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Abstract

Sulfur (S) is an essential element for plant growth, development and defense against biotic and abiotic stresses. Sulfate assimilation in plants
is demand-driven and low soil S severely impairs growth and reduces seed protein quality. Like many legumes, chickpea (Cicer arietinum L.)
seeds are characterized by suboptimal levels of cysteine and methionine. Therefore, it is imperative to screen the cultivars for maximum
sulfate assimilation and utilization efficiency. In the present study, we screened a total of sixteen chickpea cultivars based on root system
architecture (RSA) under contrasting S regimes-S-starvation and S-sufficient conditions-highlighting the potential correlations between
altered root plasticity, corresponding dry mass and S allocation within plants at the whole-plant level. The root morphological traits were
measured and the values of RSA traits for Desi cultivars (PUSA256, PUSA547, PUSA5028 and PUSA362) and Kabuli cultivars (PUSA1003 and
PUSA1053) were significantly higher even under S-starvation conditions, maximizing the concurrent increase in sulfur acquisition, indicating
their sulfur efficiency. However, the fold decrease of these traits, dry mass and sulfur content at S-starvation was higher for Kabuli cultivars,
coinciding with plant chlorosis, indicating their susceptibility to S-starvation stress. Additionally, cultivars such as PUSA3022, KAK2, PUSA5023,
BGD112 and BGD72 displayed drastic declines in root traits and sulfur content under S-starvation, highlighting their limited capacity to adapt
via root plasticity, particularly in lateral root development. These findings emphasize the importance of root morphogenetic traits in sulfur
efficiency and provide a basis for breeding chickpea cultivars with improved nutrient use efficiency.
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Introduction productivity and compromising nutritional quality (5, 6). For
augmenting the levels of sulfur-containing amino acids in legume
seeds, increasing sulfate assimilation and utilization efficiency is a
valuable approach. It has been hypothesized that the accumulation
of sulfur-poor proteins in legumes could result from their ecological
adaptation to soil sulfur deficiency (7). For instance, a shift in the
proteomic balance toward sulfur-poor proteins such as omega-
gliadin and glutenin, at the expense of sulfurrich proteins, was
observed in wheat grown in sulfur-deprived soils.

Chickpea (Cicer arietinum L.) is one of the most extensively cultivated
pulse crops in India and represents a major source of human dietary
protein. Nevertheless, like other grain legumes, its protein quality is
constrained by inadequate levels of sulfur-containing essential
amino acids, namely methionine and cysteine (1). Sulfur nutrition
plays a pivotal role in plants, with nearly 90 % of the absorbed sulfur
being allocated toward the synthesis of these amino acids, which in
turn constitute the sole dietary source of essential sulfur amino acids
for humans and animals (2). Further, cysteine is not only used to Sulfur is absorbed mainly as sulfate ions through the root
build proteins but also serves as a key source of sulfur formany other ~ System and subsequently distributed within plants via specific
molecules. It contributes sulfur to iron-sulfur proteins, essential ~ Sulfate transporters (8). Roots are central to plant function,
coenzymes (such as coenzyme A, lipoic acid and thiamine), methyl contributing to nutrient and water uptake, synthesis of hormones,
donor, the antioxidant glutathione, defense compounds such as ~ ©rganic acids and amino acids and structural anchorage (9).
glucosinolates and alliin derivatives and the osmoprotectant choline Investigations into root-mediated nutrient acquisition are therefore
-O-sulfate (3, 4). Sulfur limitation adversely affects plant growth, critical for developing strategies to match crop productivity and
development and defense mechanisms, ultimately reducing crop optimize resource use efficiency. Root systems exhibit marked
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plasticity in response to soil nutrient availability (10, 11). For instance,
an apparent plasticity of root system architecture (RSA) of
Arabidopsis was observed in homogeneous and heterogeneous
provision of nitrate and phosphate, showing decreased primary root
length with increasing nitrate availability while it increased with
higher phosphate supply (12). Similarly, sulfur deficiency reduces
fine root length, biomass and root activity, whereas adequate sulfur
supply promotes lateral root development (6, 13). Sulfate
application has also been shown to increase the total plant dry mass,
root length and nodule biomass, as demonstrated in white clover
(14). Therefore, we hypothesized that both S-starvation and S-excess
may induce distinctive morphological and physiological changes in
chickpea roots and leaves. These conditions likely influence sulfur
uptake and metabolism differently. Assessing root system plasticity
among chickpea cultivars is therefore essential to identify genotypes
with superior sulfur use efficiency for breeding programs.

