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Introduction 

Water spinach (Ipomoea aquatica Forsk.), is a herbaceous perennial 

semi-aquatic important leafy vegetable normally cultivated in 

subtropical-tropical regions belongs to family Convolvulaceae 

having chromosome number 2n = 30 (1). This vegetable is a rich 

source of protein, fibre, vitamins (A, C, K and B9) and minerals (2). 

This vegetable is a primary ingredient in the cuisine of various 

countries like Vietnam, Cambodia, Thailand, Laos, the Philippines, 

Burma, Malaysia and China, mainly in rural areas (3). Despite its high 

nutritional value, due to the content of oxalic acid may limit its safe 

consumption, mainly when consumed raw or inadequately 

processed. Plant foods are crucial elements of a balanced diet, 

contributing several health benefits and adding essential nutrients 

and bioactive compounds which help human well-being (4). Still, 

they also contain naturally occurring anti-nutritional factors (like 

oxalic acid) that can restrict with nutrient metabolism and 

absorption (5). These anti-nutrients contain protease inhibitors, 

phytates, lectins, cyanogenic glycosides and oxalates, many of which 

are frequently ignored in dietary studies (6). Though oxalate 

accumulation in most plant foods is normally low but certain 

botanical families exhibit particularly high levels. These contain 

Convolvulaceae (water spinach), Araceae (taro, aroid), 

Amaranthaceae (spinach, amaranth), Oxalidaceae (wood sorrel), 

Polygonaceae (buckwheat, rhubarb), Portulacaceae (purslane), 

Aizoaceae (ice-plant), Theaceae (tea) and Malvaceae (cocoa) (7). 

Additionally, numerous factors affect the oxalate content within the 

same plant species. These contain agricultural as well as 

physiological parameters like plant genotype (green tea leaves vs. 

black tea and diverse taro leaf cultivars), crop harvesting season (tea 

leaves picked in autumn season compared to those harvested in 

spring season) and stage of maturity of crop (mature leaves of Beta 

vulgaris containing about 58 % total oxalates whereas, young 

immature leaves may hold up to 89 %) (8). Oxalic acid and its salts/

oxalates are widespread in the plant kingdom, have been identified 

in over 215 plant families with many generally consumed crops (9). 

The contain of oxalic acid can adversely affect the sensory and 

nutritional values of various edible plants (10). Calcium oxalate (the 

needle-shaped raphide crystals) is responsible for irritation and 

acridity in the throat and mouth (11). 

 Oxalates excreted through urine significantly lead to the 

development of urinary stones, mostly calcium oxalate calculi          

(75 to 90 %) (12). Hyperoxaluria is a condition marked by high urinary 

oxalate which is closely linked with high consumption of high oxalate 

containing foods (13). It has been studied that dietary oxalate 

contributes up to 50 % of urinary oxalate excretion and in individuals 
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Abstract  

The current study aimed to comparatively evaluate oxalic acid levels in fresh, dried and fermented forms of water spinach (Ipomoea aquatica 
Forsk.) (var. Kashi Manu). The field trial was conducted at the Experimental Farm of ICAR-IIVR, Varanasi, India, July, 2024 and estimation of 

oxalic acid was carried out at the Biochemical Laboratory of same research institute. The oxalic acid content was assessed by titrimetric 

analysis using standardized potassium permanganate (KMnO₄) solution. The results showed significant differences among treatments              
(p ≤ 0.01). Fresh samples showed the highest oxalic acid concentration (250.24 ± 3.08 g/100 g) whereas, the lowest value was observed in the 

fermented sample prepared with salt water (FSW; 22.17 ± 0.68 mg/100 g). Drying reduced oxalic acid levels to 107.66 ± 4.86 mg/100 g whereas, 

fermentation distinctly reduced the concentration in all treatments with reductions of 83-91 % compared to fresh samples. The decline in 

oxalic acid concentration during fermentation is attributed to enzymatic degradation and microbial decarboxylation processes. This result 
revealed that traditional fermentation particularly salt water fermentation, serves as an effective approach for reducing anti-nutritional oxalic 

acid in water spinach, thereby enhancing its nutritional safety and value for human consumption. 
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having high oxalate absorption rates, this proportion may reach        

67 % (oxalate binds strongly with calcium in the kidneys to form 

kidney stone) (14). The worldwide occurrence of kidney stones has 

been increasing steadily among all genders and all age groups, 

associating strongly with consumption of oxalate-rich diets (15). 

