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Abstract

Most of the agricultural land undergoes abiotic stress, which can significantly reduce crop production both qualitatively and quantitatively.
Numerous abiotic stressors, including temperature stress (heat and cold), salinity, drought, heavy metal contamination, nutrient deficiency or
toxicity have negative impact on crops and limit their productivity and quality. Understanding the mechanisms of major abiotic stressors and
their negative impacts on crop yield helps to improve crop resilience and productivity through agronomic management. Biochar, kaolin,
super absorbents, seaweed extracts, yeast extracts and nanoparticles are the promising environment friendly agronomic approaches that can
mitigate the negative effects of abiotic stresses on crops and improve their productivity. This review mainly focuses on different abiotic
stressors, theirimpacts on crop productivity and environment friendly management strategies.
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Introduction

The world will need to feed 9.7 billion by 2050 and, within this
period also face several challenges, including increased demand
for food and resources, strain on ecosystems and potential for
social and political instability. These challenges are exacerbated by
climate change, resource depletion and poverty, which are already
impacting global food security. The changing weather pattern will
cause a severe interruption to agricultural systems as per the
forecast of IPCC (1). In the last two decades, about 37 % irrigated
lands were covered by salinity whereas global warming has
induced the rapid evapotranspiration that causes drought.
Therefore, hunger and malnutrition become an issue for stress
prone areas. By 2030, to achieve the “Climate Action” and “Zero
Hunger” goal of SDGs, it’s unavoidable to reconstruct the
conventional agricultural systems. Stress induces abrupt
physiological and metabolic changes in plants. Stress in plant can
be classified as internal that causes from mutations or abnormal
cell divisions and external that derives from biotic and abiotic
origins. The key abiotic stressors are drought, salinity, temperature
stress (heat and cold), heavy metal contamination, nutrient
deficiency or toxicity (2).

Around the world, abiotic stresses affect about 90 % of
arable land, leading to yield losses of up to 70 % (2). Extreme high
temperature alters the structural changes that accelerate the
evapotranspiration and impose the water stress as well as
drought. Drought reduces the photosynthesis rate by altering the

stomatal closure and reducing leaf area and increases the rate of
osmolytes and Reactive oxygen species (ROS) (3). Salinity resultsin
accumulation of sodium (Na*) and chloride (Cl') ions that imposes
the oxidative and ionic stress on plant and hinders the water use
potential as well as causes cell damage. Heavy metals like Cr, Cd,
Ni, Zn, As and Hg causes soil pollution as well as may accumulate
in plant cell to cause damage. Crop productivity and growth is
hindered by these stresses as a consequence of osmotic stress,
nutritional imbalance and oxidative stress (4). These climate driven
abiotic stresses have emerged as a major threat to global food
security. The impact of it on crop production causes $170 billion or
more annual loss. Drought stress results in minimum $80 billion
cost on crop production annually. Soil flooding causes $22 billion
(price rate of 2021) annual loss in agriculture (5). According to FAO,
global annual loss of $30 billion was estimated in crop production
due to salinity. Increased atmospheric ozone concentration are
responsible for around $40 billion crop yield loss globally (5).

Understanding about the abiotic stressors, the major
limiting factors affecting crop production both qualitatively and
quantitatively and their management options are very crucial in
agriculture (6). Therefore, in this review, we focus on various
aspects of ten important abiotic stressors that affect crop plants:
drought, submergence, salinity, heat, cold, heavy metals, wind,
pollutions, nutrient deficiency/lode and CO.. To develop a clear
and holistic understanding of abiotic stressors, their impact on
crops and the strategies used to manage them, this review
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adopted a structured but narrative-driven approach. The
methodology comprised four interconnected steps: i) locating
relevant literature; ii) selecting studies using explicit criteria; iii)
gathering detailed agronomic data and iv) organizing insights
through thematic synthesis. This approach enabled us to capture
both the quantitative evidence presented in the literature and the
contextual nuances related to mitigation practices.

Major abiotic stresses in crops

Plant experiences stress resulting from both biotic and abiotic
factors. Abiotic stresses are drought, submergence, salinity, heat,
cold, heavy metals, wind, pollutions, nutrient deficiency or toxicity
and CO; (Fig. 1). Among the stresses, some are internal, caused by
mutations or abnormal cell divisions, while others are external.
Major abiotic stresses that affect crops are discussed below:

Drought

Drought is termed as severe threat to growth and yield of crop in
the coming decades as the rainfall pattern has changed leading to
raise the atmospheric CO, and temperature (7). Besides, high light
intensity and dry wind increase the evaporation of water from soil
which can also trigger the drought stress. Drought occurs not only
due to lack of water in soil, the inability of root to uptake water due
to low temperature and salinity in soil can also be a reason for
water stress (8). Drought reduces leaf water potential, turgor
pressure, stomatal closure that affects photosynthesis, nutrient
metabolism, respiration and carbohydrates metabolism as well as
plant growth and development (9).

Submergence

Submergence can be defined with two terms like ‘surface
waterlogging’, when the surface of soils is flooded due to poor
draining and ‘root-zone waterlogging’, when the entire root zone is
drowned with water (10). In response to submergence, plant faces
two physiological challenges as hypoxia or moisture injury when
oxygen level decreases below the optimum level at both short and
long-term flooding and anoxia or flooding injury when there is
complete lack of oxygen at long term flooding condition (11). Both
conditions limit the aerobic respiration that leads to aeration stress

2

and energy efficiency. As a result, toxicants are accumulated and
threatened the plants productivity and survivality (12). Moreover,
flooding affects the soil pH by buffering the carbonate under the
partial pressure of CO, and redox potential (Eh) leading to an
amendment of proton and cation balances (13). Besides, plants
induce ethylene accumulation under submergence that enhances
the gene expression and triggers the breakdown of chlorophyll by
activating chlorophyllase enzyme.

Salinity

With yearly addition of 0.3-1.5 million ha, one billion ha land
around the 100 countries of the world lost more than 20 % of its
production due to salinity (14). Salinity can arise in soil either by
sea water as well as atmospheric deposition are defined as natural
causes or by poor drainage facilities, using briny water for irrigation
as well as improper management of water that are defined as
secondary or anthropogenic process (14). Salinity imposes stress
on the plants through osmotic and ionic imbalance. Water uptake
capacity of the root decreases as the soil water increases, with
higher Na*and Cl than the plant and leads to the osmotic stress.
Osmotic stress gives rise to hyper ionic stress, whereas the
increasing accumulation of Na* and Cl” ions in plant tissues inhibits
the uptake of other nutrients like K ions that regulate the cell
turgor, activity of enzymes and membrane potentiality. As a
secondary product of salinity, ROS causes oxidative damages of
protein, lipids and DNA (15).

Heat stress

When 50 % of the plants die due to a certain temperature, the
situation can be defined as heat stress. The killing temperature
varies with plant type, like the highest 60 °C-120 °C temperature
was reported in higher plants during the daytime (16). Actively
growing plant tissue can rarely withstand the temperature above
45 °C, whereas dry seeds and pollen grains can survive up to 120 °C
and 70 °C temperature, respectively (17). Plants usually try to
stabilize their tissue water with sufficient soil moisture content
rather than have a limited supply (18). But high temperature
exposure reduces the leaf tissue water along with root mass that
coincides with the water scarcity in many crops like sugarcane,
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Fig. 1. Abiotic stressors and their consequences on plant performances (growth, development and productivity).
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tomato etc. (19). Thylakoids face the structural changes under high
temperature that reduce the rate of photosynthesis (20). Rapid
evapotranspiration rate has influenced the production of glucose
that affects the osmotic adjustment of the plant under heat stress
(21). Extreme heat may also increase the lipid fluidity, ROS
production that results in reduced seed germination, plant growth,
leaf rolling, pollen viability, parthenocarpy, fruit discoloration and
ultimately the fruit yield of plant (22).