Materials and Methods
Plant material and growth conditions

Seeds of sixteen chickpea cultivars were surface-sterilized using 2 %
(w/v) sodium hypochlorite for 2 min, rinsed thoroughly with sterile
water and placed on germination paper moistened with reverse
osmosis (RO) water under aseptic conditions (supplementary Table
1). After 5 days of germination, seedlings were transferred to 15 L
hydroponic containers filled with Hoagland’s nutrient medium (pH
6.5). The solution contained 2.4 mM calcium nitrate tetrahydrate, 3.6
mM potassium nitrate, 2 mM magnesium sulfate heptahydrate, 0.3
mM ammonium dihydrogen phosphate, 89 uM ferrous sulfate with
ethylenediaminetetraacetic acid (EDTA), 1.5 uM cupric sulfate
pentahydrate, 6 UM zinc sulfate heptahydrate, 7.5 UM boric acid, 6
UM manganese chloride tetrahydrate, 1.5 pM ammonium
heptamolybdate and 0.5 uM cobalt nitrate hexahydrate. The
nutrient solution was refreshed every third day.

Plants were maintained in the National Phytotron Facility,
ICAR-Indian Agricultural Research Institute, New Delhi, under
controlled environmental conditions: day/night temperatures of 22
+2°C /1842 °C, a 10 hr photoperiod and 45 + 5 % relative humidity.
After three nutrient replacements, S-starvation treatment was
imposed by replacing all sulfate salts with chloride salts of respective
nutrients, while the S-sufficient condition was provided by increasing
S concentration to 2 mM, standardized based on previous
standardization procedures (supplementary Fig. 1 and
supplementary Table 2) (6). Harvesting was carried out after six days
of treatment. Fresh and dry biomass were recorded, while additional
root and shoot tissues were preserved for the determination of total
sulfur and sulfate anion content.

Root morphological traits

Six days after sulfur treatments, root systems were carefully spread
without overlap and scanned using the WinRHIZO root scanning
system (Regent Instruments, Quebec, Canada) at a resolution of 600
dpi. Parameters of root system architecture, including total root
length (TRL), total root surface area (TRSA), total root volume (TRV),
mean root diameter (MRD) and lateral root length (LRL) were
recorded.

Estimation of total sulfur content

Dried and powdered samples (500 mg) from root and shoot tissues
were digested with 5 mL of a nitric—perchloric acid mixture (4:1, v/v)

2

on a hot plate until dense white fumes were observed. After cooling,
the digest was diluted with 25 mL of deionized water and filtered
through Whatman filter paper. Sulfur concentration was determined
by the turbidimetric method using acacia gum and barium chloride
(15).

Sulfur efficiency (SE) was calculated as:

Dry matter yield at S starvation
X100

(Egn. 1)

SE()= " by matter yield at S sufficient

Quantification of sulfate ions

For sulfate determination, frozen tissues were homogenized in
demineralized water (10 mL g* fresh weight) using an Ultra-Turrax
homogenizer for 30 sec at 0 °C. The homogenate was filtered
through Miracloth, boiled at 100 °C for 10 min and centrifuged at
30000 x g for 15 min at 0 °C. The supernatant was analyzed using a
Shimadzu Nexera X2 UPLC system equipped with a Shim-pack Bio
IEX QNP column (50 x 4.6 mm; Shimadzu, USA). Separation was
achieved with 25 mM potassium biphthalate buffer (pH 4.3)
containing 0.02 % (w/v) NaN; as the mobile phase at a flow rate of 1
mL min®. Sulfate was detected using a Knauer differential
refractometer (Model 98.00, Bad Homburg, Germany) maintained at
25 °C. Chromatographic peaks were processed using a Shimadzu
Chromatopac C-R8A data processor (Kyoto, Japan), following the
methods mentioned elsewhere (16, 17).

