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Introduction 

Blackgram (Vigna mungo L.) is one of the important pulse crops 

cultivated extensively in various agroclimatic zones of India. The 

productivity and growth of blackgram are intricately linked to 

prevailing weather conditions and agronomic management, 

besides genetic characters of the genotypes (1). Fluctuations in 

temperature, variations in rainfall patterns and other 

meteorological factors significantly influence the crop’s 

development and yield, as they directly affect its genetic 

potential and physiological expression (2). In the context of 

climate change, where excess rainfall, droughts and other 

weather extremes pose constant challenges, accurate crop 

modelling becomes imperative. 

Crop simulation models play an important role in 

modern agriculture by predicting crop growth under diverse 

environmental conditions, identifying production constraints 

and evaluating adaptation strategies (3, 4). The Decision 

Support System for Agrotechnology Transfer (DSSAT) 

ecosystem is one of the most widely used frameworks 

worldwide, integrating soil, crop, weather and management 

processes for applications ranging from precision management 

to regional climate impact assessments (5). In particular, the 

CROPGRO model within DSSAT has been widely applied to 

legumes such as soybean, chickpea and groundnut in India (3, 6, 

7) and more recently to mungbean and Indian bean (8). DSSAT 

has also been applied to blackgram under projected climate 

scenarios, demonstrating its potential (9). However, these 

applications remain limited to a few cultivars and 

environments, highlighting the absence of genotype-specific 

coefficients across diverse soils and regions. 

This limitation is particularly critical for blackgram, 

which is predominantly grown under rainfed conditions in semi-

arid India, where frequent moisture stress, late sowing and low 

input use make production highly vulnerable to climate 

variability. Expanding DSSAT use for blackgram is therefore 

essential to improve yield prediction and guide climate-resilient 

management. Conducting robust field experiments across 

multiple environments is often resource-intensive and time-

consuming, whereas crop simulation models such as DSSAT 
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Abstract  

Blackgram is an important pulse crop in India, but abiotic stresses and poor management often limit its productivity. This study, for the first 

time, optimized genetic coefficients for 12 blackgram genotypes, providing a valuable resource for accurate simulation and crop modelling 
applications. Crop simulation models such as Decision Support System for Agrotechnology Transfer (DSSAT-CROPGRO) are valuable tools for 

evaluating varietal responses under diverse environmental conditions. However, accurate simulation requires genotype-specific genetic 

coefficients, which are largely unavailable for blackgram, limiting the effective application of such models. To address this gap, we calibrated 

and validated the CROPGRO-Drybean model under rainfed conditions during the Kharif season (2022-23) at the Main Agricultural Research 
Station (MARS), University of Agricultural Sciences (UAS), Dharwad. Genetic coefficients were optimized for 12 blackgram genotypes (DBG-5, 

DBG-19, DBG-31, DBG-33, DBG-34, DBG-93, DBG-16, DBG-96, DBG-90, DBG-95, DBG-61 and DU-1) using 3 replicated datasets from two sowing 

dates (May 30 and June 27) for calibration and the remaining two other sowing dates (June 13 and July 18) for validation. Results showed that 

simulated values closely matched with observed data, with deviations within ± 10 %. Phenological deviations ranged from 0 % to + 2.4 % for 
anthesis and - 1.3 % to + 1.3 % for maturity, while grain yield deviations ranged from - 3.1 % to + 5.8 %. Model performance was further 

supported by low root mean squared error (RMSE) values (0 - 1.41 days for phenology, 16.97 - 127.28 kg ha-1 for yield) and consistently high 

index of agreement (d = 0.889 – 1.0). 

Keywords: blackgram; calibration; CROPGRO; drybean; DSSAT 

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.10421&domain=horizonepublishing.com
https://doi.org/10.14719/pst.10421
mailto:abburupravallika@gmail.com
mailto:abburupravallika@gmail.com
https:/doi.org/10.14719/pst.10421


 PRAVALLIKA ET AL  2     

https://plantsciencetoday.online 

provide an efficient alternative. To run the model for any crop in 

a given location, however, genotype-specific coefficients are 

essential. Once optimized, these coefficients can be applied to a 

range of applications, including sowing window analysis, yield 

gap estimation and future climate impact assessments. 

