

RESEARCH ARTICLE

Evaluating correlation coefficients of mango (*Mangifera indica* L.) genotypes from western Uttar Pradesh

Amit Kumar^{1*}, Arvind Kumar¹, Satya Prakash², Vipin Kumar², Atar Singh³, Gaurav Kumar Ahirwar⁴, Vibhu Pandey⁵, Saurabh Kumar Singh⁶, Kuldeep Kumar Shukla⁷, Khursheed Alam⁸ & Ajay Kumar⁹

¹Department of Fruit Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

²Department of Vegetable Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

³Department of Genetics and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250 110, Uttar Pradesh, India

⁴Faculty of Agriculture, Medi-Caps University, Indore 453 331, Madhya Pradesh, India

⁵School of Agriculture, Sanskriti University Mathura 281 401, Uttar Pradesh, India

⁶Department of Fruit Science, Chandra Shekhar Azad University of Agriculture and Technology Kanpur 208 002, Uttar Pradesh, India

⁷Department of Fruit Science and Horticulture Technology, Odisha University of Agriculture and Technology Bhubaneswar 751 003, Odisha, India

⁸School of Agricultural Sciences, Aryavart University Sehore 466 001, Madhya Pradesh, India

⁹Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research Bengaluru 560 089, Karnataka, India

*Correspondence email - akumarhort503@gmail.com

Received: 30 January 2025; Accepted: 21 May 2025; Available online: Version 1.0: 27 May 2025; Version 2.0 : 10 June 2025

Cite this article: Amit K, Arvind K, Satya P, Vipin K, Atar S, Gaurav KA, Vibhu P, Saurabh KS, Kuldeep KS, Khursheed A, Ajay K. Evaluating correlation coefficients of mango (*Mangifera indica* L.) genotypes from western Uttar Pradesh. Plant Science Today. 2025; 12(2): 1-11. <https://doi.org/10.14719/pst.7526>

Abstract

The present investigation was carried out during 2021-22 and 2022-23 at Horticultural Research Centre, SVPAT, Meerut, using twelve mango genotypes in a Randomized Block Design (RBD) with four replications. Phenotypic and genotypic correlation coefficients were computed using pooled data to determine interrelationships among morphological and biochemical traits of different genotypes in Mango. Phenotypically, fruit weight exhibited strong, positive and significant correlations with fruit pulp weight (0.915**), stone weight (0.783**), kernel weight (0.731**), fruit length (0.719**) and fruit width (0.674**), suggesting these traits can be considered for direct selection. Similarly, fruit pulp weight correlated positively with fruit length (0.732**), kernel weight (0.762**) and TSS (0.598**), while TSS showed strong association with fruit length (0.695**), pulp weight (0.582**) and kernel weight (0.412**). Total sugar was positively correlated with non-reducing sugar (0.812**), TSS (0.728**) and reducing sugar (0.395**), indicating a close biochemical interdependence in fruit quality. At the genotypic level, even stronger correlations were evident for many trait combinations. For instance, fruit weight with pulp weight (0.952**), kernel weight (0.749**) and fruit length (0.764**) were highly significant. Likewise, total sugar showed strong genotypic correlations with non-reducing sugar (0.870**) and TSS (0.776**). These results confirm that phenotypic correlations, complemented by genotypic values, serve as a practical guide for breeders. Traits such as fruit pulp weight, kernel weight, fruit length and TSS should be prioritized in selection programs to achieve simultaneous genetic improvement in both yield and fruit quality in mango.

Keywords: correlation coefficient; fruit yield; genotypes; mango; morphological traits; quality

Introduction

Mango (*Mangifera indica* L.) is the most popular fruit in tropical and subtropical regions of the world (1). Botanically, mango belongs to the dicotyledonous family Anacardiaceae. Its chromosome number is $2n = 40$ and it is believed to have evolved through interspecific crossing and subsequent chromosome doubling (2). Mango is cross-pollinated and has a genome size of approximately 450 Mb. India is globally renowned for its vast diversity of mango varieties, each exhibiting unique flavor, texture and aroma (3). The fruit is believed to have originated in the Southeast Asia or Indo-Burma region (4, 5). Owing to its exceptional flavor, attractive color and richness in vitamins and minerals, mango is rightly regarded as the “King of Fruits” in tropical regions and is recognized as the “National Fruit of

India” (6, 7). The total area under mango cultivation in India is 2.35 million hectares, with a production of 20.77 million tonnes (8). The major mango-growing states include Uttar Pradesh Andhra Pradesh, Karnataka, Bihar, Gujarat and Maharashtra.

The systematic evaluation of correlation coefficients among mango genotypes in Western Uttar Pradesh is vital for identifying key traits that influence fruit quality and yield (9). Understanding these relationships assists in the selection and breeding of superior cultivars, thereby enhancing agricultural productivity and the sustainability of the mango industry in the region (10). This study aims to provide insights into both genetic and phenotypic correlations, which are critical for effective breeding strategies and the development of mango varieties with

improved agronomic performance and fruit quality. The evaluation of correlation coefficients among mango genotypes in Western Uttar Pradesh is therefore of significant importance in advancing regional mango breeding efforts. Mango, a major horticultural crop in India, holds immense economic and cultural value. However, the diverse agro-climatic conditions of Western Uttar Pradesh pose both opportunities and challenges for mango cultivation. Environmental variability in this region influences the phenotypic expression of traits, necessitating a thorough understanding of the genetic interrelationships among them (11).

Correlation analysis serves as a key tool for identifying the strength and direction of associations among morphological and quality traits in mango genotypes (12). By quantifying these relationships, breeders can prioritize traits that contribute most significantly to desired outcomes such as increased fruit size, sweetness and resistance to pests and diseases. Moreover, understanding these correlations helps mitigate the effects of undesirable trait linkages that may hinder breeding efforts (13). This study presents a comprehensive evaluation of genetic and phenotypic correlations among major traits in mango genotypes from Western Uttar Pradesh. The findings will support the selection of superior genotypes and inform breeding strategies tailored to the region's conditions. Ultimately, this research contributes to the development of mango varieties with enhanced yield, quality and adaptability, promoting the sustainability and profitability of mango production in the region.

Materials and Methods

The present experiment was conducted at Horticultural Research Centre of Sardar Vallabhbhai Patel University of Agriculture and Technology, Modipuram, Meerut, Uttar Pradesh, India, located at 29°04' N latitude, 77°42' E longitude and an altitude of 237.75 meters above mean sea level. The mango genotypes were replicated four times, resulting in a total of 48 trees. The experiment was conducted using a Randomized Block Design (RBD) featuring 12 mango genotypes and four replications which were selected from a 10-year-old orchard of mango located at University campus (Table 1).

Table 1. Mango (*Mangifera indica* L.) Genotypes evaluated for morphological and quality traits used in correlation analysis

Genotype Name	Source
Ambika	CISH, Lucknow
Pusa Arunima	IARI, New Delhi
Dashehari-51	CISH, Lucknow
Kesar	JAU, Junagadh (Gujarat)
Pusa Surya	IARI, New Delhi
Mallika	IARI, New Delhi
Amapali	IARI, New Delhi
Burma Surakha	Saharanpur district
Neelum Chausa	Regional/local cultivar
Mithua Malda	Malda-type (selection)
Rataul	Baghpat district
Saurav	Saharanpur district

The trees were planted with a spacing of 6 meters by 6 meters. The region experiences a subtropical climate with considerable seasonal variation. During the study period, maximum summer temperatures reached 44.4 °C and 45.6 °C, while minimum winter temperatures dropped to 5.5 °C and 6.4 °C in 2021-22 and 2022-23, respectively. Frost is common from December to February. The southwest monsoon typically begins in the last week of June and withdraws by the end of September, with 80-90 % of the annual rainfall concentrated in July and August. The area also receives sporadic cyclonic rainfall during December–January and late spring. Annual rainfall totalled 1031 mm in 2021-22 and 960.5 mm in 2022-23, with highly uneven distribution. Standardized agronomic practices, including uniform nutrient and pest management, were adopted across treatments to ensure accurate and unbiased genetic assessment.

Correlation coefficient

Correlation was estimated the association between various character-pairs. The correlations at genotypic and phenotypic levels were estimated from the analysis of variance and covariance as suggested (14). The analysis of variance and co-variance was used for estimation of correlation coefficient in the following manner.