Statistical analysis

All experiments were conducted in triplicate and data are presented
as mean and standard error (SE). Statistical significance was
assessed using one-way analysis of variance (ANOVA), followed by
Duncan’s multiple range test, performed with SPSS 20.0 software
(SPSS Inc., Chicago, IL, USA). GraphPad Prism 8 was used for data
visualization. Significance was considered atp<0.05.

Results

To determine the sulfur efficiency of chickpea cultivars, we carried
out a comparative analysis of seedlings, investigating biomass
production, total sulfur content and root system architecture under
previously optimized S-sufficient (2 mM SO4?) and S-starvation (0
mM SO4%). The S-sufficient condition significantly improved plants
growth performance, enhancing biomass and root morphology
traits such as total root length (TRL), total root surface area (TRSA),
total root volume (TRV) and lateral root length (LRL), exceptfor mean
root diameter (MRD), which did not differ significantly between
treatments. In contrast, S-starvation consistently hindered the
overall root architecture, including all the root morphological traits
and biomass. It was also observed that cultivar-specific differences in
these traits were evident in response to sulfur nutrition. Desi
chickpea cultivars (PUSA256, PUSA547, PUSA5028 and PUSA362)
displayed higher TRL, TRSA and TRV even under Sstarvation
conditions, whereas all the Kabuli cultivars, except PUSA1003
showed a pronounced reduction in these traits between the
treatments (Table 1). Additionally, the major root parameter
contributing to efficient nutrient acquisition, LRL, was markedly
lower in PUSA3022, KAK2, PUSA5023, BGD112 and BGD72
(287.48+0.64, 296.03+0.58, 306.55+0.92, 327.12+0.69 and
329.94+0.52, respectively), suggesting their reduced efficiency in
sulfur uptake from the rhizosphere under S-starvation. This altered
root plasticity substantially influenced sulfate acquisition and plant
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Table 1. Impact of contrasting sulfur treatment on root system architecture of chickpea cultivars raised in hydroponics

Average root diameter (mm) Total root volume (cm?) Lateral root length (cm)

Total root surface area (cm?)

Total root length (cm)

Cultivars

S-starvation S-sufficient S-starvation S-sufficient S-starvation S-sufficient S-starvation S-sufficient S-starvation

S-sufficient

329.94+0.52
482.33+0.68

531.17+0.93
720.54+0.71
663.56+0.71

0.93+0.05
1.19+0.03
1.33+0.11

1.34+0.05
1.46+0.06
1.45+0.15
1.62+0.07
1.39+0.07
1.62+0.04
1.27+0.07
1.42+0.13

0.51+0.01
0.48+0.02

0.48+0.01
0.45+0.01
0.45+0.01
0.45+0.01
0.47+0.01
0.48+0.02
0.46+0.02
0.48+0.03
0.48+0.01
0.48+0.01
0.46+0.02
0.49+0.02
0.48+0.02
0.49+0.02
0.48+0.01
0.5+0.04