Cold stress

Plant faces two types of cold injuries, i.e. chilling (0 °C -20 °C) and
freezing (<0 °C). At sub-zero temperature, ice crystals are formed at
the extracellular space of the plant that increases the electrolytic
leakage at the membrane lipid phase and reduces the water
potential of the apoplastic solution. As a result, dehydration may
induce as plant cells get punctured that results water as well as
cytosol outflow from the cell (23). ROS are also accumulated at
high level that damages cellular structures and macromolecules
under cold stress (24). Malondialdehyde (MDA) is an important
indicator of cold stress. The MDA content was increased rapidly at

the rate of 0.20 umol g * from fifth day, whereas it was raised slowly
in first three to four days at 1 °C that predicted seedling injury may
happen between 3-5 days at this temperature.

Heavy metals

The elements that have relatively high density exceeding 5 g cm?
as well as atomic weight greater than 20 atomic number and
exhibit pliability, conduction ability, stability of cation and
specificity of ligand can be termed as heavy metals. Plants can
absorb only easily soluble metals present in the soil. These metals
can be classified into two groups depending on their necessity for
plant. For enzyme and protein structures, Co, Cu, Fe, Mn, Mo, Ni, V
and Zn are required in minute quantities, whereas Pb, Cd, Hg and
As regarded as “risk” as they have destructive effects on crops.
Though some metals have a beneficiary effect, it can be
detrimental if they exceed their acceptable levels in the soil. The
root is the entrance of metal and move towards the aerial parts of
the plants with the influence of transpiration via xylem. Crop
shooting tissues hold a very minimal percentage of heavy metals
(25, 26). Heavy metals affect the plant by disturbing the protein
structure and inhibiting the function of cellular molecules.

Wind

Wind is a complex but neglected stress that causes mechanical
pressure as well as exchange of leaf gas and heat (27). Responses
of plants towards wind may vary along the terminal or basal stem.
Wind reduces the leaf boundary layer as well as plant temperature
(28). Wind mediated plant produces short and thick petioles with
more rounded leaf blades that result water stress as well as
dehydration of the plant (28). Due to heavy wind, leaves become
rolled up that reduces the effective leaf area. Heavy and
continuous unidirectional wind may cause bending of plants and
inhibit the stem elongation (29).

Pollutions

Pollution of air, land or water causes from industrial, commercial
as well as transportation system becomes a global issue now.
Many factories emit huge CO, and other CFCs which cause air
pollution. It affects the plant photosynthesis rate by hindering
photosynthesis. Heavy use of pesticides and improper waste
disposal cause soil as well as water pollution that affects plant
nutrition uptake.

Nutrient deficiency and toxicity

Sixteen elements i.e. carbon, hydrogen, oxygen, nitrogen,
phosphorus, potassium, calcium, magnesium, sulphur, iron,
manganese, zinc, copper, boron, molybdenum and chlorine are
known as essential for metabolism in plants (30). Deviation from
the needed balanced proportions for plants causes nutritional
imbalance and stress (Fig. 1). Therefore, the plant faces stunted
growth, low yield and finally death. Toxicity of nutrients may show
similar consequences like deficiency (31).

CO,

CO; regulates the stomatal opening of leaves through which CO; is
diffused for photosynthesis. On the other hand, it is also used as a
trail of water diffusing out. Previous studies reported 5 % fall in
stomatal density and 22 % reduction in stomatal conductance due
to high photosynthetic rate with elevated CO, that affects the plant
water use and assimilation rate that limits the photosynthesis rate
(32). High concentration of CO; also affects the respiratory ATP
synthesis that directly hampers the uptake of 0,. Another study
reported plant diabetes with an increasing CO; rate that stimulates
the production of methylglyoxal that is responsible for diabetes
mellitus in wheat leaves (33). Rising CO, levels could heighten
plant vulnerability to frost, potentially diminishing productivity
benefits and influencing agriculture, forestry and ecosystem
dynamics (34).

Crop quality deterioration due to abiotic stresses
Drought

Drought stress can be characterized by reduced cell growth that
results from low turgor pressure (35). Cell enlargement can also be
hampered due to hindrance of water flow to the elongated cell from
xylem that ultimately reduces the plant height and leaf area under
water stress (36). Besides the cytological impact, drought has a great
impact on the crop as well as grain quality like starch, mineral
elements, protein or lipid content. About 65 % of grain is composed
of starch that can be drastically affected due to water stress during
grain filling. Among the four key enzymes, inactivation of adenosine
diphosphate-glucose pyrophosphorylase can cease the starch
accumulation of barley (37) and corn (38). AGPase can also inhibit
the cell-wall synthesis that causes reduced starch content in potato
(39). The ROS produced under drought stress is injurious to lipid
production (40). In a consequence, fluidity and intrinsic-membrane
protein activities may also be hampered. Moreover, a reduced
transpiration rate also hampers the nutrient uptake of the crop by
increasing N and reducing the P uptake (41). In cotton, altering N and
K uptake was previously reported (42). Low mobility of PO,*towards
the plant tissue reduced the P and POs* contents. Water stress also
affects the nutrient use efficiency. K" applied sunflower showed
drastic decline in stomatal opening rate under drought stress (43).

Submergence

Floods cause two-thirds of all damages and losses to crops from
2006 to 2016 over the world (44). Plants are lacking O,, CO, and
sunlight under flooded soil which lowers the carbohydrate rate as
well as growth and development of plants by interfering the
photosynthesis and aerobic respiration (45). Hypoxia induces the
production of ROS such as superoxide radicals, hydroxyl radicals
and hydrogen peroxide that disrupt lipids, pigments, proteins and
nucleic acids metabolism of plants (11). A severe lipid peroxidation
and membrane injury was observed in mung, maize and pigeon
pea due to increasing superoxide radicals (46). Likewise, re-
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oxygenation of organs and tissues can injure plants at post-
submergence by inducing oxidative stress. For example, leaf
dehydration is the consequence of re-exposure to atmospheric
oxygen after 7-10 days of submergence in rice (47). The low pH
under submergence may cause aluminium or manganese
phytotoxicity, calcium deficiency and reduced mineralization. The
high soil redox potential affects the availability and concentration
of different plant nutrients (13). Previous studies revealed that
submergence reduces K and N uptake by 89.5 % and 88.7 %,
respectively as well as the rice cooking and testing qualities (48).
salinity

Plant responses to salinity either within a minute to days that
causes closing of stomata as well as inhibition of shoot cell
expansion or over days and weeks that impair metabolic
processes and cell death (49). In Broccoli this biphasic response
was observed whereas the growth reduction was much higher in
first week of salinity stress (50). Photosynthesis rate is reduced due
to stomatal closure caused by abscisic acid synthesis and
unavailability of CO, under salt stress. Salinity hampers the
photosynthesis of Spinach by reducing stomatal and mesophyll
conductivity to CO, as well as chlorophyll content that hampers
the light absorbance in sunflower also (51). Salt stress reduced the
leaf area expansion and lowered the light interception that leads to
80 % loss of growth in radish (52). Moreover, high concentration of

Na* and CI results in nutrient deficiency by ionic competition
between Na*/Ca*/K', Ca*/Mg? and CI/NO* in plant tissues. Na*
accumulation stops the activity of many enzymes which may
regulate by the availability of K in soil (26). Blossom-end rot that is
caused by Ca* deficiency, reported in saline water irrigated
tomato, pepper fruits and eggplants (53). Salinity causes sterility of
spikelet in rice (54) and lint quality in cotton (55).