Phenotypic correlation between character x and y

$$r_{xy}(p) = \frac{\text{Cov}_{xy}(p)}{\sqrt{\text{Var}_x(p) \times \text{Var}_y(p)}}$$

Genotypic correlation between character x and y

$$r_{xy}(g) = \frac{\text{Cov}_{xy}(g)}{\sqrt{\text{Var}_x(g) \times \text{Var}_y(g)}}$$

Where,

$\text{Cov}_{xy}(p)$ = Phenotypic covariance between two characters x and y.

$\text{Cov}_{xy}(g)$ = $\sqrt{\text{Var}_x(g) \times \text{Var}_y(g)}$

$\text{Var}_x(p)$ = Phenotypic variance for characters x

$\text{Var}_x(g)$ = Genotypic variance for characters x

$\text{Var}_y(p)$ = Phenotypic variance for characters y

$\text{Var}_y(g)$ = Genotypic variance for characters y

$\text{Cov}_{xy}(g)$ = Genotypic covariance between two characters x and y

The significance of correlation coefficient (r) was tested by comparing the observed value of correlation coefficient with the tabulated value for (n-2) degree of freedom. If the observed value is more than the table value, the correlation coefficient is said to be significant.

$$t = \frac{r}{\sqrt{1-r^2}} \times \sqrt{n-2}$$

Where,

r = correlation coefficient

n = number of genotypes

t = t calculated value

Results and Discussion

Genotypic correlation coefficient

A pooled genotypic correlation analysis conducted over two consecutive years (2021-22 and 2022-23) revealed key associations among fruit traits in mango (Table 2).

Fruit weight

Fruit weight showed negative and highly non-significant correlation with number of fruit yield per tree (-0.084). Fruit weight showed negative and non-significant correlation with number of fruits per tree. It may be noted here that genetic correlation is basically a correlation of phenotypic effect by different genotypic variants in mango (15, 16).

Fruit length

Fruit length showed positive and highly significant correlation with fruit weight (0.827**) whereas non-significant negative correlated with number of fruit yield per tree (-0.140). Fruit width showed positive and highly significant correlation with fruit weight (0.724*) followed by fruit length (0.649*) whereas non-significant positive correlated with number of fruit yield per tree (0.185). It may be worth noted here that two traits shared the proportion *ie.*, positive and negative relation is due to the genetic influence among each other clearly stated the relationship with mango considering fruit length (17).

Fruit pulp weight

Fruit pulp weight showed positive and highly significant correlation with (fruit weight 0.975*) followed by fruit length (0.820*) and fruit width (0.649*) whereas non-significant positive correlated with number of fruit yield per tree (0.011). It may be noted here that more attention may be given to the traits having the greatest positive influence for any varietal improvement in mango (18-20).

Stone weight

Stone weight showed positive and highly significant correlation with fruit weight (0.839**) followed by fruit pulp weight (0.828**), fruit length (0.681**) and fruit width (0.666**) whereas non-significant negative correlated with number of fruit yield per tree (-0.102). The present results coincide previous results (21, 22).

Kernel length

Kernel length showed positive and highly significant correlation with stone weight (0.674**) followed by fruit width (0.616**), fruit length (0.543**), fruit pulp weight (0.497**) and fruit weight (0.489**) whereas non-significant positive correlated with number of fruit yield per tree (0.249). The correlation also confirmed in previous works in mango (23-25).

Kernel weight

Kernel weight showed positive and highly significant correlation with stone weight (0.854**) followed by fruit pulp weight (0.845**), fruit weight (0.815**), fruit width (0.800**), fruit length (0.765**) and stone length (0.689**) whereas non-significant positive correlated with number of fruit yield per tree (0.165). The correlation also confirmed in previous results (23-25).

Stone length

Stone length showed positive and highly significant correlation with fruit length (0.742**) followed by fruit weight

(0.585**), stone length (0.541**), stone weight (0.536**), kernel weight (0.520**), fruit width (0.516**) and fruit pulp weight (0.479**) while non-significant negative correlated with number of fruit yield per tree (-0.487**). The positive and highly significant correlation provides an insight emphasizing their importance in yield improvement. The present results are in support with previous results (26, 27).

Kernel width

Kernel width showed positive and highly significant correlation with kernel weight (0.845**) followed by fruit pulp weight (0.714**), fruit weight (0.686**), fruit width (0.659**), fruit length (0.626**), stone weight (0.597**) and stone length (0.515**) whereas non-significant positive correlated with kernel length (0.324) and number of fruit yield per tree (0.315). Our results also agreed with those of (26, 28).

Total soluble solid

Total soluble solid showed positive and highly significant correlation with fruit length (0.828**) followed by fruit pulp weight (0.724**), fruit weight (0.661**), kernel width (0.497**), kernel weight (0.477**), fruit width (0.428**), stone length (0.366*) and stone weight (0.355*) whereas non-significant positive correlated with kernel length (0.298) and number of fruit yield per tree (0.188). The study assessed various traits in which Total soluble solid (TSS) showed positive and highly significant correlation with fruit characteristics. The higher genotypic correlation estimates the genes contributing to these traits are often co-inherited. The present research agrees with earlier reports of (28, 29).

Acidity

Acidity showed positive and highly significant correlation with total soluble solid (0.389*) followed by number of fruit yield per tree (0.345*), whereas non-significant positive correlated with stone length (0.146), fruit width (0.091) and fruit length (0.042) while non-significant negative correlated with kernel length (-0.142), fruit pulp weight (-0.144), fruit weight (-0.161), kernel weight (-0.235), stone weight (-0.307) and kernel width (-0.385*). Our study is well corroborated with the findings of (23,30,31). The present findings highlight the importance of sugar metabolism in determining fruit quality as suggested by previously studies (21, 32).

Reducing sugar

Reducing sugar showed positive and highly significant correlation with fruit length (0.348*) whereas non-significant positive correlated with kernel weight (0.298) followed by fruit width (0.274), total soluble solid (0.266), stone weight (0.263), fruit pulp weight (0.236), acidity (0.198), fruit weight (0.187), stone length (0.117), kernel length (0.102) and kernel width (0.089) while non-significant negative correlated with number of fruit yield per tree (-0.264).

Non-reducing sugar

Non-reducing sugar showed positive and highly significant correlation with total soluble solid (0.965**) followed by fruit length (0.631**), kernel width (0.597**), fruit pulp weight (0.583**), fruit weight (0.457**), kernel weight (0.434**) and number of fruit yield per tree (0.404*) whereas non-significant positive correlated with fruit width (0.279), acidity (0.247), stone length (0.207), stone weight (0.168), reducing sugar (0.132) and kernel length (0.061).

Table 2. Genotypic correlation coefficient among different characters in mango based on pool data of 2021-22 and 2022-23

CTR	NF	FWT	FL	FW	FPW	SWT	SL	KWT	KL	KW	TSS	Acidity	RS	NRS	TS	TC	AA	PC	TA	FY		
NF	1.000	-0.084	-0.140	0.185	0.011	-0.102	0.249	0.165	-0.487**	0.315	0.188	0.345*	-0.264	0.404*	0.279	0.215	0.185	0.409*	0.395*	0.621**		
FWT		0.827**	0.724**	0.975**	0.839**	0.489**	0.815**	0.585**	0.686**	0.661**	-0.161	0.187	0.457**	0.470**	0.093	0.682**	0.293	0.509**	0.293	0.708**		
FL			0.649**	0.820**	0.681**	0.543**	0.765**	0.742**	0.626**	0.828**	0.042	0.348*	0.631**	0.724**	0.002	0.729**	0.423*	0.576**	0.423	0.593**		
FW				0.649**	0.666**	0.616**	0.800**	0.516**	0.659**	0.428**	0.091	0.274	0.279	0.320	-0.270	0.778**	0.129	0.309	0.309	0.668**		
FPW					0.828**	0.497**	0.845**	0.479**	0.714**	0.724**	-0.144	0.236	0.583**	0.603**	0.252	0.729**	0.344*	0.618**	0.344*	0.777**		
SWT						0.674**	0.854**	0.536**	0.597**	0.355*	-0.307	0.263	0.168	0.253	-0.166	0.697**	0.089	0.213	0.573**	0.573**		
SL							0.689**	0.541**	0.515**	0.366*	0.146	0.117	0.207	0.230	-0.224	0.503**	0.385*	0.322	0.599**	0.599**		
KWT								0.520**	0.845**	0.477**	-0.235	0.298	0.434**	0.506**	-0.036	0.877**	0.140	0.411*	0.411*	0.751**		
KL									0.324	0.298	-0.142	0.102	0.061	0.089	-0.417*	0.309	0.239	0.161	0.161	0.167		
KW										0.497**	-0.385*	0.089	0.597**	0.547**	-0.113	0.613**	0.143	0.533**	0.533**	0.702**		
TSS											0.389*	0.266	0.965**	0.980**	0.438**	0.530**	0.663**	0.887**	0.663**	0.887**	0.695**	
Acidity												0.198	0.247	0.276	0.251	0.057	0.573**	0.354*	0.354*	0.354*	0.199	
RS												0.132	0.471**	-0.029	0.655**	-0.191	0.146	-0.034	-0.034	-0.034	-0.034	
NRS													0.974**	0.451**	0.446**	0.601**	0.899**	0.899**	0.693**	0.693**	0.693**	0.693**
TS														0.396*	0.616**	0.480**	0.863**	0.608**	0.608**	0.608**	0.608**	
TC															-0.034	0.258	0.409*	0.409*	0.325	0.325		
AA																0.145	0.435**	0.435**	0.435**	0.655**		
PC																	0.789**	0.789**	0.789**	0.575**		
TA																		0.724**	0.724**	0.724**		
FY																			1.000	1.000		