From a nutritional viewpoint, oxalic acid is of concern because 

extensive consumption mainly in soluble form may lead to adverse 

health outcomes (16). Soluble oxalates might form complexes with 

vital minerals, inhibiting the absorption of calcium, iron and 

magnesium which can result in mineral deficiencies during digestion 

(17). The anti-nutritional effect of oxalic acid is mainly linked with its 

ability to chelate essential minerals like calcium, iron, potassium, 

sodium and magnesium, thereby reducing their bioavailability and 

absorption in the human body (18).   

 Subsequently endogenous oxalate synthesis mostly 

resulting from vitamin C and glyoxylate metabolism cannot be 

altered by outdoor interference. Reducing dietary oxalate 

consumption remains the utmost effective means of minimizing 

urinary oxalate levels (19). Processing techniques like drying, boiling, 

soaking and fermentation techniques have been shown to 

significantly reduce oxalate contents in several plant-based foods 

(20). Knowing the influence of common processing techniques such 

as fermentation and drying on oxalate reduction is therefore crucial 

to enhance its nutritional safety and utilization. The present study 

was conducted to assess the oxalic acid levels in fresh, dried and 

fermented water spinach and to determine the effect of these 

processing methods on oxalate reduction. This research will 

contribute to the growing body of knowledge on safe dietary 

practices and promote the effective utilization of water spinach as a 

sustainable and healthful food crop. 

 

Materials and Methods 

Experimental site and design 

The present research was carried out at the Biochemical Laboratory 

of the ICAR-IIVR, Varanasi, Uttar Pradesh, India, during 2024 in the 

month of July (the metrological data during investigation are 

illustrated in Table 1 and Fig. 1). The field trial experiment was 

conducted in a randomized block design with three replications 

under upland field condition. The seeds of water spinach variety 

Kashi Manu were sown directly on the main field without 

establishment of nursery. 

Sample preparation 

Fresh sample material 

Fresh samples were harvested from the fields (the samples were 

harvested 30 days after seed sowing) along with stems 

(approximately 40 cm length). The harvested sample were washed 

thoroughly with normal tap water at first to remove soil and debris 

from the sample. After washing with normal tap water, it was again 

washed with distilled water at last. After removal surface moisture 

(remained during cleaning), fresh material was taken for immediate 

analysis. 

Dates Max. Temperature (0C) Min. Temperature (0C) 
Morning Relative 

Humidity (6:00) % 
Evening Relative 

Humidity (18:00) % 
Rainfall (mm) 

06 Jul 2024 25.5 35.5 90 80 0 

07 Jul 2024 25.2 34.4 88 78 0 

08 Jul 2024 25.8 34.5 85 75 0 

09 Jul 2024 28.0 38.6 92 82 0 

10 Jul 2024 27.6 37.8 94 85 0 

11 Jul 2024 25.5 37.0 90 80 0 

12 Jul 2024 25.2 32.2 88 76 0 

13 Jul 2024 26.4 35.0 89 77 0 

14 Jul 2024 23.2 34.3 93 83 0 

15 Jul 2024 26.5 36.0 90 79 0 

Table 1. Meteorological data table during fermentation period (6th July- 15th July, 2024) 

 

Fig. 1. Standard days weather conditions during fermentation period (6th July- 15th July, 2024). 

(°C ) 
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  Drying sample material 

For the dry treatment samples analysis of oxalic acid accumulation, 

sample of 1.0 kg fresh material per replication (three replication) was 

dried in a hot-air oven at 65 °C for 48 hr to get complete moisture 

removal from the sample.  

Fermentation treatments  

Four fermentation treatments were evaluated following a traditional 

Nepalese method with minor modifications (21). In all treatments, 

fresh material (1.0 kg per replication) was first wilted in a hot-air oven 

for 3 hr to reduce surface/moisture content (see treatment-specific 

temperatures below), mildly crushed, packed tightly into a 1000 mL 

dry glass bottle and filled with the specified liquid. Bottles were 

pressed to expel trapped air and left to ferment at ambient 

laboratory temperature (meteorological data during fermentation 

period (6th July- 15th July, 2024 are shown in Table 1 and Fig. 1) for     

10 days. After 10 days completion of fermentation, the fermented 

samples were taken for oven dry (as same drying procedure 

followed in dry sample). 

Treatment details 

T1= Fermented with mustard powder (FMP): At first the sample was 

wilted at 65 °C for 3 hr then mildly crushed using mortar and pestle. 

Just after mild crush mixed with 20 g mustard powder (grinded with 

mortar and pestle), packed into 1000 mL glass bottle and at last filled 

to top with distilled water, kept for fermented for 10 days, after 10 

days fermentation, it was dried at 105 °C for 24 hr to get complete 

dry.  