Table 1. Effects of heat stress on quality deterioration in different crops

Heat stress

Temperature above the threshold level causes heat stress that
reduces crop quality by altering the starch, sugar, gene expressing
protein and fatty acid content in cereals and other grain crops
(Table 1). Inrice, 35 °C night temperature at the pre-flowering stage
reduces the panicle number up to 75 % (Table 1). Heat stress
during grain filling creates an imbalance in the starch synthesis
degradation by increasing the rate of starch degrading enzymes
such as alpha amylase which leads to the production of chaffy
grain in rice (66) observed a negative effect of heat stress on grain
protein of Pusa 1121 rice. Previous researchers reported decreased
rate in chalkiness and head rice due to heat along with high
relative humidity (67). Heat stress increases the rate of protein
synthesis in bread wheat that subsequently increases the gliadin
proportion and reduces the glutenin (68). Dough quality declined
due to decreasing the glutenin-to-gliadin ratio and presence of
large glutenin polymers at high temperature exposure (69).

Cold

With the changing climate, cold periods have increased, that
reduces the production and quality of many temperate and arid
zone crops (Table 2). Plant integrates a variety of responses
towards cold stress that interferes with plant’s metabolism, cell
wall structure, photosynthesis and ROS homeostasis (75). As a
result, crops exposed to chlorosis, flavescence, wilting and leaf
shrinkage under cold stress (76). Different crops have different
levels of tolerance towards the low temperature. For example,
only 10 % of ice in the tissues can be tolerated by beans (Phaseolus
vulgaris), whereas the rate is 50 % for sugar beet (77). Rice, maize,
cotton and soybean, the economically leading crops, are very
sensitive to chilling temperatures at the reproductive phase that
may cause death of these plants (78).

Crop Effects Reference
-As the temperature exceeds 25 °C -28 °C, tiller number and biomass decline (56)
Rice -Under HS (40 °C day /35 °C night) at the pre-flowering stage, panicle number was reduced to 75 % (57)
- Heat stress hinders assimilate production by reducing photosynthetic rate (58)
Wheat -Above 35.8 °C temperature, starch content declined by reducing the rate of sucrose converting to starch (59)
-Starch content lost by 58 % at 37/28 °C related to 24/17 °C day/night temperature
B Exposure to 35 °C for 5 days caused alteration of endosperm structure and degraded storage product during seed filling
arley stage (60)
-35 °C reduces the oil content by 2.6 % compared to 29 °C
Soybean -Denaturation of b-conglycinin and damaged globulin and phaseolin alters the seed composition (61, 62)
-Above 40 °C day temperature, N and P content declined
-B-glucosidase can’t transcript at 40/30 °C day/night temperature that express a gene responsible for seed size
Lentil Degradation of albumins and globulins in seed (63)
Rapeseed Composition of fatty acid was affected by temperature rising from 10 to 26.5 °C (64)
Sunflower Affects the fatty acid biosynthesis that alters the oil composition (65)
Table 2. Effects of cold stress on quality deterioration in different crops
Crop Effects Reference
-25 % yield drop due to cold stress at booting stage
Rice -Decreased chlorophyll content as cold stress alters the arrangement of grana as well as lamellar structure and number (70)
of chloroplast
Corn -Inhibition of pod set if the temperature drops below 15 °C during the flowering stage (71)
-Growth reduction, low level of gibberellins and heterosis in hybrids at 10 °C -12 °C temperature
Rye Decreased about 60 % of N xylem flow by lowering the temperature from 20 °C to 7 °C affecting the nitrates absorption (72)
and N accumulation in the roots
Soybean Become susceptible to damping off at 4 °C (73)
Mustard About 30 % of N xylem flow decreased at 7 °C temperature (72)
-Change in microstructures of leaves that lead to necrotic spots, reducing chloroplast pigment content and the
maturity of tobacco leaves
Tobacco (74)

- Decreased root activity that inhibits the nitrogen uptake and impairs carbon and nitrogen metabolism of flue-cured

tobacco
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Heavy metals

Soil-plant environmental system has been greatly affected by
increasing use of fertilizers as well as industrialization that excreted
toxic heavy metal exudes to the open water source and soil get
contaminated with Cd like metals that may reside unchangeable
there over thousand years (79). Crops require a very little amount
of certain heavy metals for growth and development and
excessive amount causes toxicity (Table 3). Phytotoxicity of heavy
metals forms ROS that disrupts the redox equilibrium, cell
structure and inhibits cytoplasmic enzyme activity and leads to the
reduction of crop production (26). Moreover, toxicity in soil reduces
the photosynthesis rate, mineral nutrient uptake and enzyme
activity that ultimately results in the inhibition of growth as well as
death of the plant (92). Enzyme activities useful for plant
metabolism may also be hampered due to heavy metal
interference with activities of soil microorganisms. These toxic
effects (both direct and indirect) lead to a decline in plant growth
which sometimes results in the death of plant.

Wind

When wind carries sand, ice or micro particles, it causes
macroscopic damages by rupturing the epidermis leading to
cracks in the cuticle that reduces the capability of plant to control
water loss (93). Such type of damages was recorded in strawberry
(94). Broad-spectrum herbicides like 2,4-D, dicamba, or other
hormone-type herbicides that are used in cotton and other cereal
and grain crops, can travel up to a mile with minimal wind speed
like 5 mph. These cause serious damage to the vegetables.
Moreover, wind can alter the root growth as well as root: shoot
ratio (95).

Pollution

Other than the animals and human, pollution also causes
damages to plants. Air gets polluted by carbon, sulphur and
nitrogen oxides as well CFC. Increased solar UV radiation resulting
from ozone depletion has caused a reduction in biomass
production (between 11 % and 22 % less) and a decrease in total

leaf area (ranging from 24 % to 31 % less) in two plant species,
Colobanthus quitensis and Deschampsia antarctica, along the
Antarctic Peninsula (96). Polluted soil with toxic chemical hinders
the nutrient uptake of plant and causes cell damage. Another
devastating pollutant is acid rain which is a type of precipitation
characterized by a low pH level, resulting from the reaction of
sulphur dioxide and nitrogen oxides with atmospheric water. This
acidic rainfall can alter the composition of soil, disrupting the
nutrient supply essential for both plants and soil microorganisms.
It can penetrate plant tissues through their outer layers, impacting
vital processes such as photosynthesis and the metabolism of
nitrogen and sulphur, often leading to stunted growth (97).

Nutrient deficiency and toxicity

Nutrient deficiency as well as toxicity cause drastic loss in crop
quality (Table 4). For example, starch and sugar content get
reduced due to inhibition of photosynthetic electron transport in
Fe-deficient maize plants (106). Superoxide radicals are produced
under Mg* deficiency in bean leaves (109). Boron deficiency
downregulates genes involved in cell wall organization, reducing
pectin and cellulose levels in the roots, which hinders root growth.
It also affects phytohormone levels and signalling pathways,
decreasing jasmonic acid, abscisic acid and other compounds,
while increasing ethylene precursors (110).