Calibration and validation are essential steps in crop modeling 

to optimize genotype-specific coefficients and ensure model 

accuracy. Calibration involves adjusting genetic coefficients so 

that simulated values closely match observed field data, while 

validation assesses model performance against an independent 

dataset (8). Therefore, this study was undertaken to address this 

gap by calibrating and validating the CROPGRO-drybean model 

for 12 blackgram genotypes under rainfed conditions in north 

interior Karnataka, to develop reliable genetic coefficients for 

future modeling applications. 

Materials and Methods 

Experimental site 

The field experiment was conducted during the Kharif season (2022
-23) under the MULLaRP scheme at the MARS, University of 

Agricultural Sciences (UAS), Dharwad. The site is located at 15° 26' N 

latitude, 75° 07' E longitude and an altitude of 678 m above mean 

sea level. The study was carried out on deep black soils under 

rainfed conditions. The experimental site location is provided in 

Supplementary Fig. S1. 

Experimental design and treatments 

The field experiment followed a split-plot design with 2 factors: 4 
sowing windows (i.e. D1: 30/05/2022, D2: 13/06/2022, D3: 27/06/2022 

and D4: 18/07/2022) and 12 blackgram genotypes (DBG-5, DBG-19, 

DBG-31, DBG-33, DBG-34, DBG-93, DBG-16, DBG-96, DBG-90, DU-1 

and DBG-95). Row and plant spacing were maintained at 30 cm and 

10 cm respectively. 

Weather data 

Daily weather data, including rainfall (mm), minimum and 

maximum temperatures (°C) and solar radiation (MJ m-2 day-1), were 

recorded at the Meteorological Observatory, MARS, Dharwad. 

These data were used to create the DSSAT model’s weather file 

(.WTH) for the calibration and validation process. The table below 

presents the monthly weather parameters for Dharwad in 2022 

(Table 1). 

Soil data  

The soil module within the DSSAT model requires data on soil 

texture, color, slope (%), pH, organic carbon (OC, %), bulk density 

(BD, g cm-3), field capacity and permanent wilting point across 

different depths (Table 2). The experiment was conducted on black 

clay soil. Soil data were obtained from the ICAR Krishi Geoportal 

website (10). 

Crop management and experimental files 

Five datasets were prepared for DSSAT: i) A-file: Yield data and crop 

attributes at the time of harvest of crop. ii) T-file: Time-series data on 

phenology and growth stages. iii) X-file: Crop management details, 

including sowing date, planting method (line sowing), plant 

population, spacing (30 cm x 10 cm), sowing depth (5 cm), tillage 

operations and fertilizer applications. Fertilizer management 

included a basal application of diammonium phosphate (DAP, 18-

46-0) at the rate of 100 kg ha-1, uniformly broadcast at sowing, which 

supplied 18 kg N ha-1 and 46 kg phosphorus pentoxide (P₂O₅) ha-1. 

No potassium (K) was applied, as the soil was rich in available K. iv) 

Weather file: Daily weather on Tmax, Tmin, radiation and rainfall 

and v) Soil file: profile depth, soil color, slope, nitrogen phosphorus 

potassium (NPK) content, pH, EC and soil organic matter. A 

schematic representation of the DSSAT model application process 

is provided in supplementary Fig. S2. 

Calibration and validation of the DSSAT-CROPGRO model 

The DSSAT-CROPGRO model was calibrated and validated 

using experimental data from Kharif 2022 for 12 blackgram 

genotypes. Calibration was performed with sowing dates of May 

30 and June 27, while validation used June 13 and July 18. Key 

parameters assessed included days to anthesis, days to 

physiological maturity and yield at harvest maturity. In this 

study, calibration was carried out using the GenCalc tool 

integrated with DSSAT, which iteratively adjusts coefficients 

until simulated and observed values are in close agreement (11-

13). Final acceptance of coefficients was based on predefined 

statistical thresholds of percent deviation within ± 10 %, Root 

Mean Square Error (RMSE) minimized, d-statistics > 0.8 and 

Normalized Root Mean Square Error (NRMSE) < 15 % across 

calibration environments. For validation, independent datasets 

 Months 
Solar radiation 
(MJ m-2 day-1) 

