to + 2.5 %, at specific sowing dates (supplementary
Table S2). The 1:1 scatter plot for days to anthesis (Fig. 1a) and
physiological maturity (Fig. 1b) revealed that most data points
aligned closely along the 1:1 line, visually confirming a strong
correlation and minimal bias between simulated and observed
values across genotypes. Regression analysis showed moderate to
strong agreement (days to anthesis: R* = 0.70 calibration, 0.21
validation; physiological maturity: R’ = 0.77 calibration, 0.51
validation), consistent with previous DSSAT studies where

Table 3. Key genetic coefficients of CROPGRO that vary among blackgram genotypes

Genotypes PPSEN EM-FL FL-SD SD-PM LFMAX SFDUR
ECOTYPE - ANDDET
Original genetic coefficient (VAR# A 195)
0.020 28.00 9.20 21.50 0.990 17.50
Calibrated genetic coefficients

DBG-5 0.0122 34.83 12.86 18.36 0.980 22.00
DBG-19 0.0175 35.00 12.78 18.96 0.980 22.00
DBG-31 0.0146 35.00 12.86 19.03 0.980 22.00
DBG-33 0.0175 35.00 12.78 18.07 0.995 21.09
DBG-34 0.0175 35.00 12.78 18.96 0.995 21.00
DBG-93 0.0146 35.00 12.86 19.03 1.000 18.70
DBG-16 0.0175 35.00 12.63 19.10 0.980 22.00
DBG-96 0.0115 34.39 13.00 21.41 0.980 21.34
DBG-90 0.0100 34.42 12.66 18.55 0.980 22.00
DBG-95 0.0115 34.39 13.00 19.60 0.980 22.00
DBG-61 0.0144 34.20 12.78 22.66 0.980 20.87
DU-1 0.0175 35.00 12.78 18.07 0.980 21.35

Coefficient code and genetic coefficient description (units): PPSEN- Slope of the relative developmental response to photoperiod over time
(positive for short day plants) (1 hr), EM-FL- Duration from plant emergence to flower appearance (photothermal days), FL-SD- Duration from
first flower to first seed (photothermal days), SD-PM- Duration from first seed to physiological maturity (photothermal days), LFMAX- Maxi-
mum leaf photosynthesis rate (mg CO. m= s?) and SFDUR- Seed filling duration for pod cohort at standard growth conditions (photothermal
days).
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Table 4. Calibrated and validated values for days to anthesis and physiological maturity of different genotypes (average across sowing dates)

Calibration 2022

Validation 2022

Days to physiological

Genotypes Days to anthesis maturity Days to anthesis Days to physiological maturity
Simulated Observed %D Simulated Observed %D Simulated Observed %D Simulated Observed %D
DBG-5 43 43 0 7 7 0 43 43 0 7 78 -1.3
DBG-19 44 44 0 78 79 -1.3 43 43 0 78 79 -1.3
DBG-31 44 44 0 78 78 0 43 43 0 78 78 0
DBG-33 44 43 2.3 7 77 0 43 44 -2.3 77 7 0
DBG-34 44 43 2.3 78 79 -1.3 43 44 -2.3 78 79 -1.3
DBG-93 44 44 0 78 79 -1.3 43 42 2.4 78 78 0
DBG-16 44 44 0 78 78 0 43 44 -2.3 78 79 -1.3
DBG-96 43 43 0 80 81 -1.2 43 43 0 80 81 -1.2
DBG-90 43 43 0 7 77 0 43 43 0 77 76 13
DBG-95 43 43 0 78 79 -1.3 43 44 -2.3 78 79 -1.3
DBG-61 43 42 2.4 81 81 0 42 43 -2.3 81 81 0
DU-1 44 43 2.3 77 77 0 43 43 0 77 78 -1.3

% D = Percent deviation, simulated- predicted values obtained from the DSSAT-CROPGRO model, observed- actual values recorded from field

experiments.

(a) 4s[

Calibration -

44

43

42

Simulated days to anthesis

41 i y=1.423x - 18.43
e R*=0.70

40 41 42 43 44 45

Observed days to anthesis

Simulated days to anthesis

457 P
Validation -

8 r
- ‘ % DBG-5
% DBG-19
- x DBG-31
% DBG-33
s * e DBG-34
£ x DBG-93
= DBG-16
« x DBG-96
axf 4 ® % DBG-90
- DRG-95
- x DBG-61
-~ % DU-1
41 - y =0.625x + 16.25 === 1:1 Line
/’ R:=0.21 = Regression Line
4 95% CI

40 41 42 43 44 45
Observed days to anthesis

(h) 82 Calibration .