*, ** significant at 5% and 1% level, respectively

[Where, CTR: Characters; NF: Number of Fruits per Tree; FWT: Fruit Width; FL: Fruit Length; FW: Fruit Weight; FPW: Fruit Pulp Weight; SL: Stone Length; SW: Stone Weight; RS: Reducing Sugar; NRS: Non-Reducing Sugar; TC: Total Sugars; TSS: Total Soluble Sugars; AA: Ascorbic Acid; KW: Kernel Width; KW: Kernel Weight; PC: Phenol Content; TA: Total Carotenoids; FY: Fruit Yield per Tree]

Total sugar

Total sugar showed positive and highly significant correlation with total soluble solid (0.980**) followed by non-reducing sugar (0.974**), fruit length (0.724**), fruit pulp weight (0.603**), kernel width (0.547**), kernel weight (0.506**), reducing sugar (0.471**) and fruit weight (0.470**) whereas non-significant positive correlated with fruit width (0.320), number of fruit yield per tree (0.279), acidity (0.276), stone weight (0.253) and stone length (0.230) and kernel length (0.089). The accumulation of sugar is one of the main features in ripening. Previous works also showed similar and significant results (33, 34).

Total carotenoid

Carotenoids were positively and significantly associated with non-reducing sugar (0.451**), TSS (0.438**) and total sugar (0.396*), indicating that sweeter fruits may also exhibit higher pigment accumulation. However, many correlations with other traits were non-significant or negative, including reducing sugar and kernel traits. This indicates a more independent expression, suggesting for targeted selection without impacting yield directly. These results agree with previous studies (34, 35).

Ascorbic acid

Ascorbic acid showed positive and highly significant correlation with kernel weight (0.877**) followed by fruit width (0.778**), fruit length (0.729**), fruit pulp weight (0.729**), stone weight (0.697**), fruit weight (0.682**), reducing sugar (0.655**), total sugar (0.616**), kernel width (0.613**), kernel width (0.530**), stone length (0.503**) and non-reducing sugar (0.446**) whereas non-significant positive correlated with kernel length (0.309), number of fruit yield per tree (0.185) and acidity (0.057) while non-significant negative correlated with total carotenoid (-0.034). Similar findings were reported in previous works in mango (36).

Phenol content

Phenol content showed positive and highly significant correlation with total soluble solid (0.663**) followed by non-reducing sugar (0.601**), acidity (0.573**), total sugar (0.480**), fruit length (0.423*), number of fruit yield per tree (0.409*), stone length (0.385*) and fruit pulp weight (0.344*) whereas non-significant positive correlated with fruit weight (0.293), total carotenoid (0.258), kernel length (0.239), ascorbic acid (0.145), kernel width (0.143), kernel weight (0.140), fruit width (0.129) and stone weight (0.089) while non-significant negative correlated with reducing sugar (-0.191). The present results coincide with those of previous works (37, 38).

Total antioxidants

Total antioxidants showed positive and highly significant correlation with non-reducing sugar (0.899**) followed by total soluble solid (0.887**), total sugar (0.863**), phenol content (0.789**), fruit pulp weight (0.618**), fruit length (0.576**), kernel width (0.533**), fruit weight (0.509**), ascorbic acid (0.435**), kernel width (0.411*), total carotenoid (0.409*), number of fruit yield per tree (0.395*) and acidity (0.354*) whereas non-significant positive correlated with stone length (0.322), fruit width (0.309), stone weight (0.213), kernel length (0.161) and reducing sugar (0.146). It is clear from

the data that positive and highly significant correlation with non-reducing sugar which states that traits can be improved as genetic correlation quantifies the genetic influences on one trait and those on other (39, 40).

Fruit yield per tree

Fruit yield per tree had highly significant correlations with fruit pulp weight (0.777**), kernel weight (0.751**), fruit weight (0.708**) and TSS (0.695**), showing that yield is strongly influenced by both internal and external fruit characteristics. Traits such as ascorbic acid, non-reducing sugar and total sugar also showed strong positive associations. This confirms that higher-yielding genotypes can also possess superior quality, allowing breeders to improve both simultaneously. These findings emphasize the importance of focusing on traits with positive genetic influences for targeted breeding programs. In agreement to the present study previous findings have been done (41-43).

Phenotypic correlation coefficient

Fruit weight

Fruit weight revealed genotypic correlation coefficient in Table 3, non-significant negative correlated with number of fruit yield per tree (-0.096). Fruit length showed positive and highly significant correlation with fruit weight (0.764**) while non-significant negative correlated with number of fruit yield per tree (-0.125).

Fruit width

Fruit width showed positive and highly significant correlation with fruit weight (0.687**) and fruit length (0.556**) whereas non-significant positive correlated with number of fruit yield per tree (0.181). The present study is very well documented from earlier findings (15-16).

Fruit pulp weight

Fruit pulp weight showed positive and highly significant correlation with fruit weight (0.952**), fruit length (0.775**) and fruit width (0.596**) whereas non-significant positive correlated with number of fruit yield per tree (0.008).

Stone weight

Stone weight showed positive and highly significant correlation with fruit weight (0.800**), fruit pulp weight (0.779**), fruit length (0.626**) and fruit width (0.588**) while non-significant negative correlated with number of fruit yield per tree (-0.093). Significant genetic or phenotypic correlation coefficient between two traits does not always predict interdependence in ber (44, 45), in peach (46), in avocado (47).

Kernel length

Kernel length showed positive and highly significant correlation with stone weight (0.622**), fruit width (0.565**), fruit weight (0.477**), fruit length (0.470**) and fruit pulp weight (0.451**) whereas non-significant positive correlated with number of fruit yield per tree (0.219). It may be noted here that correlation coefficient analysis measures the magnitude of any relationship between fruit and fruit yield characters in mango (48).