Rainfall (mm) No. of rainy days 
Mean temperature (°C) 

Minimum Maximum 
January 11.84 0.0 0 13.2 28.2 
February 13.53 0.0 0 15.1 32.0 
March 13.52 48.8 6 18.9 34.2 
April 13.74 114.4 8 21.1 34.8 
May 13.31 125.8 6 21.4 32.1 
June 13.19 102.8 7 21.0 29.9 
July 10.83 186.4 14 20.5 26.6 
August 11.06 113.2 14 20.3 27.4 
September 12.31 195.6 11 20.0 28.7 
October 11.82 208.6 8 18.6 28.9 
November 10.50 2.81 1 16.5 29.6 
December 11.61 3.2 1 15.6 29.6 
Total /Average 12.27 1101.6 76 18.51 30.16 

Table 1. Monthly meteorological data during the year 2022 at the MARS, UAS, Dharwad 

Soil layer 
(cm) 

Horizon Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Stones 
(%) 

Soil root 
growth factor 

Bulk 
density (g 

cm-3) 

Saturation 
(cm3 cm-3) 

Field 
capacity 

(cm3 cm-3) 

Lower limit 
(cm3 cm-3) 

OC % 
  

pH 

0-30 Ap 10 45 45 0 1.00 1.31 0.476 0.433 0.269 0.65 7.4 
30-60 AB 10 45 45 0 0.8 1.31 0.476 0.433 0.269 0.65 7.4 
60-90 AB 10 45 45 0 0.75 1.31 0.476 0.433 0.269 0.65 7.4 

90-120 BssC 10 45 45 0 0.7 1.31 0.476 0.433 0.269 0.65 7.4 

Table 2. Physical and chemical properties of black clay soil in the Dharwad district for simulation 
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  from the contrasting sowing windows were used, representing 

multi-environment conditions within the season.  

Model evaluation  

The model's performance was evaluated by calculating the 

percentage deviation between simulated and observed values 

for phenology and grain yield. A deviation within ± 10 % 

indicates a good simulation, while deviations greater than +10 

% or less than -10 % are considered overestimations and 

underestimations respectively (14). The following formula is 

used to calculate the percent deviation, 

 

Percent Deviation (%) =   x 100                                      (1) 

                 

Where, Si = Simulated value; Oi= Observed value  

Other model evaluation statistics used include the Index of 

agreement (d), RMSE and NRMSE.  

Index of agreement (d): It ranges from 0 (no agreement) to 1 
(perfect agreement), indicating how well the model's output 

matches observed data (15). 

 

Index of agreement (d) = 1- 

                

Where, Ō = Mean of observed values. 

RMSE measures the average magnitude of error and is sensitive 

to large errors (16). 

 

RMSE =  

                                          

Where, n = Number of observations 

NRMSE expresses RMSE as a percentage of the mean observed 

value, making it useful for comparing error magnitudes across 

different variables or units (17). 

 

NRMSE (%) =  X 100 

Results and Discussion  

Calibration and derivation of genetic coefficients 

The calibrated genetic coefficients for different blackgram 

genotypes were obtained using the GenCalc tool and are presented 

in Table 3 and supplementary Table S1 (18). These coefficients were 

fine-tuned iteratively to achieve optimal alignment between 

simulated and observed values, ensuring accurate representation 

of growth and development in the CROPGRO model. Notably, 

variations were observed across genotypes in traits such as 

photoperiod sensitivity (PPSEN), days from emergence to flowering 

(EM-FL) and seed-filling duration (SFDUR), reflecting the genetic 

diversity among cultivars. Compared to the original genetic 

coefficient, the calibrated values exhibited improved precision in 

parameters influencing phenology, biomass accumulation and 

yield formation. The optimized values will enhance the model’s 

ability to predict crop performance under different environmental 

conditions, aiding in better genotype selection and agronomic 

decision-making (12). 