T2= Fermented with boiled water (FBW): In this treatment 

technique, wilt at 65 °C for 3 hr (same as FMP) mildly crushed the 

wilted sample packed into 1000 mL glass bottle, then finally added 

freshly boiled water (then cooled) and let it for fermentation for 10 

days. After 10 days fermentation process the samples were dried 

same as FMP. 

T3= Fermented with normal water (FNW): In this treatment all the 

procedure were followed same as that followed in FMP except 

added normal tap water for fermentation.  

T4= Fermented with salt water (FSW): In this technique also 

followed same procedure that followed in FMP except mixed 20 g 

common salt in crushed sample then finally added distilled water (it 

gets full in the sample containing bottle).  

 After oven drying, the dried fermented samples were 

crushed with a ceramic mortar and pestle to a fine powder the finally 

sieved through a fine mesh sieve (to get fine powder). Powders were 

packed in air tight polyethylene bags and stored at -20 °C until 

chemical analyses. 

Reagents and standards, sample extraction and estimation 

of oxalic acid (titrimetric analysis) 

For the estimation of oxalic acid content in Ipomoea aquatica 

samples, 0.05 N oxalic acid and 0.05 N KMnO₄ solution were 

prepared as standard reagents for the estimation process (Shown in 

Fig. 2). The oxalic acid standard was prepared by taking 1.20 g of 

oxalic acid and made up to 200 mL standard flask using distilled 

water. The burette was filled up with potassium permanganate 

solution. Then pipette out 20 mL of standard oxalic acid solution into 

a clean conical flask and added an equal amount of diluted sulfuric 

acid and heated the mixture at 60 °C temperature for 10 min. Then 

titrated against  KMnO4 solution for the standardization of KMnO4. 

The end point of the titration is the appearance of permanent pale 

pink color (repeated the titration to get concordant value and 

calculated the normality of KMnO4  solution). For the standardization 

of free oxalate ion present sample, taken 0.5 g of fresh crushed 

sample with mortar and pestle (for fresh sample), taken 0.5 g of finely 

powdered sample (for dry and fermented dry) then transferred to 

clean beaker (separately for each sample) then added 50 mL of dil. 

H2SO4 in it. The contents were boiled for 10 min, cooled and filtered 

into 100 mL volumetric flask. The final volume was made up to        

100 mL by adding distilled water. 10 mL of this solution was pipette 

out into the other 100 mL standard measuring flask. This aliquot was 

transferred into a titration flask and added 20 mL of dil. H2SO4 acid to 

it and heated the mixture to about 60 °C temperature then titrated it 

against 0.05 KMnO4 solution taken in a burette (the end point in 

appearance of permanent pale pink color during titration time). The 

total oxalic acid content in water spinach sample was calculated by 

using following formula (22). 

Fig. 2. Overall view of oxalic acid analysis. 
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Volume of KMnO4 Solution (V1) 

Normality of KMnO4 solution (N1)  

Volume of water spinach extract V2  

Normality of the oxalate ions in water spinach extract N2 =? 

N2= V1 × N1 / V2 

Equivalent weight of oxalate ion = 44 

 

 

The results that in g/L were converted into g /100 g. 

Statistical analysis 

The results are presented as the average value ± standard deviation 

(SD) of the data (four replications). The results were analyzed by 

Duncan’s multiple range test (DMRT) analysis by using the statistical 

software OPSTAT (23) . 

 

Results  

Oxalic acid is present in leafy vegetables and is considered an anti-

nutrient due to it reducing mineral bioavailability in foods and in 

extreme cases can create many diseases in human body such as 

renal failure because of kidney stones formation, cardiovascular 

disease and osteoporosis (24). The oxalic acid content of water 

spinach varied significantly among the applied treatments shown in 

Table 2 and Fig. 3. The highest oxalic acid accumulation was 

recorded in the fresh sample (250.24 ± 3.08 mg/100 g) which was 

followed by the dried sample (107.66 ± 4.86 mg/100 g).  Various 

fermentation treatments resulted in a notable reduction in oxalic 

acid concentration. The values ranged from 41.90 ± 0.80 mg/100 g to 

22.17 ± 0.68 mg/100 g. The treatment FMP showed the highest 41.90 

± 0.80 

mg/100 g oxalic acid content followed by treatments, FNW 37.74 ± 

0.53 mg/100 g, FBW 35.15 ± 0.27 mg/100 g and significantly lowest 

reported in treatment FSW 22.17 ± 0.68 mg/100 g, shown in Fig. 1. 