Table 3. Phenotypic correlation coefficient among different characters in mango based on pool data of 2021-22 and 2022-23

CTR	NF	FWT	FL	FW	FPW	SWT	SL	KWT	KL	KW	TSS	Acidity	RS	NRS	TS	TC	AA	PC	TA	FY			
NF	1.000	-0.096	-0.125	0.181	0.008	-0.093	0.219	0.138	-0.446**	0.290	0.149	0.337*	-0.268	0.392*	0.252	0.206	0.185	0.390*	0.396*	0.594**			
FWT		0.764* *,	0.687**	0.952**	0.687**	0.800**	0.477**	0.749**	0.544**	0.655** *	0.555* *	-0.150	0.185	0.430**	0.451**	0.089	0.662**	0.293	0.494**	0.702**			
FL			0.556**	0.775**	0.626**	0.470**	0.731**	0.650**	0.514**	0.735* *	0.735* *	-0.002	0.323	0.637**	0.623**	0.003	0.664**	0.388*	0.567**	0.555**			
FW				0.596**	0.588**	0.565**	0.666**	0.507**	0.612**	0.612**	0.272	0.141	0.203	0.235	0.340*	-0.263	0.734**	0.114	0.291	0.632**			
FPW					0.779**	0.451**	0.820**	0.433**	0.667**	0.636* *	0.636* *	-0.167	0.250	0.546**	0.573**	0.252	0.705**	0.331*	0.600**	0.771**			
SWT						0.622**	0.768**	0.515**	0.491**	0.326	-0.253	0.220	0.186	0.216	-0.165	0.678**	0.086	0.194	0.546**				
SL							0.628**	0.507**	0.474**	0.255	0.159	0.119	0.192	0.241	-0.222	0.471**	0.383*	0.305	0.566**				
KWT								0.443**	0.728**	0.427* *	-0.291	0.321	0.408*	0.467**	-0.027	0.806**	-0.027	0.123	0.386*	0.717**			
KL									0.301	0.205	-0.086	0.030	0.066	0.092	-0.393*	0.303	0.232	0.144	0.149				
KW										0.388*	-0.315	0.081	0.497**	0.516**	-0.101	0.579**	0.141	0.504**	0.657**				
TSS											0.305	0.228	0.823**	0.776**	0.392*	0.473**	0.586*	0.473**	0.521*	0.327	0.624**		
Acidity												0.112	0.200	0.258	0.204	0.079	0.141	0.504**	0.504**	0.657**	0.657**		
RS													0.105	0.436**	-0.027	0.603**	-0.183	0.137	-0.026				
NRS														0.870**	0.436**	0.412*	0.577*	0.521*	0.327	0.164			
TS															0.365*	0.606**	0.447*	0.547*	0.771**	0.624**			
TC																-0.045	0.261	0.396*	0.325				
AA																	0.132	0.428**	0.638**				
PC																		0.767**	0.570**				
TA																			0.703**				
FY																				1.000			

*, ** significant at 5% and 1% level, respectively

[Where, CTR: Characters; NF: Number of Fruits per Tree; FWT: Fruit Weight; FL: Fruit Length; FW: Fruit Width; FPW: Fruit Pulp Weight; SW: Stone Weight; SL: Stone Length; KWT: Kernel Weight; KW: Kernel Width; TSS: Total Soluble Sugar; Acidity: Acidity; RS: Reducing Sugar; NRS: Non-Reducing Sugar; TA: Total Carotenoids; PC: Phenol Content; AA: Ascorbic Acid; TA: Total Antioxidants; FY:Fruit Yield per Tree]

Kernel weight

Kernel weight showed positive and highly significant correlation with fruit pulp weight (0.820**), stone weight (0.768**), fruit weight (0.749**), fruit length (0.731**), fruit width (0.666**) and stone length (0.628**) whereas non-significant positive correlated with number of fruit yield per tree (0.138). Similar observations were stated in previous results (26, 29).

Stone length

Stone length showed positive and highly significant correlation with fruit length (0.650**), fruit weight (0.544**), stone weight (0.515**), fruit width (0.507**), stone length (0.507**), kernel weight (0.443**) and fruit pulp weight (0.433**) while non-significant negative correlated with number of fruit yield per tree (-0.446**). Significant observations were quoted in previous research (16, 48, 49).

Kernel width

Kernel width showed positive and highly significant correlation with kernel weight (0.728**), fruit pulp weight (0.667**), fruit weight (0.657**), fruit width (0.612**), fruit length (0.514**), stone weight (0.491**) and stone length (0.474**) whereas non-significant positive correlated with kernel length (0.301) and number of fruit yield per tree (0.290). It may be noted here that this study identifies yield-related attributes that can be used to improve mango fruit production in mango (50, 51).

Total Soluble Solid (TSS)

TSS exhibited strong positive and highly significant correlations with fruit length (0.735**), fruit pulp weight (0.636**), fruit weight (0.555**), kernel weight (0.427**) and kernel width (0.388*). These associations suggest that sweeter mango genotypes often possess larger fruits and denser pulp, offering better consumer appeal and processing value. Although correlations with yield (0.149) and stone traits were positive but non-significant, the path coefficient analysis underscores TSS as a key indirect contributor to yield. These findings align with earlier reports (28, 29).

Acidity

Acidity showed non-significant positive correlated with number of fruit yield per tree (0.337), total soluble solid (0.305), stone length (0.159) and fruit width (0.141) while non-significant negative correlated with fruit length (-0.002), kernel length (-0.086), fruit weight (-0.150), fruit pulp weight (-0.167), stone weight (-0.253), kernel weight (-0.291) and kernel width (-0.315). Our research findings showed that and emphasized the importance of selecting desired characteristics for increased production. The current study is well corroborated with early findings (23, 30, 31).

Reducing sugar

Reducing sugar showed non-significant positive correlated with fruit length (0.323), kernel weight (0.321), fruit pulp weight (0.250), total soluble solid (0.228), stone weight (0.220), fruit width (0.203), fruit weight (0.185), stone length (0.119), acidity (0.112), kernel width (0.081) and kernel length (0.030) while non-significant negative correlated with number of fruit yield per tree (-0.268).

Non-reducing sugar

Non-reducing sugar showed positive and highly significant correlation with total soluble solid (0.823**), fruit length (0.637**), fruit pulp weight (0.546**), kernel width (0.497**), fruit weight (0.430**), kernel weight (0.408*) and number of fruit yield per tree (0.392*) whereas non-significant positive correlated with fruit width (0.235), acidity (0.200), stone length (0.192), stone weight (0.186), reducing sugar (0.105) and kernel length (0.066). Previous works showed similar and significant results (33, 34).

Total sugar

Total sugar showed positive and highly significant correlation with non-reducing sugar (0.870**), total soluble solid (0.776**), fruit length (0.623**), fruit pulp weight (0.573**), kernel width (0.516**), kernel weight (0.467**), fruit weight (0.451**), reducing sugar (0.436**) and fruit width (0.340*) whereas non-significant positive correlated with acidity (0.258), number of fruit yield per tree (0.252), stone length (0.241), stone weight (0.216) and kernel length (0.092). The present experiment headlines the significant positive and negative effects of direct and indirect components on several qualities. Similar observations were observed in previous works in mango (52, 53) and in Tamarind (54).

Total carotenoid

Carotenoids showed highly significant positive correlations with non-reducing sugar (0.436**), TSS (0.392*) and total sugar (0.365*), establishing its linkage with fruit maturity and pigmentation. While negatively correlated with kernel and stone traits, these findings suggest carotenoid content is more responsive to sugar accumulation than fruit size. This trait is vital for improving nutritional value and visual appeal (34, 35). The present experiment it may be noted here that carotenoid exhibited positive and highly significant correlation with different quality traits which states the increase in total carotenoid content (34, 35).