Model calibration and validation for phenology (days to 

anthesis and maturity) 

A close agreement between simulated and observed values was 

noted for days to anthesis and physiological maturity across all 

genotypes during both calibration and validation phases. Most 

genotypes showed a difference of within ± 1 day for days to 

anthesis, with percent deviations ranging from 0 % to 2.4 % (Table 

4), except for DBG-34 at the May 30 sowing date during calibration, 

which had a 5 % deviation with a 2-day mean difference (i.e. 43 and 

41 days after sowing (DAS) respectively) (supplementary Table S2). 

Similarly, for days to physiological maturity, a difference of within ± 

1 day was observed, with percent deviations ranging from -1.3 % to 

+1.3 % (Table 4). Some genotypes exhibited slightly higher 

deviations, up to ± 2.5 %, at specific sowing dates (supplementary 

Table S2). The 1:1 scatter plot for days to anthesis (Fig. 1a) and 

physiological maturity (Fig. 1b) revealed that most data points 

aligned closely along the 1:1 line, visually confirming a strong 

correlation and minimal bias between simulated and observed 

values across genotypes. Regression analysis showed moderate to 

strong agreement (days to anthesis: R² = 0.70 calibration, 0.21 

validation; physiological maturity: R² = 0.77 calibration, 0.51 

validation), consistent with previous DSSAT studies where 

Genotypes PPSEN EM-FL FL-SD SD-PM LFMAX SFDUR 
ECOTYPE – ANDDET 

Original genetic coefficient (VAR# A 195) 
  0.020 28.00 9.20 21.50 0.990 17.50 

Calibrated genetic coefficients 
DBG-5 0.0122 34.83 12.86 18.36 0.980 22.00 
DBG-19 0.0175 35.00 12.78 18.96 0.980 22.00 
DBG-31 0.0146 35.00 12.86 19.03 0.980 22.00 
DBG-33 0.0175 35.00 12.78 18.07 0.995 21.09 
DBG-34 0.0175 35.00 12.78 18.96 0.995 21.00 
DBG-93 0.0146 35.00 12.86 19.03 1.000 18.70 
DBG-16 0.0175 35.00 12.63 19.10 0.980 22.00 
DBG-96 0.0115 34.39 13.00 21.41 0.980 21.34 
DBG-90 0.0100 34.42 12.66 18.55 0.980 22.00 
DBG-95 0.0115 34.39 13.00 19.60 0.980 22.00 
DBG-61 0.0144 34.20 12.78 22.66 0.980 20.87 
DU-1 0.0175 35.00 12.78 18.07 0.980 21.35 

Table 3. Key genetic coefficients of CROPGRO that vary among blackgram genotypes 

Coefficient code and genetic coefficient description (units): PPSEN- Slope of the relative developmental response to photoperiod over time 
(positive for short day plants) (1 hr-1), EM-FL- Duration from plant emergence to flower appearance (photothermal days),  FL-SD- Duration from 

first flower to first seed (photothermal days),  SD-PM- Duration from first seed to physiological maturity (photothermal days), LFMAX- Maxi-
mum leaf photosynthesis rate (mg CO2 m-2 s-1) and SFDUR- Seed filling duration for pod cohort at standard growth conditions (photothermal 

days). 

(2) 

(3) 

(4) 
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calibration generally exhibited a stronger fit than validation due to 

environmental and genotypic variability (19). The 95 % confidence 

intervals (CI) around the regression line further illustrated the 

statistical uncertainty of predictions. Most observed points fell 

within these intervals, confirming the robustness of CROPGRO 

simulations across genotypes. For anthesis, calibration showed a 

stronger correlation than validation and although the CI appeared 

wider in calibration, this reflected the influence of regression slope 

and data distribution rather than reduced accuracy, since 

simulated and observed values differed by only one day. 