75.43+0.35

111.03+0.41
129.36+0.37

485.83+0.59

731.68+0.88
916.01+0.73
889.07+0.75
998.55+0.91

BGD72
PUSA547
PUSA362
PUSA256

99.46+0.14

660.97+0.87
632.81+0.71
732.62+0.63
481.64+0.39

398.02+0.8
569.24+0.78
327.12+0.69
494.79+0.88

0.52+0.04
0.45+0.03

102.3+0.35
104.33+0.61
73.73+0.46
94.8+0.13
80.54+0.31

127+0.12
142.37+0.52

759.11+0.9
586.95+0.91

1.19+0.11
0.91+0.13

0.49+0.04
0.46+0.03

116.93+0.52
136.01+0.04

785.84+0.96
909.77+0.88

BGD112
PUSA5028

657.44+0.64
599.79+0.74

1.1+0.06
0.92+0.08
0.98+0.05

653.59+0.78
563.19+0.57
528.62+0.8

429.2+0.86

0.46+0.04
0.49+0.03

111.05+0.43
118.8+0.88

100.5+0.13

774.29+0.46

PUSA1005

384.3+0.52
296.03+0.58

572.5+0.58
491.09+0.96
574.79+0.82
677.29+0.79
538.07+0.71
550.32+0.75
537.39+0.86
543.03+0.73
479.29+0.94

80.5+0.05
62.14+0.63

795.06+0.76
670.11+0.16
787.99+0.87

PUSA391

0.76+0.1

1.2+0.03
1.44+0.06
1.46+0.06
1.42+0.08
1.37+0.06
1.39+0.01

0.49+0.04
0.47+0.02

407.83+0.57
563.47+0.88

KAK2
PUSA1053

415.6+0.92

1+0.06
1.38+0.13
0.9940.07
0.75+0.11

84.01+0.37

119.36+0.48
126.94+0.22
115.98+0.53
112.840.31
113.16+0.19
110.36+0.58
112.36+0.37

444.09+0.8

0.51+0.04
0.48+0.03
0.49+0.03
0.51+0.01
0.5+0.01

107.04+0.58
83.29+0.32

665.45+0.51
557.53+0.38
398.07+0.58
550.48+0.35
519.49+0.72
456.62+0.83

878.21+0.54

754.83+0.59

PUSA1003

406.6+0.57
287.48+0.64
391.03+0.42

PUSA3000

60.92+0.67

743.25+0.62

PUSA3022

1.11+0.04
0.95+0.08
0.87+0.12

87.39+0.17

735.73+0.84

PUSA1105

375.74+0.64
306.55+0.92

1.32+0.08
1.44+0.07

78.69+0.61

733.98+0.97
700.42+0.69

PUSA2085

0.49+0.04

70.51+0.64

PUSA5023

growth, as reflected by differences in dry matter accumulation and
total sulfur content in the shoot, root and whole plant among
cultivars (Fig. 1 & 2). Interestingly, plant dry weight, including both
shoot and root, was strongly associated with sulfur nutrition and
correlated with the sulfur efficiency of cultivars. Furthermore, the
significant reduction in root dry weight under S-starvation and
variation in root sulfur efficiency among the cultivars highlighted the
primary role of roots in acquiring nutrients from the rhizosphere.

A comparable trend in total sulfur and sulfate content was
observed between the Kabuli cultivars (PUSA1003 and PUSA1053)
and all the Desi cultivars under S-sufficient conditions. However,
under the S-starvation, the total sulfur and sulfate content of both
shoot and root decreased significantly, by more than 35 % and 30 %,
respectively, in all Kabuli varieties except PUSA1003 and PUSA1053,
which correlated with their pronounced chlorotic symptoms and
premature defoliation after 5 days after initiation of sulfur starvation
(supplementary Fig. 2). Asubstantial reduction in total sulfur content
was also evident in PUSA5023, KAK2 and PUSA3022 under S
starvation, where S acquisition declined by approximately 50 %.
This reduction was directly reflected inimpaired growth parameters,
including reduced plant height, stem thickness and leaf size
(supplementary Fig. 2), emphasizing that Desi cultivars possess
higher sulfate uptake efficiency than Kabuli cultivars. Interestingly,
the relative changes in growth traits and sulfur content were
consistently highest in PUSA256, PUSA547, PUSA5028 and PUSA362
in response to sulfur nutrition, suggesting their superior capacity to
withstand sulfur deficiency via enhanced sulfate uptake and
assimilation (Fig. 1).