The treatment, fermentation with salt water (FSW) was recorded as 

the lowest oxalate level, showing a 91.1 % reduction compared to 

the fresh sample, dry and other fermented forms. The The reduction 

order was as follows: 

Fresh > Dry > FMP > FNW > FBW > FSW 

These results illustrate that both drying and fermentation 

techniques significantly reduce the oxalic acid accumulation in 

studied water spinach sample. Salt-water fermentation was the 

most effective method in reducing oxalic acid content.  

 

Discussion 

The oxalic acid’s anti-nutrient effect is mostly attributed to its 
capacity to chelate minerals such as potassium, calcium, sodium, 

iron and magnesium, dropping their bioavailability (25). Oxalate is 

necessary however, higher oxalate concentration has consequently 

been related to various diseases such as acute renal breakdown 

because of kidney stone development which is mainly composed of 

calcium oxalate and calcium phosphate. Previous researchers have 

found that hyperoxaluria and systemic oxalosis have been cited as 

potential causes of kidney stone. Owing to such negative impact on 

health, oxalic acid is considered as an anti-nutrient. The observed 

reduction in oxalic acid content across treatments can be attributed 

to the impact of thermal and microbial degradation mechanisms. 

Drying at 65 °C for 48 hr reduced oxalate concentration by 

approximately 57 %, likely due to the decomposition of soluble 

Amount of oxalate ions in 1 kg water spinach sample = 

N2 x 44 x 
100 

1000 
x 

100 

50 
g/L 

Treatments Treat Mean Least Sign. Diff 

Fesh 250.24a 0 

Dry 107.66b 23.343 

FMP (Fermented with mustard 
powder) 

41.9c 24.455 

FBW (Fermented with boiled water) 35.15c 25.418 

FNW (Fermented with normal water) 37.74c 24.973 

FSW (Fermented with salt water) 22.17c 25.64 

 

Fig. 3. Comparative oxalic acid content in fresh, dried and fermented forms of water spinach.  

Table 2. DMRT analysis of oxalic acid levels in fresh, dried and 
fermented forms of water spinach  

   Fresh 

Normality of oxalic Acid (N1) = 

Weight/Litre 

Equivalent weight of oxalic acid 
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oxalates and partial oxidation during prolonged heat exposure (26). 

 Fermentation further intensified the decline in oxalate 

content, consistent with earlier reports in leafy vegetables (27). The 

significant reduction observed in salt-water fermented samples 

(FSW) may result from the synergistic effect of osmotic stress and 

microbial metabolism. Lactic acid bacteria involved in natural 

fermentation are known to break down oxalate through enzymatic 

decarboxylation and degradation pathways. In addition, the acidic 

environment during fermentation promotes the solubilization and 

leaching of calcium oxalate crystals, reducing total oxalate 

concentration (28). 

 The comparatively lower oxalate content in FSW                 

(22.17 mg/100 g) suggests that sodium chloride may enhance 

oxalate solubilization or stimulate oxalate-degrading microbial 

activity, as reported in traditional fermented vegetables like sinkhi 

and gundruk (29). Fermentation with mustard powder (FMP) also 

found a considerable decrease oxalic acid concentration                 

(41.90 mg/100 g), possibly because of the presence of glucosinolate-

hydrolyzing enzymes and accompanying microflora from mustard 

seeds powder (30). 

 Overall, fermentation techniques resulted in an average 
reduction of 85-91 % in oxalic acid level relative to the fresh form 

indicating its efficiency in lowering the anti-nutritional effects 

associated with oxalic acid rich leafy vegetables like water spinach. 

Since oxalic acid forms insoluble complexes with minerals such as 

magnesium, calcium and iron (dropping their bioavailability), the 

noticeable decrease following the different fermentation technique 

recommends improved nutritional quality of water spinach for safe 

dietary use. 

 

Conclusion  

This investigation demonstrated that both fermentation techniques 

and drying significantly decrease the oxalic acid concentration in 

water spinach (var. Kashi Manu). The fermentation method proved 

particularly effective, with salt water fermentation (FSW) achieving 

the highest reduction in oxalic acid content (up to 91 %). The 

reduction of oxalic acid during fermentation might be attributed to 

acidification and microbial enzymatic activity which enhances oxalic 

acid solubility and breakdown. Thus, traditional fermentation 

methods not only extend shelf life but also help improve the 

nutritional safety and quality of water spinach by minimizing oxalic 

acid. This study supports the application of salt water fermentation 

as a practical, cost effective (low cost) bioprocessing technique for 

improving the dietary value of water spinach in both rural and urban 

food systems. 
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