 For physiological maturity, the CI bands were narrow in 

both phases, with only minor deviations reflecting statistical 

variation rather than model deficiency. Overall, the CROPGRO 

model reliably reproduced phenological events with high precision 

across genotypes. The lower R² for anthesis during validation 

reflects inherent differences among genotypes but does not 

compromise model reliability (20), as evidenced by model 

evaluation statistics showing accurate prediction (RMSE: 0-1.41 

days, NRMSE: 0 % - 2.33 %, d-values: 0.889-1.0 during calibration; 

RMSE: 0-1.0 days, NRMSE: 0 %-2.38 %, d-values: 0.917-1.0 during 

Genotypes 

Calibration 2022 Validation 2022 

Days to anthesis Days to physiological 
maturity 

Days to anthesis Days to physiological maturity 

Simulated Observed % D Simulated Observed % D Simulated Observed % D Simulated Observed % D   
DBG-5 43 43 0 77 77 0 43 43 0 77 78 -1.3   
DBG-19 44 44 0 78 79 -1.3 43 43 0 78 79 -1.3   
DBG-31 44 44 0 78 78 0 43 43 0 78 78 0   
DBG-33 44 43 2.3 77 77 0 43 44 -2.3 77 77 0   
DBG-34 44 43 2.3 78 79 -1.3 43 44 -2.3 78 79 -1.3   
DBG-93 44 44 0 78 79 -1.3 43 42 2.4 78 78 0   
DBG-16 44 44 0 78 78 0 43 44 -2.3 78 79 -1.3   
DBG-96 43 43 0 80 81 -1.2 43 43 0 80 81 -1.2   
DBG-90 43 43 0 77 77 0 43 43 0 77 76 1.3   
DBG-95 43 43 0 78 79 -1.3 43 44 -2.3 78 79 -1.3   
DBG-61 43 42 2.4 81 81 0 42 43 -2.3 81 81 0   
DU-1 44 43 2.3 77 77 0 43 43 0 77 78 -1.3   

Table 4. Calibrated and validated values for days to anthesis and physiological maturity of different genotypes (average across sowing dates) 

% D = Percent deviation, simulated– predicted values obtained from the DSSAT-CROPGRO model, observed– actual values recorded from field 
experiments. 

Fig. 1. Scatter plots comparing observed and simulated (a) days to anthesis (DAP) and (b) days to physiological maturity (DAP) during calibration 
and validation of the model. Each point represents a genotype, with colors indicating different genotypes as shown. The dashed line represents 

perfect agreement (1:1), while the solid red line indicates the fitted regression. Shaded bands denote the 95 % confidence intervals (CI) around the 
regression line. Regression equations and coefficient of determination (R²) values are provided to indicate the goodness of model fit.  
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validation) (Table 5; for detailed genotype-wise evaluation, refer to 

supplementary Table S3). These results are considered acceptable, 

as some genotypes showed zero error, while others had deviations 

within ± 10 %, indicating good model performance. These findings 

are consistent with reports of similar results for chickpea calibration 

and validation in Gujarat, which showed percentage errors of       

8.08 % for days to anthesis and 4.34 % for days to maturity (7). 

Similar results were also observed during calibration of the model 

for different legumes, supporting its reliability (21). 

Model calibration and validation for grain yield at harvest 
maturity 

The percent deviation between the simulated and observed values 

of grain yield fell within the range of -3.1 % to + 5.8 % during the 

calibration (2022) and validation (2022) phases. These results are 

considered satisfactory, as the deviations remain within ± 10 %, 

indicating a strong agreement between the simulated and 

observed data. Similar findings have been reported for chickpea in 

Gujarat, with grain yield errors of 7.9 % and acceptable error ranges 

were also observed across various legumes, confirming the model’s 

reliability (7, 21). The 1:1 scatter plot (Fig. 2) clearly depict this 

agreement, as the data points cluster closely along the 1:1 line 

during both calibration and validation, demonstrating the model's 

ability to simulate grain yield accurately among genotypes. 

Regression analysis further confirmed this relationship, with R² = 

0.90 during calibration and R² = 0.57 during validation, in line with 

earlier DSSAT studies for pulses reporting stronger calibration fits 

due to environmental and genotypic variability (19). The inclusion 

of 95 % CI in regression plots confirmed this reliability, as most 

simulated-observed pairs fell within the bands. Model evaluation 

statistics in Table 5 reinforce this performance, with RMSE values 

ranging from 16.97 kg ha-1 to 85.56 kg ha-1, NRMSE from 0.62 % to 

2.92 % and d-values from 0.943 to 0.998 during the calibration 

phase, while in the validation phase, RMSE values ranged from 78.1 

kg ha-1 to 127.28 kg ha-1, NRMSE from 2.79 % to 4.71 % and d-values 

from 0.943 to 0.975, all of which indicate excellent to very good 

model agreement. Detailed genotype-wise model evaluation 

statistics for yield are provided in supplementary Table S4. 