CO;

Although increased CO, availability is expected to enhance
photosynthesis, plants require other macro and micronutrients
that become less available under elevated CO, conditions. Thus,
crop faces a loss in quality with declined nutrition. Studies
reported a loss of 9.5 % protein in vegetables that is distributed by
10.5 % of fruit, 12.6 % of stem and 20.5 % of root vegetables (111).
The reduction of 4 % wheat protein concentration in greenhouse
was also found (112). Previous studies revealed that 5 %-14 %
protein concentrations were decreased in wheat, rice and barley
grains as well as in potato tubers with high CO, in the atmosphere
(113). Plants micronutrient concentrations were also reported to

Table 3. Effects of heavy metal stress on quality deterioration in different crops

Heavy metal Crop Effects Reference
-In rice grain, the acceptable level was 1.0 mg As kg* but the irrigated water got contaminated with (80)
Rice 0-8mgAs L*
As -Reduced dry matter production (81)
Canola -Chlorosis, wilting and stunted growth at the 13.3 uM As rate
Cd Wheat Decrease in plant nutrient content (82)
Tomato -50 mg Co kg™ induced the increased rate in nutrient content whereas 100 mg Co kg to 250 mg Co (83)
kg, reductions in plant nutrient content were recorded
Co -50 mg Co kg soil concentration reported with increased plant growth, nutrient content,
Mungbean  biochemical content and antioxidant enzyme activities while reductions were recorded at 100 mg (84)
Co kg'to 250 mg Co kg
cr Onion Cr concentrations more than 150 mg L causepdl;rl:te reduction of morpho-physiological quality of (85)
. -No significant lose at the rate up to 13.5 uM while chlorophyll a and total carotenoids reduced
Spearmint gradually with the rate of 15.75 uM (86)
Mn Pea -Reduction in chlorophylls a and b content when Mn supply got increased from 250 uM to 3000 pM (87)
Tomato -Reduction of chlorophyll content and slower plant growth was reported in both 8.6 and 9.6 uM (88)
concentration of Mn
Ni Wheat -The Ni*" treatment with 40 mmol m=rate can increase leakage of K* (25)
Pb Maize -Total proteins increased in shoots at 1.0 mM while decreased at 25 - 500 mM (89)
-At 1.0 mM concentration, the reduction in protein content in shoot was 9.13 %
Cluster bean 25mg I_r1 Zn concentration in soil may |rr,1prove.the growth and physiology (90)
7 -50 mg Zn L had adverse effect on the plant’s physiology and reduced the growth
n
Pea ~1000 UM Zn content reduced plant growth, chlorophyll content and induced structural alterations (91)

in chloroplast that resulted the reduction of granal thylakoids
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Table 4. Effect of nutrient deficiencies on quality deterioration in different crops
Nutrient Available form Effect on plant Reference
Excess NO* reduces the root: shoot ratio by inhibiting root growth (98)
N _Nitrogen deficiency causes stunted growth, chlorosis at older leaves first, chloroplast (99)
N2, NOs’, NO, and NH,*  disintegration leading to loss of chlorophyll, low fruit setting and finally death of the plant
Nitrate in assistance with several genes, is believed to be involved in transportation of (99)
cytokinins from root to leaves
Decrease in shoot-root dry weight ratio whereas shoot gets more affected (100)
Affects the formation of reproductive organs (101)
P H2 PO4, HPO.> Phosphoenolpyruvate carboxylase in tobaccobcatalyzes the primary fixation of atmospheric (102)
carbon
Induction of iron and zinc deficiency (99)
Plant tends to lodge and drought due to K* deficiency (103)
K K* Excess K* supply causes nitrogen deficiency and may interfere with the uptake of divalent
cations like Ca?" and Mg
S SO4* Tomato faced reduction in chlorophyll and protein due to low level of sulfur (104)
Ca Catt Premature shattering of fruits and buds due to insufficient Ca
Mg*" absorption gets interfered due to excess Ca in soil
Mg Mg? Insufficient Mg supply reduces the carotenoid content from 0.21mg/gm fresh wt. (control) to (105)
0.11 mg/gm fresh wt. in rape leaves
Fe Fe¥ Fo?* Insufficient Fe may lower the rate of starch, sugar and proteins (106)
’ Water-logged soils may induce the Fe toxicity that causes bronzing of plant
Boron deficiency induces the activity of RNase that causes the reduction of RNA content in 107)
B(OH)s tomato (
B B(OH)~ In field bean, phosphate uptake gets hindered due to boron deficiency (108)

Flowering is affected by boron toxicity

be lost under elevated CO.. Nitrogen assimilation is also inhibited
in some crops like wheat and cucumber by reducing nitrate
uptake under elevated CO; (114). Amino acid concentration was
also affected in potato (115) and sweet pepper (116) which reveals
an uncertain metabolic process. High CO, levels, by causing
dilution and limiting transpiration, have been found to reduce the
content of minerals like Mg, Fe and Zn by 9.2 %, 16.0 % and 9.4 %,
respectively (111). Grain crops experienced a reduction in mineral
content due to elevated CO,, with Fe levels declining more
drastically in wheat (5.1 %) and rice (5.2 %) compared to other
crops (117). Moreover, with increased CO; rate, a decreased rate in
Na, Ca, Mg and S by 5.5 %, 14.5 %, 7.2 % and 12.3 % respectively
was found in wheat (118).

Crop yield loss due to abiotic stresses
Drought stress

Yield losses in the field under drought typically range from 30 % to
90 % (119). Mild drought conditions have shown to decrease rice

yields by 30 % to 64 %, while severe drought can lead to losses of
65 % or more compared to normal conditions (120). About 50 %-
60 % yield reduction can occur in wheat due to drought stress
(121). Different experimental results showed that in wheat
(Durum), maize, soybean, cotton, tobacco, potato (cv. Spunta) and
rye (hybrid), about 25 %, 81 %, 44 %, 50 %, 71 %, 53 % and 27 %
yield losses occur, respectively, depending on various factors such
as the growth stage during which drought occurs, its duration,
severity, regions and specific crop varieties involved (122). The
above results are presented in Fig. 2 considering average yield loss
and optimum crop yield.

Waterlogging and sub-mergence

Data from a global meta-analysis showed that waterlogging
reduces global crop yields by around 32.9 % (average). Key factors
include crop type, growth stage and waterlogging duration. During
the reproductive stage, it causes greater yield reductions (41.9 %)
than the vegetative stage (34.7 %) (123). Moreover, prolonged
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Fig. 2. Crop yield reduction by drought stress (prepared from 120, 122, 124).

https://plantsciencetoday.online


https://plantsciencetoday.online

waterlogging led to reductions in crop yield, with the most
significant declines (53.19 % and 55.96 %) occurring when the
duration ranged from 15 to 28 days under both field and potted
conditions (123). Wheat experiences a reduction of 25.53 % while
cotton suffers 59.95 % decrease (123). Rice experiences up to
31.68 % yield loss at jointing and booting stage depending on the
degree of waterlogging (124). Soybean yield loss in reproductive
stage ranges from 20 %-39 % (125). Two days of flooding during
intensive growth and flowering stage of potato dropped total yield
by 64 % and 59 %, respectively, while eight days of flooding cause
almost complete yield loss (126). Maize yield was reduced by 16 %
on average in extreme wet condition (127). The above results are
presented in Fig. 3 considering average yield loss and optimum
cropyield.

Salinity stress

Extent of losses due to salinity stress depends on crop type
specifically cultivars, salinity levels and timing of exposure. Rice,
soybean and beans are considered as highly sensitive crops while
wheat, maize, potato etc. are moderately sensitive crops based on
their response to salinity stress. Studies suggest that average yield
losses of crops like rice, wheat, maize, cotton, chickpea,
groundnut, barley, sorghum and brassica are 40 %, 30 %, 55 %,
15 %, 20 %, 38 %, 35 %, 33 % and 50 % respectively (128). Soybean
yields can decrease by as much as 40 % depending on the level of
salinity (129). The above results are presented in Fig. 4 considering
average yield loss and optimum crop yield.