Ascorbic acid

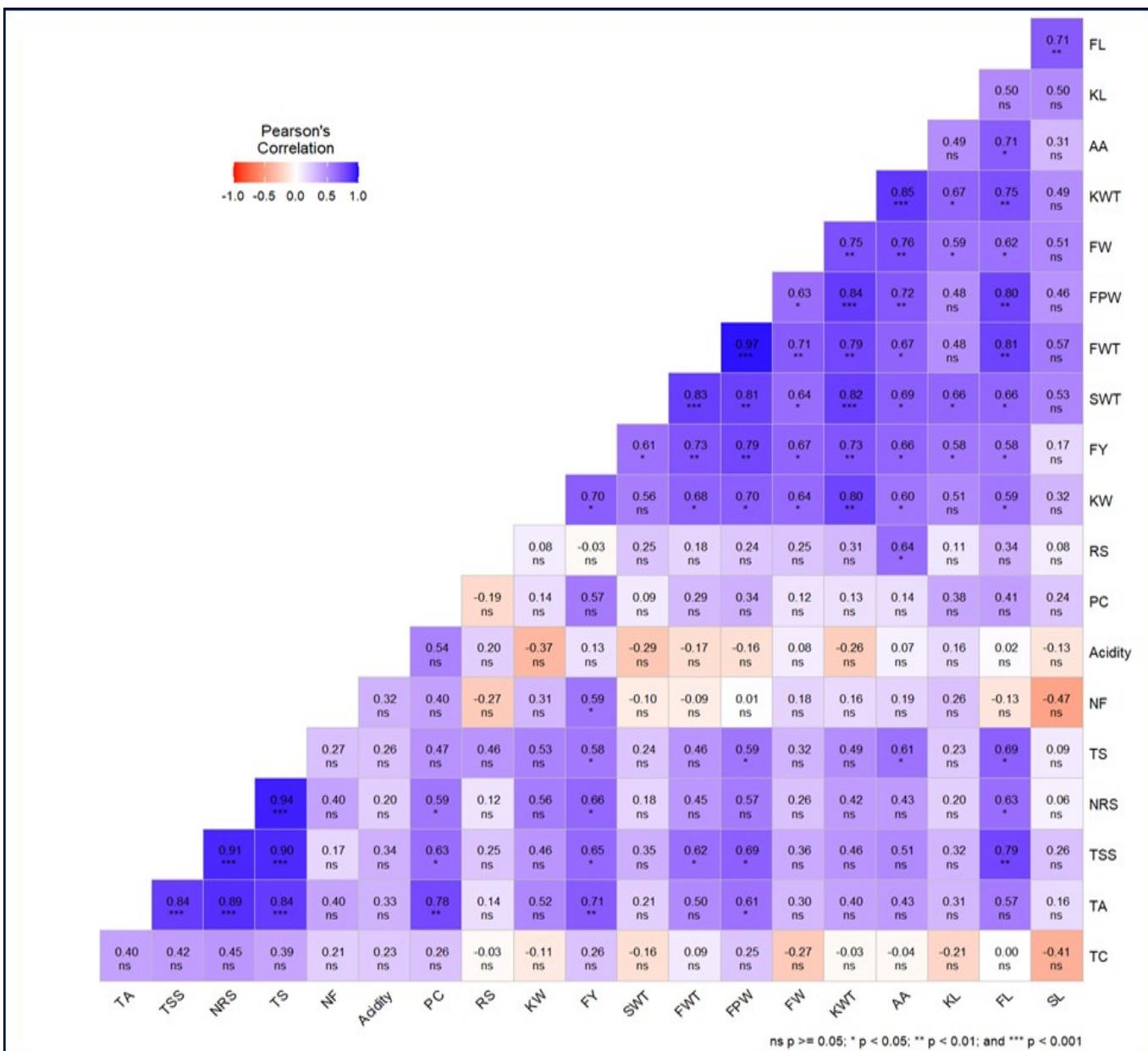
Ascorbic acid displayed strong positive and highly significant correlations with kernel weight (0.806**), fruit width (0.734**), pulp weight (0.705**) and other size-related traits. This implies that larger fruits tend to accumulate more vitamin C, enhancing their nutritional profile. Weak correlations with yield and acidity highlight its utility in quality-focused breeding rather than yield-specific selection. Previous studies also similar with the present findings in mango (55-57).

Phenol content

Phenol content showed positive and highly significant correlation with non-reducing sugar followed by acidity, TSS, total sugar, number of fruit per tree, fruit length, stone length, fruit pulp weight, whereas non-significant positive correlated with followed by fruit weight, total carotenoid, kernel length, kernel width, fruit width, ascorbic acid, kernel weight, stone weight, while whereas non-significant negative correlated with reducing sugar (57, 58).

Total antioxidant

Total antioxidant also reveals from the data that positive and highly significant correlation with non-reducing sugar which states that traits can be improved as genetic correlation


quantifies the genetic influences which modifies the phenotypic appearances (39, 40, 55, 59).

Fruit yield per tree

Phenotypic correlations with component traits revealed both positive and negative, mostly non-significant, associations, highlighting the complex nature of yield (Fig. 1). Traits such as non-reducing sugar, pulp weight and TSS showed moderate positive correlations, indicating potential for indirect selection. The data supports the concept that while traits may be heritable, they are not always genetically identical, emphasizing the need for integrated selection indices (42, 52).

Pearson's correlation coefficient analysis of traits associated between morphological and qualitative variable of mango genotypes

Phenotypic correlation among yield and yield-attributing traits plays a crucial role in determining an effective selection strategy for yield improvement (14, 20). It provides insights into the correlated genetic responses to directional selection, aiding in the formulation of selection indices a key tool for plant breeders and researchers. Positive correlations between desirable traits are particularly beneficial, as they facilitate simultaneous improvement of multiple attributes (12, 44). Yield, being a complex and multifaceted trait, is significantly influenced by its component traits. Understanding the correlations between these traits and their relationship with yield can simplify the selection process, enabling targeted improvements. The correlation values, derived from variance and covariance analyses, offer a statistical foundation for evaluating the associations among all possible trait combinations, thereby enhancing the efficiency of breeding

Fig. 1. Pearson's correlation coefficient matrix revealing the relationship between morphological and qualitative variable of mango genotypes.

[Where, Total Carotenoids: TC; Total Antioxidants: TA; Total Soluble Sugar: TSS; Non-Reducing Sugar: NRS; Total Sugar: TS; Number of Fruits per Tree: NF; Acidity: Acidity; Phenol Content: PC; Reducing Sugar: RS; Kernel Width: KW; Fruit Yield per Tree: FY; Stone Weight: SW; Fruit Weight: FWT; Fruit Pulp Weight: FPW; Fruit Width: FW; Kernel Weight: KWT; Ascorbic Acid: AA; Kernel Length: KL; Fruit Length: FL; Stone Length: SL]

programs focused on yield enhancement (20, 60, 61).

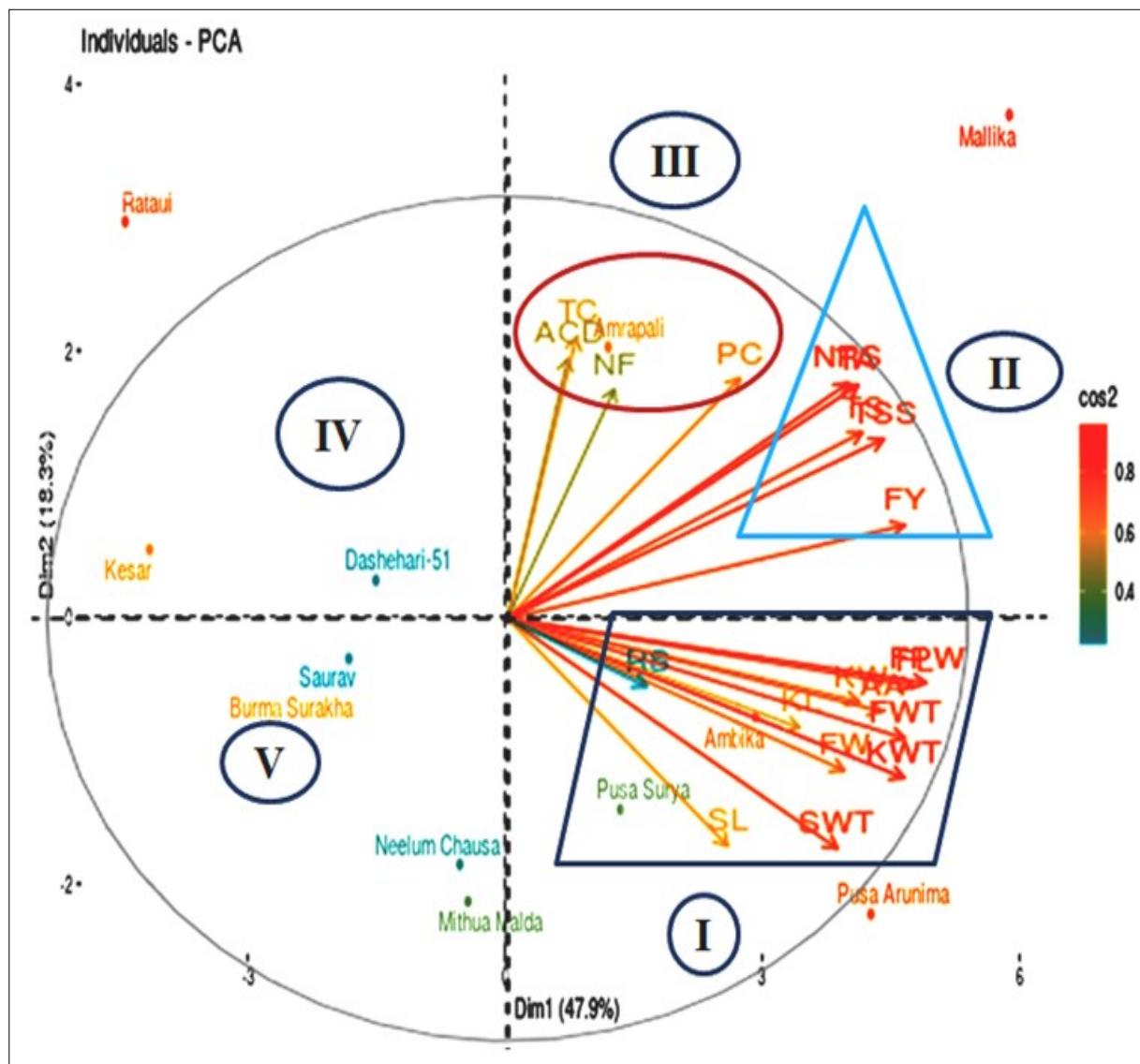
Principal Component Analysis (PCA) of morphological and qualitative variable of mango genotypes