Bl |- > - *

B0

7+

78

Simulated days to maturity

77

y=L17x- 13.14
76 - R*=0.77

.
75 76 77 78 79 80 81 82
Observed days to maturity

Simulated days to maturity

®2

Validation

8T

DBG-5
DBG-19
DBG-31
DBG-33
DBG-34
x DBG-93
DBG-16
DBG-96
DBG-90
DBG-95
x DBG-61
x DU-1

s ) ==« I:1 Line
J 5 }"; 1.020x - 1.33 = Regression Line
P R*=0.51 959 CI

&0

¥ oM oM o

T T

%

T8 I

*

77

To

75 76 77 T8 79 &0 81 B2
Observed days to maturity

Fig. 1. Scatter plots comparing observed and simulated (a) days to anthesis (DAP) and (b) days to physiological maturity (DAP) during calibration
and validation of the model. Each point represents a genotype, with colors indicating different genotypes as shown. The dashed line represents
perfect agreement (1:1), while the solid red line indicates the fitted regression. Shaded bands denote the 95 % confidence intervals (Cl) around the
regression line. Regression equations and coefficient of determination (R? values are provided to indicate the goodness of model fit.

calibration generally exhibited a stronger fit than validation due to
environmental and genotypic variability (19). The 95 % confidence
intervals (Cl) around the regression line further illustrated the
statistical uncertainty of predictions. Most observed points fell
within these intervals, confirming the robustness of CROPGRO
simulations across genotypes. For anthesis, calibration showed a
stronger correlation than validation and although the Cl appeared
wider in calibration, this reflected the influence of regression slope
and data distribution rather than reduced accuracy, since
simulated and observed values differed by only one day.

For physiological maturity, the Cl bands were narrow in
both phases, with only minor deviations reflecting statistical
variation rather than model deficiency. Overall, the CROPGRO
model reliably reproduced phenological events with high precision
across genotypes. The lower R? for anthesis during validation
reflects inherent differences among genotypes but does not
compromise model reliability (20), as evidenced by model
evaluation statistics showing accurate prediction (RMSE: 0-1.41
days, NRMSE: 0 % - 2.33 %, d-values: 0.889-1.0 during calibration;
RMSE: 0-1.0 days, NRMSE: 0 %-2.38 %, d-values: 0.917-1.0 during
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Table 5. Model evaluation statistics for phenology and yield of blackgram genotypes during calibration and validation

Parameter Calibration Validation

RMSE NRMSE d RMSE NRMSE d
Days to anthesis 0-1.0 0-2.33% 0.917-1.00 0-1.0 0-2.38% 0.917-1.00
%Z{im;hys'omg'cal 0-1.41 0-1.75% 0.889-1.00 0-1.0 0-1.28% 0.944-1.00
Grain yield (kg ha") 16.97-85.56 0.62-2.92% 0.943-0.998 78.1-127.28 2.89-4.71% 0.943-0.975

RMSE= root-mean-square error, NRMSE= normalized root-mean-square error, d= Index of agreement. Ratings are as follows: Excellent- NRMSE
<10 % of mean observed; Good- 10 % < NRMSE < 20 %; Satisfactory- 20 % < NRMSE < 30 %; Unsatisfactory- NRMSE > 30 %. Very good- d = 0.9;
Good- d ranges between 0.80-0.89; Moderate good- d ranges between 0.25-0.49; Very poor- d < 0.25 (18).

validation) (Table 5; for detailed genotype-wise evaluation, refer to
supplementary Table S3). These results are considered acceptable,
as some genotypes showed zero error, while others had deviations
within + 10 %, indicating good model performance. These findings
are consistent with reports of similar results for chickpea calibration
and validation in Gujarat, which showed percentage errors of
8.08 % for days to anthesis and 4.34 % for days to maturity (7).
Similar results were also observed during calibration of the model
for different legumes, supporting its reliability (21).