Heat stress

One-degree centigrade rise in global average temperature would
lead to an average decline in yields by 6.0 % for wheat, 3.2 % for
rice, 7.4 % for maize and 3.1 % for soybeans (130). Studies shows
that high temperature reduces grain yield by 46.63 % in wheat
(131). During booting and flowering stage of rice, 36 °C-40 °C
temperatures led to significant sterility and results in 13.8 %-28.5%
yield loss (132). In maize, 50 % yield loss may occur due to high
temperature in flowering stage and lag phase which is
comparatively higher than yield loss (26 %) due to high
temperature in effective grain filling stage (133). Experiment with
three cultivars of soybean 71307, ZH39 and ZH76 showed that
increase in nighttime temperature from 18 °C to 28 °C results in 12
%-34 %, 33 %-182 % and 25 %-45.4 % yield reductions,

respectively (134). During boll period of cotton, 2 °C to 3°Cincrease
in daily temperature (31 °C -35 °C) results in 30 %-40 % yield loss
(135). Research on potato cultivars reveals that 15 days of heat
stress (35/25 °C Day/night) in late June under adequate soil
moisture reduced total yield by 12 % (136). The above results are
presented Fig. 5 considering average yield loss and optimum crop
yield.

Cold or low temperature stress

Wheat yield is more vulnerable to low temperatures during the
booting stage than during the jointing stage. Under low temperature
conditions during the booting stage, grain yield per plant decreased
by 13.9 %-85.2 % in spring wheat and 3.2 %-85.9 % in semi-winter
wheat (137). Studies showed that low air temperatures as the
primary cause of yield losses with water stress playing a secondary
role cause maize yield loss of approximately 57 % (138). Low
temperature stress causes yield reductions in rice reaching up to
38.6 % (139). For soybeans, cold stress at flowering reduces seed
yield by an average of 24 % (140). Severe cold events in cotton can
cause yield reduction up to 40 % (141). Exposure of potato to low
temperatures significantly impairs growth and causes 40 %-60 %
tuber yield losses (142). The above results are presented in Fig. 6
considering average yield loss and optimum crop yield.

Heavy metals

An experimental result showed that economic yield and biomass
of vegetable crops reduced by 9 %-67 % and 9 %-32 % in copper,
zing, lead and cadmium contaminated soil (143). Recent studies
have investigated the link between heavy metal toxicity and the
downward trend in rice yield. This correlation was also addressed
earlier (144). Lower crop yield and compromised grain quality in
cereal plants extensively reported earlier (145).

Mitigation strategies
Soilmanagement

Implementing strategies such as incorporating organic matter,
cultivating cover crops and minimizing tillage can significantly
enhance soil fertility and conserve moisture (Table 5). Practices
such as conservation tillage reduce soil disturbance, which helps
to limit moisture loss, minimize compaction and improve soil
structure. This practice improves water infiltration, increases water
-holding capacity and enhances organic matter content (156).
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Fig. 3. Crop yield reduction by waterlogging (prepared from 122-127).
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Table 5. Soil management for mitigating abiotic stresses
Factor Management Effect/Outcome Reference(s)
Conservation tillage -alleviates drought stress and enhances WUE when compared to (146)
conventional tillage
-It increases WUE by 19.1 %-28.4 % in wheat and 10.1 %-23.8 % in
maize (147)
Tillage (148)
- 0fy— 0,
No-till practices . conserves 20 %-30 % more water . (149)
-contributes to enhancing erosion control and improving the
efficiency of water and fertilizer application
Maize + potato, -conserves soil water, reduces runoff and evaporation and improves (146)
wheat + faba, WUE compared to sole cropping
Intercropping maize + mungbean
-suppresses weeds (146)
Use of . Ich -boosts crop yields, especially under drought conditions; A study (150)
seororganic muiches showed increased yield of sesame with mulching
Mulching . T .
-reduces evaporation, helps to maintain soil moisture and (151)
minimizes salt build-up at the root zone
Use of straw mulches -also enhances soil moisture retention and boosts water and
nitrogen use efficiency, improving overall plant performance in
wheat (152)
Soil amendments Application of compost, -improves soil structure, reduces salinity by replacing sodium with (153)
gypsum, sulfuric acid calcium (gypsum) and enhances soil health
154
Crop rotation Inclusion of legumesin  -reduces heavy metal uptake by cereals, enhances soil health and (154)
P rotation minimizes metal contamination
. Application of lime to -raises pH, reduces solubility of metals like cadmium and lead (159)
Soil pH management S ’
acidic soils
i |
Maize L
3 = Under salinity stress
Soybean ‘ B Under normal environment
g ————
0 2 4 6 8 10
Yield (t ha'l)
Fig. 4. Yield reduction by salinity stress (prepared from 122, 124, 127, 128).
rice .
m Under heat stress
Wheat L B Under normal environment
g Maize | —
a
a
&)
Cotton ‘
-
0 5 10 15 20 25 30 35 40 45
Yield (t ha'l)

Fig. 5. Crop yield reduction by heat stress (prepared from 122, 124, 131-136).
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Fig. 6. Crop yield reduction by cold stress (prepared from 122, 124, 137-142).

Moreover, mulching whether with organic or inorganic materials
effectively reduces evaporation (151), enhancing water-use
efficiency (WUE) by 10 %-20 % (157).

Crop management

Crops and varieties should be chosen based on available water
resources (146). Choosing the right time for planting or sowing can
help avoid heat stress during critical growth phases such as
anthesis and grain filling, thereby improving crop yields (Table 6).
The cultivar ‘Golden Promise’ is a salt-tolerant barley variety
developed in Scotland through induced mutation (168).
Additionally, ‘AZ Germ Salt 1’ is a salt-tolerant alfalfa cultivar
developed in the USA through backcrossing selection (168).

Water management

Supplemental irrigation significantly improved Rabi sorghum
productivity. As shown in Table 7, applying two life-saving
irrigations at critical growth stages increased grain yield by 88 %
and fodder yield by 65 %, indicating a strong positive response to
improved moisture availability. In regions with limited water
availability, micro-irrigation methods such as drip and sprinkler
irrigation should be promoted to minimize yield loss (170).
Additionally, practices like deficit irrigation and skip furrow
irrigation help reduce water loss (146). Collecting rainwater during
the monsoon season for use during dry spells is another effective
drought mitigation strategy (151). Furthermore, irrigation
scheduling aligned with critical growth stages, combined with
efficient application methods and soil moisture monitoring,
enhances crop productivity by alleviating the effects of heat stress
(162).

Nutrient management

Applying the right nutrients can alleviate drought stress and
enhance plant growth. Proper nutrient management increases
water uptake, particularly from deeper soil layers, which improves
WUE and reduces the impact of drought (174). The use of essential
nutrients, such as controlled-release fertilizers, can also help crops
thrive under waterlogged conditions (Table 8). Careful application
of fertilizers especially low-salinity and chloride-free types, can
prevent the worsening of soil salinity (177). Maintaining optimal

nutrient levels is crucial for protecting crops against elevated
temperatures. In particular, the management of micronutrients
plays a vital role in mitigating heat stress in plants (178).

Other ways of mitigating abiotic stress

Employing plant growth regulators such as auxins and cytokinin
can enhance plant resilience under waterlogged conditions (183).
Seed priming with various agents also improves crop performance
under abiotic stresses, including heat, drought and low
temperatures (184). However, low heritability and the complex
network of minor and major quantitative trait loci (QTLs) pose
limitations to direct selection for improving crop performance
under heat stress (HS) conditions (185). A strategic approach
involves the genetic tailoring of key physiological traits such as
canopy structure, delayed senescence, photosynthetic efficiency,
reduced respiration and reproductive performance to incorporate
QTLs for HS tolerance, mirroring methods used for drought
tolerance (78). In addition, microorganisms, particularly plant
growth-promoting rhizobacteria (PGPR), can enhance plant
tolerance to salinity by improving root development and nutrient
uptake (Table 9). Modern breeding and biotechnology leverage
tools like microarray-based phenotyping to uncover
thermotolerance diversity and identify heat-resilient genotypes,
while phytoremediation research uses genetic and molecular
engineering to develop plants (e.g. wheat) with reduced heavy
metal uptake through enhanced expression of metatbinding
proteins (196, 197).