The structure of a data set is studied using Principal Components Analysis (PCA), a statistical method for multivariate analysis, to identify the processes influencing the scores of the variables present in the data. Several linear combinations of observable variables are created using PCA and these linear combinations are referred to as components or factors. The variation pattern of vegetative and qualitative traits of mango was studied using principal components. The factors serve to condense the correlations present in the observed correlation matrix and possessed the capacity to precisely duplicate the observed matrix (62). Out of eight PCs observed in the study, only five were reported significant due to Eigen values more than 1 which contributed 89.36 % to total variations. Rest of the three PCs Eigen values found less than 1 and non-significant for the study (Table 4). Twenty traits were scattered throughout a range of ordinates and the length of the vectors revealed contribution of primary component of characters and quality of depiction.

From PCA biplot analysis, traits were divided into main and subgroups based on homogeneity and dissimilarity. Five sets of traits were reported which were considered into PC1 and PC2. Most of the traits viz., Fruit pulp weight, stone length, stone weight, reducing sugar, kernel weight, fruit grit, fruit weight, kernel length, ascorbic acid, fruit length, kernel width, fruit pulp weight, were clustered under group I and non-reducing sugar, Total antioxidant, Total sugar, TSS, Fruit yield per tree came under cluster II. However Total

carotenoids, acidity, phenol content, number of fruits per tree categorized under group III. The almost traits come under I, II and III respectively. Notably, the PCA biplot expressed that group II, II and III which significantly contributed to PC1 was highly involved with Pusa Surya and Arka Aruna genotype mango. Parameters of group I, II, III, VI and V seems to be free from each other for qualities based on angles between vectors derived from the middle point of biplot (Fig. 2).

Conclusion


The investigation revealed that genotypic and phenotypic correlation coefficients are powerful analytical tools for deciphering complex trait relationships in mango. By identifying key trait associations, the findings provide a strategic framework for breeders to enhance fruit quality and yield simultaneously. Especially, strong positive correlations were observed between fruit yield per tree and crucial morphological and biochemical traits, including fruit weight, pulp weight, fruit length, width, kernel weight, TSS, non-reducing sugar, total sugar and ascorbic acid. These traits emerged as reliable selection indices for yield improvement and quality enhancement. The integration of biochemical traits like sugars, carotenoids, phenolics and antioxidants into selection criteria offers added value, aligning mango breeding with consumer health trends and industry demands. These traits, being significantly correlated with yield and quality parameters, underscore the need for a holistic breeding approach that balances productivity and nutritional value.

Future research should aim to validate key trait associations through QTL mapping and marker-assisted

Table 4. Extracted eigenvalues and correlation values for morphological and qualitative parameters with the first five principal components

Variables	Principal components				
	PC1	PC2	PC3	PC4	PC5
Extracted eigenvalues	9.582	3.652	1.766	1.518	1.358
Explained variance (%)	47.91	18.26	8.831	7.592	6.789
Cumulative variance (%)	47.91	66.17	75.001	82.593	89.36
Morphological and qualitative characters of mango genotypes					
NF	0.232	0.544	-0.705	-0.203	0.309
FY	0.863	0.221	-0.401	-0.081	0.006
FWT	0.863	-0.284	0.048	0.001	-0.245
FL	0.881	-0.161	0.29	0.185	-0.12
FW	0.732	-0.36	-0.203	0.078	0.328
FPW	0.909	-0.153	0.066	-0.122	-0.244
SWT	0.716	-0.545	-0.072	-0.026	-0.051
SL	0.478	-0.539	0.165	0.588	-0.203
KWT	0.861	-0.377	-0.14	-0.209	0.036
KL	0.634	-0.259	-0.35	0.349	0.233
KW	0.764	-0.197	-0.294	-0.306	-0.122
TSS	0.816	0.425	0.282	0.09	-0.116
ACD	0.131	0.615	0.122	0.488	0.511
RS	0.302	-0.162	0.664	-0.234	0.579
NRS	0.74	0.558	0.106	-0.123	-0.15
TS	0.77	0.442	0.321	-0.184	0.073
TC	0.149	0.665	0.173	-0.317	-0.28
AA	0.813	-0.22	0.107	-0.231	0.415
PC	0.504	0.569	-0.151	0.549	-0.104
TA	0.761	0.553	0.043	0.078	-0.086

[Where, Total Carotenoids: TC; Total Antioxidants: TA; Total Soluble Sugar: TSS; Non-Reducing Sugar: NRS; Total Sugar: TS; Number of Fruits per Tree: NF; Acidity: Acidity; Phenol Content: PC; Reducing Sugar: RS; Kernel Width: KW; Fruit Yield per Tree: FY; Stone Weight: SW; Fruit Weight: FWT; Fruit Pulp Weight: FPW; Fruit Width: FW; Kernel Weight: KWT; Ascorbic Acid: AA; Kernel Length: KL; Fruit Length: FL; Stone Length: SL]

Fig. 2. Principal Components Analysis (PCA) of morphological and qualitative traits of mango genotypes

selection to expedite elite genotype development. Conducting multi-location and seasonal trials will help determine the environmental stability of these correlations. As well, genomic and transcriptomic analyses can clarify the genetic mechanisms underlying sugar accumulation, antioxidant production and yield traits. Breeding efforts should also prioritize climate-resilient genotypes by integrating these trait correlations, ultimately guiding the creation of high-yielding, nutritionally rich and commercially viable mango cultivars.

Acknowledgements

The authors acknowledge the support rendered by Department of Fruit Science, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India for providing necessary facilities to carry out the research work.

Authors' contributions

AK¹ conducted the experiment and wrote the main manuscript text. AK² provided substantial guidance and facilitated the research by offering necessary laboratory facilities. SP assisted with data analysis. VK and AS provided

experimental guidance and contributed to the manuscript draft preparation. GKA, VP, SKS, KKS, KA and AK³ reviewed and approved the manuscript. This collaborative effort demonstrates the authors' commitment to producing a high-quality manuscript that accurately represents the research findings and contributes to the scientific community.

(AK¹- Amit Kumar, AK²-Arvind Kumar, AK³ - Ajay Kumar)

Compliance with ethical standards

Conflict of interest: The authors declare no competing interests.

Ethical issues: None

Declaration of generative AI and AI-assisted technologies in the writing process: No

References

1. Bally IS, Dillon NL. Mango (*Mangifera indica* L.) breeding. *Adv Plant Breed Strateg Fruits.* 2018;3:811-96. https://doi.org/10.1007/978-3-319-91944-7_20
2. Mathews H, Litz RE. Mango. In: Hammerschlag FA, Litz RE, editors. *Biotechnology of Perennial Fruit Crops.* CAB International, UK. 1992:433-48.