Discussion

Sulfur requirements vary between plant species; among crop plants,
members of the Brassicaceae are the most S-dependent family,
followed by Fabaceae and Poaceae, with the relative requirement
being mirrored in the S concentration of their seeds (18). Hence, the
paradigm explaining how plants combat sulfur starvation remains
largely empirical, allowing for the screening of cultivars with high
sulfur uptake/use efficiency. In the present study, chickpea cultivars
were cultivated hydroponically under S-sufficient (2 mM) and S-
deficient (0 mM) conditions to assess the effects on growth and
metabolism. The phenotypic symptoms of sulfur starvation are
primarily observed in younger parts of plants due to their limited S
mobility (supplementary Fig. 2). Further, the degree of symptoms,
including chlorosis in young leaves, growth retardation, stem
elongation, thin and woody stem and reduction in leaf size, depends
on plant genotype (6, 19). Similarly, Sstarvation in chickpea also
resulted in a significant reduction in the dry weight of the shoot and
root (Fig. 1A and B). The chlorotic symptoms were pronounced
among Kabuli cultivars, leading to a corresponding change in the SE
of cultivars (Fig. 1D). Additionally, a drastic reduction in total sulfur
and sulfate content in both shoot and root was observed under
S-starvation and further, it was significant among the low SE
varieties, PUSA5023, KAK2 and PUSA3022 (Fig. 2).

Plant root systems serve as the primary organ for water and
nutrient uptake and are capable of modifying their three-
dimensional architecture in response to the water and nutrient
availability and distribution in the soil (20). The architecture of root
systems in response to deficiencies in nitrogen and phosphorus has
been extensively investigated (10). It has been reported that nitrogen
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Fig. 1. Morpho-physiological responses of chickpea cultivars under S-starvation (0 mm SO,*) and S sufficient (2 mm SO.*). (A) shoot dry weight,

(B) root dry weight, (C) total plant dry weight, (D) sulfur efficiency.
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Fig. 2. Sulfur metabolic flux of chickpea cultivars under S-starvation (0 mm SO.*) and S sufficient (2 mm SO.%). (A) shoot sulfate content, (B)
root sulfate content, (C) total shoot sulfur, (D) total root sulfur, (E) total plant sulfur.

-efficient maize cultivars exhibit significantly greater dry matter
accumulation, nitrogen uptake and grain yield compared to
nitrogen-inefficient cultivars grown under the same soil nitrogen
levels (21). However, studies focusing on the effect of S deficiency on
root system architecture have been limited (6, 18, 22, 23). In
Arabidopsis, S-starvation significantly affected the lateral root growth
in terms of both the number and density of lateral roots (24).
Another critical aspect of the root system is the root surface area that
the root explores. In particular, increasing the length and number of
root hairs significantly increases the root surface area, which can
greatly affect the plant’s absorption of fixed nutrients. Lettuce and
soybean treated with a high concentration of sulfur showed better
root parameters than plants treated with a low concentration of
sulfur (6, 23). Our results corroborate the same, where TLA, TSRA, RV
and LRL values were observed to be high under S-sufficient
conditions. Conversely, S-starvation limits shoot growth rather than
root architecture (25). Therefore, the reprogramming of growth
patterns to adapt to nutrient availability in turn depends on the
developmental stage (26).

Conclusion

Alterations in RSA are a consistent response to sulfate availability
and represent an effective adaptive mechanism under nutrient
stress conditions. As observed in our study, S-efficient cultivars
(PUSA256, PUSA547, PUSA5028 and PUSA362) exhibited

significantly higher sulfur uptake and greater root dry weight under
both sulfur-sufficient and sulfur-deficient conditions compared to S-
inefficient cultivars. These findings indicate that root morphogenetic
traits (TRL, TRSA, TRV and LRL) are critical determinants of S
accumulation efficiency in plants. Morphogenetic changes in roots,
including variations in elongation and irregular branching patterns,
are closely associated with auxin biosynthesis. Such plasticity in root
development provides a valuable strategy for enhancing mineral
nutrient uptake efficiency. Further, these S-efficient chickpea
cultivars pave the way to breed forincreased seed protein quality.
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