Emerging technologies for the management of abiotic stress

There are many emerging technologies that can be very effective
against abiotic stresses, such as the use of biochar, kaolin, super
absorbents, seaweed extracts, yeast extracts, nanoparticles etc
(Table 10). The application of biochar has proven effective in
mitigating various abiotic stresses, including drought, heavy
metals, heat, salinity, waterlogging and cold, while simultaneously
improving crop yield and soil properties (198, 199). Kaolin helps
reduce the effects of abiotic stresses such as heat and drought by
lowering canopy temperature, minimizing water stress and
reflecting solar radiation from leaf surfaces (Table 10). A list of
emerging technologies that can potentially be used in different
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Table 6. Crop management for mitigating abiotic stresses

Factor Management Effect/Outcome Reference(s)

Selecting low-water-demand _pjyersifying high-water-demand crops with low-water crops can

crops (e.g. pearl millet, sorghum, - SRR 3 -
chickpeas, barley, mustard, improve profitability and water-use efficiency (WUE) (158)
Drought-tolerant Crop and cotton, sunflower, castor)
Variety Selection Swarnaprabha and Kattamodan -Shows better drought tolerance, with less leaf rolling and better (159)
(rice) varieties water retention
. -Shows superior performance due to its higher water retention
Longzhong alfalfa variety and antioxidant activity (160)
Diversifying crops with varying -Improves average equivalent yields (up to 32 %) and water (161)
root depths and water-use productivity (24 %-68 %) compared to winter wheat-summer
Crop Diversity efficiencies; e.g. sweet potato, maize
soybean, millqt and peanut -Enhances soil water storage in the top 180 cm by 3 %-9 % when (161)
rotations planted prior to wheat
P - : -Reduces stress at critical stages; strengthens root systems;
Adjusting sowing dates to align improves drought resilience. Barley and maize perform better (146)
with rainfall and temperature & - .
Sowing Strategies with early sowing
Optimizing sowing time to avoid -Early sowing enhances wheat yield; late sowing reduces protein,
heat stress during critical growth oil content and vigour in seeds of soybean (162)
phases like anthesis and grain
filling.
Selecting tolerant genotypes like -Enhances flood tolerance and crop survival
Waterlogging-Tolerant FR13A, FR43B (India) and (163)
Varieties Kurkaruppan, Goda Heenati,
Avalu (Sri Lanka)
Cultivating tolerant varieties like -Increases productivity in saline conditions. Regional performance (163)
Salt-Tolerant Crops sugar beet, cotton, barley, KRL1- varies. (e.g. KRL1-4 performs better in Northern India but poorly in
4,CSR-1, CSR-2, CSR-3 Pakistan due to heavier soil and waterlogging)
Pruning to avoid cold Cutting alfalfa 4-6 weeks before -Improves winter survival via increased root carbohydrate (164)
stress the first frost reserves.
Using wheat and barley varieties -Allows cultivation in contaminated soils
Heavy Metal Tolerance with resistance to heavy metals (165)
. -Shows increased antioxidant activity and reduced oxidative
Cd-tolerant Brassica juncea stress (151)
cultivar
Using species like Alnus spp., -Reduces heavy metal uptake
O Amaranthus hybridus, Brassica
Phytostabilization spp., Betulaceae and Poaceae (166)
families
Employing aquatic (hyacinth, -Cleanses contaminated water, marsh water through effective
e duckweed) and terrestrial (Indian root filtration
Rhizofiltration mustard) plants with dense root (167)
systems
Table 7. Water management practices for mitigating abiotic stress in crops
Strategy Management/Use Effect/Outcome Reference(s)
Supplemental Two life-saving irrigations at critical growth stages -Increased grain yield by 88 % and fodder yield by (169)

RO in Rabi sorghum 65 %.
irrigation

-Reduces yield loss and improves water-use efficiency
Adoption of drip irrigation in water-limited regions by 28 %-58 % compared to broad bed furrow and (170)
45 %-68 % compared to flood irrigation in cotton

Micro irrigation -Significant water savings due to higher application

Drip irrigation in chickpeas efficiency (171)
. S -Increases yield by 16 % and water productivity by
Sprinkler irrigation in wheat 31 % compared to border irrigation (146)
Rainwater harvesting Raised and sunken bed systems -Saves irrigation wate:jfr(())z\éehgtetable farming during (151)
: Subsurface tile drainage and Bio-drainage (using -removes excess water mitigates salinity
Drainage water-absorbing trees) (172)
Managing high winter soil moisture and mixed “Reduces rootand CE?]\;VVT, E;glvelgg caused by freeze- (164)
cropping with alfalfa and grasses
-Optimizes yield in wheat when applied during tiller
Water management  |w/CPE ratio of 0.75 in conditions of limited water P y to flowering Staggg & (173)
during supply is recommended and 1.2 ratio in conditions
heat stress of unlimited supply
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Table 8. Nutrient management practices for mitigating abiotic stress in crops

Strategy Management/Use Effect/Outcome Reference(s)
- - -Leads to higher yields under drought conditions, e.g.
Nutrient management under Potassium (K) application maize, pearl millet (175)
drought stress _ i i
g Nitrogen (N) application Enhances drought resistance by promoting root (160)
growth.
; Application of controlled-release . . "
Nutrient management PP - -Helps crops survive waterlogging conditions;
under submergence fertilizers; Use of po(tBa)ssmm (K) and boron Mitigates negative impacts of waterlogged conditions (176)
Use of organic matter and fertigation with .
Nutrient management sulfuric acid -Enhances nutrient uptake and reduces salt stress (177)
under salinity Application of5|l|c%|2)(5|) and potassium -improves crop tolerance to salinity (162)
Nitrogen (N) application in rice under -Prevents lipid peroxidation by supporting carbon (178)
heat stress metabolism and light energy use
Nutrient management Zinc (Zn) use under heat stress in wheat -Maintains membraﬂ:;?ézgr;?égnd protects against (179)
under heat stress Calcium (Ca) supplementation in -Counteracts heat stress by supporting physiological
. (180)
potatoes functions
Adequate potassium (K) in alfalfa under -Enhances photosynthesis, reduces respiration, (181)
Nutrient management App“cationcgll?)ztt;essssium () and maintains turgor and minimizes ROS
under cold stress phosphorus (P) after final fall cutting in -Stores root carbohydrates for cold stress-related (182)
alfalfa processes
Table 9. Other strategies for mitigating abiotic stress in crops
Factor Management Effect/Outcome Reference(s)
. . Seed inoculation with rhizobacteria -Enhances heat stress tolerance in wheat (186)
Biological
approaches  Treatment with Bacillus and Azospirillum spp. -Reduces ROS production and improves heat stress tolerance (187)
- - -Helps plants cope with metal stress and enhances metal
Use of rhizosphere bacteria absorption (188)
Use of phytosiderophores -Enhances nutrient uptake in Zn or Fe deficient plants (188)
phy p p p
Exogenous application of glycine betaine (GB) -Improves heat stress tolerance in sugarcane by enhancing (189)
and proline (20 mM each) membrane stability and antioxidant activity
. . — -Protects carbon metabolism enzymes and antioxidant
ﬁgmﬁl and Proline application system, aiding heat stress tolerance in chickpea (190)
applications Salicylic acid (SA) application (a key osmo- -educes electrolyte leakage and enhances antioxidant (191)
protectant) activity, improving heat stress tolerance in grapevine
Exogenous 24-epibrassinolide (24-EBL) -Improves antioxidant activity and heat stress tolerance in (192)
application mustard
Foliar application of 0.15 % ammonium .
Plant growth molybdate -Helps alleviate the effects of low-temperature stress (151)
regulators Foliar application of gibberellin acid -Helps mitigate cadmium's adverse effects on crops (188)
g g
AT -Promotes early flowering (8-10 days) and maturity (9-10
Seed priming in rice and wheat days), reducing heat stress and maximizing yields (193)
s -Improves osmotic adjustment, stomatal conductance and
Seed priming Priming tomato seeds overall growth under heat stress (19)
and treatment ; ;
. . . -Reduces membrane damage, improves photosynthesis and
Barley seed treatment with glycine-betaine increases biomass under heat strese (194)
L . : -Mitigates free radicals and improves photosynthetic pigment
Priming with Calpurnia aurea leaf extract levels under heat stress (195)
. -Avaluable tool to analyze gene expression under heat stress, (196)
Breeding and Use of microarray technology e.g. 262 % increase in transcript response in Arabidopsis
biotechnolo - i ieti ibi i
gy Screening of wheat varieties Some genetically screened varieties exhibit lower cadmium (197)