3. Yadav AS, Pandey DC. Geographical perspectives of mango production in India. *Imp J Interdiscip Res.* 2016;2(4):257-65.
4. De Candolle AP. Origin of cultivated plants. Kegan Paul, Trench, London. 1904.
5. Popenoe W. Manual of Tropical and Subtropical Fruits. McMillan, New York, USA. 1927: 96.
6. Himabindu A, Srihari D, Rajasekhar M, Sudhavani V, Subbarammamma P, Krishna KU, et al. Genetic diversity for fruit morphological and biochemical characters of indigenous mango (*Mangifera indica* L.) cultivars of coastal districts in Andhra Pradesh using principal component analysis. *Electron J Plant Breed.* 2017;8 (3):772-78. <https://doi.org/10.5958/0975-928X.2017.00119.3>
7. Bose TK, Mitra SK. Fruits: Tropical and Subtropical. 1990:1-51. https://books.google.co.in/books/about/Fruits.html?id=l-tGAAAYAAJ&redir_esc=y
8. Anonymous. National Horticulture Board, Indian Horticulture Database. Ministry of Agriculture, Government of India. 2021. www.agricoop.nic.in
9. Patel N, Tandel YN, Chauhan DA, Patel AI. Exploring variability for morphological and quality traits in natural seedling origin mango germplasm of South Gujarat. *Euphytica.* 2024;220(10):151. <https://doi.org/10.21203/rs.3.rs-4435950/v1>
10. Bura S, Jasrotia A, Sharma S, Sharma A, Tutlani A. Recent advances in breeding of mango (*Mangifera indica*): A review. *Int J Environ Clim Change.* 2023;13(11):521-38. <https://doi.org/10.9734/ijecc/2023/v13i113196>
11. Bally IS, De Faveri J. Genetic analysis of multiple fruit quality traits in mango across sites and years. *Euphytica.* 2021;217(3):44. <https://doi.org/10.1007/s10681-020-02750-3>
12. Budiarto R, Poerwanto R, Santosa E, Efendi D, Agusta A. Comparative and correlation analysis of young and mature Kaffir lime (*Citrus hystrix* DC) leaf characteristics. *Int J Plant Biol.* 2022;13 (3):270-80. <https://doi.org/10.3390/ijpb13030023>
13. Bally IS, Lu P, Johnson PR. Mango breeding. In: Breeding plantation tree crops: Tropical Species. Springer, New York, NY. 2009:51-82. <https://doi.org/10.1007/978-0-387-71201-7>
14. Searle SR. Phenotypic, genotypic and environmental correlation. *Biometrics.* 1961;17(1):474-80.
15. Hussein MA, Eid M, Rahimi M, Filimban FZ, Abd El-Moneim D. Comparative assessment of SSR and RAPD markers for genetic diversity in some mango cultivars. *PeerJ.* 2023;11:e15722. <https://doi.org/10.7717/peerj.15722>
16. Rajpoot M, Sharma TR, Sharma RM. Genetic variability in mango clones of Langra cv. for physical-bio chemical parameters at Kymore Plateau and Satpura Hills of Madhya Pradesh, India. *Int J Plant Soil Sci.* 2024;36(8):364-73. <https://doi.org/10.9734/ijpss/2024/v36i84865>
17. Mursyidin DH. Genetic diversity and relationship of mango and its wild relatives (*Mangifera* spp.) based on morphological and molecular markers. *Pesqui Agropecu Trop.* 2023;53:e75339. <https://doi.org/10.1590/1983-40632023v5375339>
18. Sankaran M, Dinesh MR, Gowda DCS, Venugopalan R. Genetic analysis in mango (*Mangifera indica* L.) based on fruit characteristics of 400 genotypes. *J Hortic Sci.* 2020;15(2):161-72. <https://doi.org/10.24154/jhs.v15i2.944>
19. Zhang C, Xie D, Bai T, Luo X, Zhang F, Ni Z, et al. Diversity of a large collection of natural populations of mango (*Mangifera indica* Linn.) revealed by agro-morphological and quality traits. *Diversity.* 2020;12(1):27. <https://doi.org/10.3390/d12010027>
20. Das SS, Kishore K, Lenka D, Dash DK, Samant D, Panda CM, et al. Studies on genetic variability, heritability and character association of yield and quality traits in mango germplasm in the eastern tropical region of India. *Agric Res J.* 2021;58(6):998-1005. <https://doi.org/10.5958/2395-146X.2021.00141.1>
21. Megha R, Singh SK, Srivastav M, Prakash J, Saha S, Pradhan S. Physico-chemical characterization and biochemical profiling of mango genotypes during different fruit development stages. *S Afr J Bot.* 2022;149:476-86. <https://doi.org/10.1016/j.sajb.2022.06.023>
22. Kumar S, Kaushik RA, Jain D, Saini VP, Babu SR, Choudhary R, et al. Genetic diversity among local mango (*Mangifera indica* L.) germplasm using morphological, biochemical and chloroplast DNA barcode analyses. *Mol Biol Rep.* 2022;49(5):3491-501. <https://doi.org/10.1007/s11033-022-07186-7>
23. Prasad K, Sharma RR, Srivastav M, Asrey R. Relationship between lenticel discoloration and biochemical and quality attributes in mango (*Mangifera indica* L.) fruit. *Acta Physiol. Plant.* 2020;42:1-12. <https://doi.org/10.1007/s11738-020-03168-z>
24. Tasie M, Altemimi A, Ali R, Takeoka G. Study of physicochemical properties and antioxidant content of mango (*Mangifera indica* L.) fruit. *Eurasian J Food Sci Technol.* 2020;4(2):91-104.
25. Perveen N, Dinesh MR, Sankaran M, Shivashankara KS, Venugopalan R. Characterization and evaluation of putative mutant populations of polyembryonic mango genotype Nekkare for dwarfing rootstock traits. *J Hortic Sci.* 2022;17(2):261-71. <https://doi.org/10.24154/jhs.v17i2.1456>
26. Kishor S, Dwivedi DH, Gond M, Maji S. Estimation of intra-cultivar diversity in Dashehari mango (*Mangifera indica* L.) through stone and kernel parameters. *Int J Curr Microbiol App Sci.* 2020;9 (5):1271-76. <https://doi.org/10.20546/ijcmas.2020.905.141>
27. Khadivi A, Mirheidari F, Saeidifar A, Moradi Y. Identification of promising mango (*Mangifera indica* L.) genotypes based on morphological and pomological characters. *Food Sci Nutr.* 2022;10(11):3638-50. <https://doi.org/10.1002/fsn3.2961>
28. Flavie MKC, Caroline MSM, Annih MG, Ulrich DDC, Nathalie SK, Stephane MT. Morphological and physical diversity of mangoes (*Mangifera indica* L.) of local varieties found in Noun and Lekié localities (Cameroon). *Sustain Agric Res.* 2022;12(1):1. <https://doi.org/10.5539/sar.v12n1p1>
29. Akin-Idowu PE, Adebo UG, Egbekunle KO, Olagunju YO, Aderonmu Ol, Aduloju AO. Diversity of mango (*Mangifera indica* L.) cultivars based on physicochemical, nutritional, antioxidant and phytochemical traits in Southwest Nigeria. *Int J Fruit Sci.* 2020;20 (sup2):S352-76. <https://doi.org/10.1080/15538362.2020.1735601>
30. Julianarti E, Djuita NR, Chikmawati T. Genetic diversity of kweni fruit (*Mangifera odorata* Griffith) from Sumatra, Indonesia, based on morphological and ISSR analyses. *SABRAO J. Breed. Genet.* 2021;53(3).
31. Kouassi AK, Alabi T, Cissé M, Purcaro G, Moret S, Moret E, et al. Assessment of composition, color and oxidative stability of mango (*Mangifera indica* L.) kernel fats from various Ivorian varieties. *J Am Oil Chem Soc.* 2024;101(3):283-95. <https://doi.org/10.1002/aocs.12758>
32. Indian G, Sankaranarayanan R, Murugesan S, Rajangam J. Assessment of genetic divergence using Mahalanobis D2 analysis in mango. *J Agric Ecol.* 2019;7:38-46. <http://doi.org/10.53911/JAE>
33. Samal KC, Jena RC, Swain SS, Das BK, Chand PK. Evaluation of genetic diversity among commercial cultivars, hybrids and local mango (*Mangifera indica* L.) genotypes of India using cumulative RAPD and ISSR markers. *Euphytica.* 2012;185:195-213. <http://doi.org/10.1007/s10681-011-0522-y>
34. Shi S, Xiaowei M, Xu W, Zhou Y, Wu H, Wang S. Evaluation of 28 mango genotypes for physicochemical characters, antioxidant capacity and mineral content. *J Appl Bot Food Qual.* 2015;88(1). <http://doi.org/10.5073/JABFQ.2015.088.039>
35. Pereira LD, Silva DFPD, Souza LKFD, Pereira ETLD, Assunção HFD, Costa MM. Genetic diversity of bushy cashew (*Anacardium humile* A. St.-Hil.) based on characteristics of fruits. *Rev Bras Frutic.* 2019;41:e-065. <http://doi.org/10.1590/0100-29452019065>