 Among 12 blackgram genotypes, DBG-61 showed the 

highest simulated grain yield, with an average deviation of -1.6 % 

(observed yield - 3342 kg ha-1, simulated yield - 3290 kg ha-1) during 

calibration and 2 % (observed yield-3230 kg ha-1, simulated yield-

3294 kg ha-1) during validation. The genotype DBG-96 also closely 

followed higher yields after DBG-61, with a deviation of - 1.7 % 

(observed yield - 3180 kg ha-1, simulated yield - 3126 kg ha-1) during 

calibration and 2.6 % mean deviation (observed yield-3046 kg ha-1, 

simulated yield-3124 kg ha-1) during validation (Fig. 3 and 

supplementary Table S3). The superior yields of DBG-61 and DBG-96 

can be attributed to the interaction between their slightly longer 

reproductive duration, particularly the extended seed-filling 

duration (SDPM) and efficient physiological traits. Although the 

reproductive phase is only 2-3 days longer than other genotypes, it 

allows prolonged photosynthetic activity (LFMAX), greater total 

assimilate accumulation and efficient partitioning of assimilates to 

seeds (XFRT, WTPSD; supplementary Table S1), resulting in higher 

grain weight. Genotypes with similar physiological traits but shorter 

reproductive phases and SDPM have less time to fully exploit these 

advantages, leading to comparatively lower yields. This highlights 

that small differences in reproductive duration, when combined 

with favorable physiological traits, can significantly influence final 

grain yield. These physiological traits not only enhance yield under 

variable environmental and sowing conditions but also make DBG-

61 and DBG-96 valuable germplasm for breeding programs aimed at 

improving yield stability and efficiency in blackgram. 

Parameter 
Calibration Validation 

RMSE NRMSE d RMSE NRMSE d 
Days to anthesis 0-1.0 0-2.33% 0.917-1.00 0-1.0 0-2.38% 0.917-1.00 
Days to physiological 
maturity 

0-1.41 0-1.75% 0.889-1.00 0-1.0 0-1.28% 0.944-1.00 

Grain yield (kg ha-1) 16.97-85.56 0.62-2.92% 0.943-0.998 78.1-127.28 2.89-4.71% 0.943-0.975 

Table 5.   Model evaluation statistics for phenology and yield of blackgram genotypes during calibration and validation 

RMSE= root-mean-square error, NRMSE= normalized root-mean-square error, d= Index of agreement. Ratings are as follows: Excellent- NRMSE 
< 10 % of mean observed; Good- 10 % < NRMSE < 20 %; Satisfactory- 20 % < NRMSE < 30 %; Unsatisfactory- NRMSE > 30 %. Very good- d ≥ 0.9; 

Good- d ranges between 0.80-0.89; Moderate good- d ranges between 0.25-0.49; Very poor- d < 0.25 (18). 

Fig. 2. Scatter plots comparing observed and simulated grain yield (kg ha-¹) during calibration and validation of the model. Each point 
represents a genotype, with colors indicating different genotypes as shown. The dashed line represents perfect agreement (1:1), while the 

solid red line indicates the fitted regression. Shaded bands denote the 95 % confidence intervals (CI) around the regression line. Regression 
equations and coefficient of determination (R²) values are provided to indicate the goodness of model fit. 
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Conclusion  

The genetic coefficients specific to 12 blackgram cultivars in the 

DSSAT-CROPGRO Drybean model were successfully optimized, 

with reliable performance across calibration and validation 

phases (RMSE < 2 days for phenology; RMSE 17-127 kg ha-1 for 

grain yield; d-index consistently > 0.94). Beyond validation, the 

model holds strong potential for applications in climate 

scenario analysis, precision agriculture and management 

optimization. Furthermore, the framework can be extended to 

other pulse crops, providing a valuable tool to support breeding 

strategies and enhance productivity under variable 

environments. 
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