absorption while maintaining high yield

crop fields to mitigate abiotic stresses are summarised in Table 11.

Conclusion

Abiotic stresses pose significant constraints to crop productivity
and the evidence synthesized in the review highlights several
actionable agronomic, technological and policy-oriented
pathways to strengthen crop resilience. Agronomic interventions
such as optimized fertilizer regimes, particularly the combined use
of nitrogen and potassium, have been consistently shown to
enhance yield stability under stress conditions. Similarly precision
irrigation strategies, including deficit irrigation and improved water
-use techniques, help mitigate drought-induced yield loss while
improving resource efficiency. Integrating advanced seed priming

methods, growth regulators and nutrient based treatments further
strengthens plants’ physiological tolerance to adverse
environmental conditions.

Emerging technologies such as crop-suitability
modelling, remote sensing tools and decision-support systems
hold significant promises for forecasting climate risks, monitoring
crop responses and guiding farmers toward more informed
management decisions. The adoption of climate smart practices
and early warning systems can play a transformative role in
sustaining productivity under variable climates. In addition,
developing crop and region-specific agronomic packages for stress
prone areas, integrating remote sensing with onfarm data to
refine real-time stress diagnostics, breeding and molecular studies
focused on stress tolerant genotypes and long-term, multi-
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Table 10. Key mechanisms, benefits, limitations and sustainability of crop stress-mitigating emerging technologies

12

Disadvantages /

Sustainability

Amendment Mechanism Advantages Limitations Implications References
It immobilizes heavy metals through
sorption, complexation and
precipitation, lowering their }
) bioavailability. In the rhizos.phere, gEgmmizg%ztr/gng
ot reduces Bulcraty ncceses E1 o shontunder - fectiveness vrieswih .
(higher Proteobacteria/Acidobacteria salinity). feedstock, pyrolysis, type - Supports soil
ratio), strengthening root morphology - !MProves nitrogen and dose. health and fertility.
and nitrogen metabolism. Under heat, uptake and - Potential toxic - Enhances crop
this leads to higher nitrogen- metabollsm. . compounds or pH shifts.  resilience under
assimilation and photosystem proteins - Reduces oxidative - Mostly pot-based stress.
and reduced heat-shock proteins. dargage (MDA, tzoz) studies; field scalability - Contributes to
: During drought and salinity, biochar ~ and stress markers. uncertain. carbon )
Biochar sequestration. (198-203)

boosts soil water and nutrient
retention, maintains ionic balance by
restricting Na* and enhancing K* and
reduces ROS, MDA and H,0,, stabilizing
membranes and lowering osmotic
stress. Additionally, organic molecules
from biochar leachates enter plants and
interact with stress-related proteins;
one molecule can mimic succinic acid
and potentially activate cold-response
pathways. Together, these layered
mechanisms improve overall plant
resilience.

- Foliar kaolin forms a reflective particle
film that increases leaf albedo, reducing
heat load and leaf temperature.
Reduces vapor pressure difference
(VPD) by lowering leaf-to-air
temperature gradient. It helps to
maintain water status (RWC) under
drought by reducing thermal stress.

Kaolin (in Persian
Walnut)

SAPs are hydrophilic, cross-linked

polymers that absorb large amounts of

water via osmotic gradients and
swelling of polymer chains. In soil, SAP
acts as a water reservoir-stores excess
water and releases it slowly under

drying conditions. Also improves soil
physical properties: increases porosity

and water retention, decreases bulk

density and moderates evaporation/

percolation.

Super Absorbents

- Upregulates stress-

responsive genes
(OsDREB1A/B,

OsMYB2, OsWRKY76,

OsiSAP8, OsCOIN).

- Improves soil
properties and

nutrient availability.

- Increases heat and
cold stress tolerance.

Improves gas
exchange (under

some conditions) and

photosyn-thetic
performance.

- Increases chlorophyll

concentration.

- Boosts leaf K
content, improving
ionic balance.

- Enhances kernel /

nut quality (e.g. better

kernel color) under
water stress.

- Reduces sunburn
and leaf damage
under high
temperature / light
stress.

- Enhances soil water-
holding capacity and - High cost may limit large- semi-arid regions.

increases plant-
available water.
- Improves plant
growth and yield
under drought or
limited irrigation.

- Helps reduce
irrigation frequency
and improves water-

use efficiency.

- May reduce
compaction and
enhance soil
structure.

- Low/high leachate
concentrations may

reduce effectiveness or
cause soil/economic

issues.

- Mechanisms of many

organic molecules
unclear.

Shading effect: kaolin film
can reduce the amount of
PAR (photosyn-thetically
active radiation), slightly
lowering photosynthesis

max/«

- Effectiveness may

depend on genotype:
different walnut cultivars

respond differently
(sunburn, RWC).
- Requires foliar

application, which might
be labour-intensive and

weather-sensitive.
- High kaolin

concentration or repeated

sprays may have
economic / logistical
constraints.

scale adoption.

- Performance varies with
polymer type, soil texture,
rate and environmental

conditions.

- Long-term field
durability and actual
performance remain
insufficiently studied.
- Synthetic SAPs may

persist in soil and

potentially behave like
microplastics.

- Reduces chemical
input needs.

-Canactas
functional additive
for targeted stress

tolerance.

Cheap and relatively
low-tech method to
protect trees from
heat and drought
stress.

- Can improve nut
yield quality under
water-limited
conditions,
potentially
increasing farmer
returns under
stress.

- By reducing leaf
temperature and
stress, may help
walnut cultivation
remain more
resilient under
climate change
(warmer, drier
summers).

- Because kaolin is
inert and mineral-
based,
environmental risk
is relatively low
compared to
chemical mitigants.

- Offers potential for
water-saving
agriculture in arid/

- Can enhance crop
resilience under
drought and
improve
productivity.

- Sustainability
depends on
biodegradable
SAPs, lifecycle
impacts and soil
health.

- Environmental
risks exist if non-
degradable SAPs
accumulate over
time.

(204)

(205, 206)
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Seaweed extracts (SWE) supply a mix of Improves germination
bioactive compounds-hormones, -
antioxidants, amino acids, minerals and establishment under
polysaccharides-that enhance plant
stress responses. When used as seed

priming or foliar treatments,

compounds improve metabolic activity,
activate antioxidant enzymes and boost
ROS scavenging, protecting cells from
oxidative damage. SWE also modulates
water relations, enhancing stomatal
conductance and leaf water content
under drought, while increasing

Seaweed extracts

osmolytes like proline and soluble
sugars to maintain osmotic balance. In
heat-stressed seedlings, SWE reduces

hydrogen peroxide and

malondialdehyde accumulation,
stabilizing membranes and supporting
growth. Some extracts additionally
regulate stress-responsive genes,
contributing to systemic resilience and
improved physiological performance

under abiotic stresses.