36. Kumar G, Srivastav M, Sreekanth HS, Prakash J, Singh SK. Elucidating diversity among mango (*Mangifera indica* L.) hybrids based on morphological characters using DUS guidelines. Indian J Plant Genet Res. 2023;36(03):387-95. <http://doi.org/10.61949/0976-1926.2023.v36i03.07>

37. Rastegar S, Rahimzadeh M. Impact of maturity and genotype on the physicochemical properties of mango (*Mangifera indica* L.) fruit. Erwerbs-Obstbau. 2023;65(5):1647-55. <http://doi.org/10.1007/s10341-023-00920-w>

38. Vahdati K, Sheikhi A, Arab MM, Sarikhani S, Habibi A, Ataei H. Cultivars and genetic improvement. In: Temperate Nuts. Singapore: Springer Nature Singapore. 2023:79-111. http://doi.org/10.1007/978-981-19-9497-5_4

39. Costa CDSR, Costa AES, Neto FPLL, De Lima MAC, Martins LSS, Musser RDS. Repeatability coefficient for fruit quality and selection of mango hybrids using REML/BLUP analysis. Euphytica. 2023;219(11):120. <http://doi.org/10.1007/s10681-023-03249-3>

40. Anjani R, Kasmawati H, Salamah N. Antioxidant activity, total phenol and flavonoid content extracts and fractions mango seeds (*Mangifera indica* L.). Med Sains J Ilmiah Kefarmasian. 2024;9(3):621-32. <http://doi.org/10.37874/ms.v9i3.1196>

41. Saroj N, Prasad K, Singh SK, Kumar V, Maurya S, Maurya P, et al. Characterization of bioactive and fruit quality compounds of promising mango genotypes grown in Himalayan plain region. PeerJ. 2023;11:e15867. <http://doi.org/10.7717/peerj.15867>

42. Zahoor S, Anwar F, Qadir R, Soufan W, Sakran M. Physicochemical attributes and antioxidant potential of kernel oils from selected mango varieties. ACS Omega. 2023;8(25):22613-22. <http://doi.org/10.1021/acsomega.3c01155>

43. Singh G, Singh S. Extent of variability in fruit morphological characters of local mango germplasm. Sustainability Agri Food Environ Res. 2021;9(3):425-34. <http://doi.org/10.7770/safer-V9N3-art2281>

44. Kumar P, Tripathi VK. Correlation studies in Ber (*Ziziphus mauritiana* Lamk.) in Eastern Region of Uttar Pradesh, India. Int J Plant Soil Sci. 2024;36(3):135-41. <http://doi.org/10.9734/IJPSS/2024/v36i34408>

45. Alle TR, Andrew SM, Karlsson MF, Gure A. Morphological traits of fruits and seeds of *Ziziphus* tree species growing in different land uses in Ethiopia. Heliyon. 2024. <http://doi.org/10.1016/j.heliyon.2024.e34751>

46. Yaman M, Remzi UGUR, Sümbül A, Yusuf KEÇE, Gönültaş M, Ünsal HT, et al. Determination of fruit characteristics, nutrients and biochemical contents of Transvalia (*Prunus persica* L.) peach cultivar grafted on different clonal rootstocks obtained by selection and hybridization. Scientia Hortic. 2024;330:113093. <http://doi.org/10.1016/j.scienta.2024.113093>

47. Yangaza IS, Nyomora AM, Joseph CO, Sangu EM, Hormaza JI. Growth and fruit morphometric characteristics of local avocado germplasm (*Persea americana* Mill.) grown in northern Tanzania. Heliyon. 2024;10(7). <http://doi.org/10.1016/j.heliyon.2024.e29059>

48. Odewole MM, Adegbite TA, Owolabi TE. Determination of some physical properties of four varieties of mango fruits. Adeleke Univ J Eng Technol. 2024;7(1):87-92.

49. Sane A, John J, Vasugi C, Dinesh MR, Pradheep K. Morphological characterization and SSR marker assay of mango landraces of West Coast of Kerala, India. Indian J Plant Genet Resour. 2024;37(2):195-205. <http://doi.org/10.61949/0976-1926.2024.v37i02.02>

50. Ramteke V, Paikra MS, Netam RS, Kerketta A, Nirala Y, Singh DP, et al. Genetic variability, trait association and path analysis studies for nut yield and yield-related traits in Cashew (*Anacardium occidentale* L.). J Agric Sci Technol. 2024;26(2):403-14.

51. Vincent L, Anushma PL. Mango fruit and nut crops. 2024:393.

52. Prasad K, Saroj N, Singh SK, Pradhan J, Prasad SS, Kumar S, et al. Post harvest quality and ripening behaviour of un-explored genotypes of Himalayan plain mango diversity. Heliyon. 2024;10(12):e33247. <https://doi.org/10.1016/j.heliyon.2024.e33247>

53. Rani M, Velumani P, Rangarajan J, Hema V, Rajagopal V. Mango (*Mangifera indica* L) var Banganapalli: Impact of in-situ intervention on folic acid concentration and its changes in physicochemical property. Trends Hortic. 2024;7(1):3485. <https://doi.org/10.24294/th.v7i1.3485>

54. Kanupriya C, Karunakaran G, Singh P, Venugopalan R, Samant D, Prakash K. Phenotypic diversity in *Tamarindus indica* L. sourced from different provenances in India. Agroforestry Syst. 2024;98(2):477-90. <https://doi.org/10.1007/s10457-023-00925-0>

55. Rocha Ribeiro SM, Queiroz JH, Lopes Ribeiro de Queiroz ME, Campos FM, Pinheiro Sant'Ana HM. Antioxidant in mango (*Mangifera indica* L.) pulp. Plant Foods Hum Nutr. 2007;62:13-7. <https://doi.org/10.1007/s11130-006-0035-3>

56. Liang Q, Pan H, He X, Wang S, Hou Y, Xiao H, et al. Population Structure and Genetic Diversity of Mango (*Mangifera indica* L.) Germplasm Resources as Revealed by Single Nucleotide Polymorphism Markers. Front Plant Sci. 2024;15:1328126. <https://doi.org/10.3389/fpls.2024.1328126>

57. Patel N, Tandel YN, Chauhan DA. Exploring variability for morphological and quality traits in natural seedling origin mango germplasm of south Gujarat. Euphytica. 2024;220(10):151. <https://doi.org/10.21203/rs.3.rs-4435950/v1>

58. Ribeiro SMR, Barbosa LCA, Queiroz JH, Knödler M, Schieber A. Phenolic compounds and antioxidant capacity of Brazilian mango (*Mangifera indica* L.) varieties. Food Chem. 2008;110(3):620-26. <https://doi.org/10.1016/j.foodchem.2008.02.067>

59. Palafox-Carlos H, Yahia E, Islas-Osuna MA, Gutierrez-Martinez P, Robles-Sánchez M, González-Aguilar GA. Effect of ripeness stage of mango fruit (*Mangifera indica* L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Hortic. 2012;135:7-13. <https://doi.org/10.1016/j.scienta.2011.11.027>

60. Esan VI, Ogunbode TO, Ogunlaran OM, Ayegboyein MH, Omilani OO, Sangoyomi TE, et al. Genetic variability and morpho-agronomic characterization of some mango (*Mangifera indica* L.) cultivars and varieties in Nigeria. Int J Fruit Sci. 2024;24(1):256-72. <https://doi.org/10.1080/15538362.2024.2389102>

61. Neyhart JL, Lorenz AJ, Smith KP. Multi-trait improvement by predicting genetic correlations in breeding crosses. G3: Genes Genomes Genet. 2019;9(10):3153-65. <https://doi.org/10.1534/g3.119.400406>

62. Jixi G, Feizhou D, Bao X. The application of principal component analysis to agriculture soil contamination assessment. Geogr Res. 2006;25:836-42. <https://doi.org/10.11821/yj2006050009>

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc
See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

Publisher information: Plant Science Today is published by HORIZON e-Publishing Group with support from Empirion Publishers Private Limited, Thiruvananthapuram, India.