Model calibration and validation for grain yield at harvest
maturity

The percent deviation between the simulated and observed values
of grain yield fell within the range of -3.1 % to + 5.8 % during the
calibration (2022) and validation (2022) phases. These results are
considered satisfactory, as the deviations remain within + 10 %,
indicating a strong agreement between the simulated and
observed data. Similar findings have been reported for chickpea in
Gujarat, with grain yield errors of 7.9 % and acceptable error ranges
were also observed across various legumes, confirming the model’s
reliability (7, 21). The 1:1 scatter plot (Fig. 2) clearly depict this
agreement, as the data points cluster closely along the 1:1 line
during both calibration and validation, demonstrating the model's
ability to simulate grain yield accurately among genotypes.
Regression analysis further confirmed this relationship, with R? =
0.90 during calibration and R?= 0.57 during validation, in line with
earlier DSSAT studies for pulses reporting stronger calibration fits
due to environmental and genotypic variability (19). The inclusion
of 95 % Cl in regression plots confirmed this reliability, as most
simulated-observed pairs fell within the bands. Model evaluation
statistics in Table 5 reinforce this performance, with RMSE values
ranging from 16.97 kg ha’to 85.56 kg ha, NRMSE from 0.62 % to

2.92 % and d-values from 0.943 to 0.998 during the calibration
phase, while in the validation phase, RMSE values ranged from 78.1
kg ha'to 127.28 kg ha, NRMSE from 2.79 % to 4.71 % and d-values
from 0.943 to 0.975, all of which indicate excellent to very good
model agreement. Detailed genotype-wise model evaluation
statistics for yield are provided in supplementary Table $4.

Among 12 blackgram genotypes, DBG-61 showed the
highest simulated grain yield, with an average deviation of -1.6 %
(observed yield - 3342 kg ha?, simulated yield - 3290 kg ha!) during
calibration and 2 % (observed yield-3230 kg ha?, simulated yield-
3294 kg ha) during validation. The genotype DBG-96 also closely
followed higher yields after DBG-61, with a deviation of - 1.7 %
(observed yield - 3180 kg ha?, simulated yield - 3126 kg ha™) during
calibration and 2.6 % mean deviation (observed yield-3046 kg ha”,
simulated vyield-3124 kg ha?) during validation (Fig. 3 and
supplementary Table S3). The superior yields of DBG-61 and DBG-96
can be attributed to the interaction between their slightly longer
reproductive duration, particularly the extended seedHilling
duration (SDPM) and efficient physiological traits. Although the
reproductive phase is only 2-3 days longer than other genotypes, it
allows prolonged photosynthetic activity (LFMAX), greater total
assimilate accumulation and efficient partitioning of assimilates to
seeds (XFRT, WTPSD; supplementary Table S1), resulting in higher
grain weight. Genotypes with similar physiological traits but shorter
reproductive phases and SDPM have less time to fully exploit these
advantages, leading to comparatively lower yields. This highlights
that small differences in reproductive duration, when combined
with favorable physiological traits, can significantly influence final
grain yield. These physiological traits not only enhance yield under
variable environmental and sowing conditions but also make DBG-
61 and DBG-96 valuable germplasm for breeding programs aimed at
improving yield stability and efficiency in blackgram.
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3000 3000
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Simulated grain yield
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2800
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2600 2600

2600 2800 3000 3200

Observed grain yield

3400

3400 |

3200 |

Validation

x DBG-5
x DBG-19
x DBG-31
x DBG-33
DBG-34
x DBG-93
DBG-16
x DBG-96
x DBG-90
DBG-95
x DBG-61
x DU-1
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2800 3000
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3200 3400

Fig. 2. Scatter plots comparing observed and simulated grain yield (kg ha') during calibration and validation of the model. Each point
represents a genotype, with colors indicating different genotypes as shown. The dashed line represents perfect agreement (1:1), while the
solid red line indicates the fitted regression. Shaded bands denote the 95 % confidence intervals (Cl) around the regression line. Regression
equations and coefficient of determination (R? values are provided to indicate the goodness of model fit.
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Fig. 3. Comparison of observed and simulated grain yield (kg ha?) across blackgram genotypes at harvest maturity during calibration and
validation phases. Bars represent observed and simulated yields for calibration (blue shade) and validation (red shade), with error bars
indicating standard deviations. Solid and dashed lines show percentage deviations between observed and simulated yields for calibration and

validation respectively.

Conclusion

The genetic coefficients specific to 12 blackgram cultivars in the
DSSAT-CROPGRO Drybean model were successfully optimized,
with reliable performance across calibration and validation
phases (RMSE < 2 days for phenology; RMSE 17-127 kg ha for
grain yield; d-index consistently > 0.94). Beyond validation, the
model holds strong potential for applications in climate
scenario analysis, precision agriculture and management
optimization. Furthermore, the framework can be extended to
other pulse crops, providing a valuable tool to support breeding
strategies and enhance productivity under variable
environments.
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