Yeast extract (YE) supplies amino acids,
vitamins and growth regulators that are
readily absorbed by leaves, enhancing
metabolic activity and supporting plant
growth under stress. Under salinity, YE
helps maintain growth even when
osmotic adjustments like proline or
sugar accumulation are limited,
indicating its role mainly via nutrient
and regulatory support. When

Yeast extracts

combined with glycine betaine

under cold stress, YE activates
antioxidant enzymes such as
peroxidase and catalase, protecting
cells from oxidative damage and
stabilizing membranes, thereby
improving overall stress tolerance.

Nanoparticles modulate antioxidant
defences by activating enzymes like
SOD, CAT and POD, which scavenge
reactive oxygen species produced
under drought, salinity, heat, or heavy-
metal stress. Certain NPs, such as

silicon-based or engineered

Nanoparticles

nanocarriers, improve osmolyte
accumulation (e.g., proline), maintain
chlorophyll and carbohydrate levels,
stabilize membranes and enhance
water retention. Advanced NPs can also targeted nutrient or
deliver stress-protective molecules or
nutrients in a controlled, targeted
manner, improving photosynthesis,
water-use efficiency and overall plant damage via enhanced
resilience under abiotic stress.

Natural bio-
stimulant strategy
that enhances crop
resilience to abiotic

stresses (heat,
drought, salinity).
- Improves water-

and seedling

Effects are species- and
extract-specific; not all
seaweeds or formulations

heat, drought and
salinity stress.
- Enhances biomass

these : give the same response.  use efficiency and
arf)c\/blmﬁgséﬁeatg?s - Concentration- seedling
ungderwater—limited or dependent; excessiveor  establishment
heat-stressed |nsuf'f|c_|ent doges may be under stress,
conditions ineffective. reducing
- Boosts antioxidant " Most studies are pot/ dependency on
capacity, reducing controlled-environment synthetic
oxidative damage based; field-level efficacy protectants.
(lower H,0,, MDA) may differ. - Supports
“Modulates stress. - Batch-to-batch variation sustainable
related genes for of commercial extracts  agriculture when
systemic drought/ may reduce properly sourced;
heat tolerange reproducibility. _ environmental
-Reduces canoby - Cost and logistics may  impact depends on
temperature and limit adoption in large-  seaweed harvesting
membrane injury scale or resource-limited and extract
supporting ’ farming systems. standardization.
physiological - Reduces crop
resilience. losses, contributing

to climate-resilient
food production.

-YE is a biobased,

- Effects are dose- eco-friendly

- Enhances growth dependent; optimal

parameters (root concentrationsare eséLactee%zetl:‘aete%a% ;
length, shoot growth, needed for best results. chemical
leaf number, biomass) - Foliar spray applications tectant
under salinity stress. may be labor-intensive for ,,Protectants.

- When combined
with glycinebetaine
or SA, it offers multi-

pathway stress
mitigation (nutrient
supply + osmotic/

- Improves seedling
and vegetative growth
under cold stress. osmoprotectant
- Increases accumulation (proline,
antioxidant capacity, sugars) may remain low,
reducing oxidative  indicating a limitation in

large-scale production.
- Under high salinity,

(GB)

damage. strong osmotic ?é(tlggtti'gﬁ)
- Can improve crop adjustment. p SUPDOMtS.
yield and quality - Results may vary among PP

sustainable crop
production under
salinity and cold
stress conditions.

under mild to

species and cultivars; long
moderate stress.

-term effects not fully
assessed.

- Potential to reduce
conventional
agrochemical use
via targeted and
efficient delivery.
- Can enhance crop
resilience under
climate stress.

- Sustainability
depends on safe,
biodegradable, or
biocompatible NP

- Boost plant
tolerance to multiple
abiotic stresses
(drought, salinity,
heat, heavy metals).
- Improve growth,
biomass,
photosynthetic
capacity and
biochemical traits.

- Potential toxicity and
accumulation in plants,
soil, or food chain.

- Behavior varies
depending on NP type,
size, coating and
application method.

- High production and
application costs; field-

- Enable efficient and scale delivery is design and
challenging. responsible
bioactive molecule - Regulatory, safety and application.

delivery.

long-term ecological
- Reduce oxidative

impacts not fully
understood.

- Requires careful
monitoring to
prevent
environmental or
food-chain
contamination.

antioxidant defense.

(207-211)

(212, 213)

(214-216)
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Table 11. Emerging technologies for the management of abiotic stress in crops

Technology Management/Use Effect/Outcome Reference (s)
e . . -Improves WUE, nutrient uptake, enzymatic activity; reduces
Application in saline soils heavy metal presence via high cation exchange capacity. (198,199)
1% in barley under drought -Improves root and shoot growth. (198)
5% in wheat under heavy metal stress -Increases growth and dry weight. (199)
Biochar 40 g kg " in rice under heat stress -Enhances nitrogen uptake and root traits. (200)
5% in maize under salinity -Boosts proline content. (201)
2 % in wheat under salinity -Improves root and shoot length. (202)
10 % in rice under cold stress -Improves cold tolerance. (203)
- - -Enhances chlorophyll content, gas exchange, kernel quality and
Ofy— 0, 3 )
Kaolin 5 %-17.5 % in walnuts under drought lowers leaf temperature, (204)
Super absorbents  Soil amendment with superabsorbent - :
polymers (SAP) in soybeans under drought -Enhances growth, biomass, leaf area and yield. (205)
In eucalyptus under multiple stresses -Improves biomass by 9.17 % (salinity), 8.39 % (drought), 18.02 % (206)
(combined).
3-5mL Lt in Brassica juncea -Enhances growth, yield and temperature stress tolerance. (207)
Extracts from Ulva fasciata, Cystoseira
compressa, Laurencia obtusa in cowpea -Aid salinity stress tolerance. (208)
and maize
Ascophyllum nodosum in soybean -Supports growth during drought. (209)
Fucus spiralis, Ulva lactuca, Laminaria )
Seaweed extracts ochroleuca in fababean Enhance growth under drought. (210)
Ascophyllum nodosum in spinach -Benefits heat tolerance. (211)
Inoculation in lettuce under high salinity Improves growth, reduces proline, sugar and chlorophyll levels; (212)
(100-150 mM NaCl) helps salinity tolerance and nutrient improvement.
. - Improves vegetative growth, yield, sugar, vitamin C and
Foliar extract in tomatoes under cold stress Carotenoids. (213)
AMF (1 %) + yeast extract (2 %) in wheat .
under salinity Boosts growth and yield. (217)
Silicon (Si-NPs) and zinc oxide (ZnO-NPs) Alleviate drought, salinity, chilling and heavy metal stress. (214)
Nanoparticles Biogenic NPs in wheat Increase antioxidant enzymes and reduce ROS under cold stress. (215)
TiO, NPs in soybeans Reduce Cd toxicity and improve photosynthesis. (216)

location field trials to validate technological and management
recommendations under diverse conditions should also give high
priority. Moreover, uncovering the coordinated regulation of plant
responses to various stresses will need multidisciplinary actions in
the future, as this is crucial for crop breeding and production.

Policy support is essential for scaling these innovations.
Investments in extension services, climate information delivery,
subsidies or incentives for stress mitigating technologies and
strengthened seed systems can accelerate adoption at the farm
level. Ensuring that farmers in vulnerable regions have access to
stress tolerant varieties, timely weather advisories and training in
modern agronomic practices will be crucial for climate resilient
agriculture.
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