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Introduction 

Price forecasting is crucial for farmers, stakeholders, 

consumers and policymakers, facilitating informed market 

planning and strategic decision-making (1). Farmers face 

substantial challenges due to unpredictable price 

fluctuations, which complicate the effective marketing of 

their produce (2). The lack of accurate price forecasting 

often leads to financial instability and increased post-

harvest losses. Therefore, precise forecasting models are 

crucial to mitigate these challenges to enhance the market 

stability (3). Time series modelling plays a fundamental role 

in forecasting by identifying the hidden patterns and 

structures within the data (4). The efficiency of a forecasting 

method primarily depends on the characteristics and 

nature of the dataset (5). Advancements in statistical and 

machine learning techniques have significantly enhanced 

price forecasting accuracy across diverse domains such as 

finance, agriculture, economics and business (6). The 

wavelet decomposition method stands out as a powerful 

tool in analyzing complex and volatile time series data (7). 

Unlike traditional statistical models, wavelet-based 

techniques capture the patterns in both time and frequency 

dimensions. By decomposing the data into multiple 

resolution levels, wavelet-based models enhance the 

predictive capability of traditional forecasting techniques, 

making them particularly useful for agricultural price 

forecasting (8). Vegetables being highly perishable and 

seasonal exhibit significant price volatility (9). Tomato is a 

highly volatile crop and one of the most widely consumed 

staple foods globally, making their price stability crucial for 

economic security (10). In India, tomato production is 

concentrated in key states such as Andhra Pradesh, Madhya 

Pradesh, Karnataka, Gujarat, Odisha West Bengal (11). 

However, its supply chain faces challenges related to 

limited storage infrastructure, transportation inefficiencies 

and post-harvest losses. These factors lead to unstable 

market conditions, affecting producers and consumers (12). 

The fluctuating prices of tomato often create economic 

disruptions at the household level. Despite its significance, 

the tomato price fluctuation is highly susceptible to external 

factors such as climate variability, natural calamities and 
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Abstract  

Accurate price forecasting is crucial in the agricultural sector, where farmers face significant challenges due to price volatility. Price 
fluctuations directly influence the livelihoods of producers and the affordability for consumers, making crop management difficult for 

farmers. Agricultural time series data are often highly complex and nonlinear, making price prediction, a challenging task. While various 

forecasting approaches, including stochastic models, machine-learning techniques and hybrid models, have been explored, their 
effectiveness is often limited due to the inherent complexity of agricultural datasets. Recently, wavelet-enhanced models have emerged 

as a robust approach, effectively capturing both short-term fluctuations and long-term trends. Wavelet decomposition plays a vital role in 

denoising data and extracting inherent patterns, thereby improving predictive accuracy. This study investigates the application of wavelet

-based models for forecasting the monthly wholesale tomato prices in key South Indian markets such as Bangalore, Chennai and 
Trivandrum. The findings address the forecasting challenges posed by the volatility of tomato prices, providing valuable insights for 

stakeholders, including farmers, traders and policymakers, to facilitate informed decision-making. Further, the study highlights the 

necessity of a robust price policy to stabilize market fluctuations, safeguard farmers’ livelihoods and ensure fair returns. Hence, 

incorporating advanced forecasting techniques, such as wavelet-based models can significantly improve market stability and promote 
sustainable agricultural development.  
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market dynamics (13). The perishable nature of tomatoes 

further contributes to price volatility, making it imperative 

to predict market trends to help farmers make strategic 

harvesting and selling decisions (14). Hence, accurate 

forecasting models are essential for optimizing market 

strategies, reducing uncertainty and supporting informed 

decision-making (15).   

 Recent studies have explored the diverse 

methodologies for price forecasting, highlighting the 

effectiveness of various models. A study on maize price 

forecasting in Ghana using various time series models such 

as Single Exponential Smoothing (SES), Double Exponential 

Smoothing (DES), Triple Exponential Smoothing (TES), 

Autoregressive Integrated Moving Average (ARIMA) and 

Seasonal ARIMA (SARIMA) found ARIMA to be the most 

effective model based on MAE, offering valuable insights for 

agricultural planning and decision-making (16). The 

effectiveness of ARIMA models for precise price forecasting 

in key potato-producing regions of India had been 

examined (17). The analysis of potato price volatility in India 

using ARIMA, SARIMA, Artificial Neural Network (ANN) and 

Long Short-Term Memory (LSTM) models identified LSTM as 

the most accurate model (18). Neural network modelling 

had been explored for long-term daily price forecasting of 

various agricultural commodities (19). A comparative 

analysis of ARIMA and Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models for crude 

oil price forecasting provided valuable insights of their 

performance (20). An ARMA-GARCH model had been used to 

analyse Korean green onion price fluctuations, to estimate 

volatility and forecast prices, highlighting its effectiveness in 

modelling seasonally adjusted prices (21). A trivariate ARMA 

GARCH Vine Copula model for forecasting vegetable price 

volatility of tomato, onion and potato across three Indian 

markets demonstrated its superior accuracy over 

traditional models (22). Wavelet-based denoising 

techniques enhanced the accuracy of predictive models by 

effectively filtering out noise while preserving essential 

signal features (6). A hybrid Wavelet-ARIMA-LSTM model for 

forecasting share price index futures, demonstrated that 

wavelet decomposition improves prediction accuracy, with 

ARIMA effectively capturing stable signals and LSTM 

handling noisy data (23). The integration of wavelet 

decomposition with stochastic and machine learning 

models improved agricultural price prediction accuracy by 

effectively handling nonlinearity and non-normality in price 

data (4). Wavelet-based hybrid model combining wavelet 

decomposition with ANN outperformed ARIMA, GARCH and 

ANN models in forecasting tomato prices (8). Wavelet ARIMA

-ANN model outperformed individual ANN and Wavelet ANN 

models in forecasting meteorological drought (24).  

 The main contribution of this study lies in the 

application of advanced wavelet techniques that combine 

traditional and machine learning models to enhance the 

accuracy of tomato price forecasting. While most existing 

studies have focused on major markets in Northern India, 

this study is the first to apply wavelet decomposition 

techniques specifically to the Southern Indian markets. The 

primary objective is to assess the effectiveness of wavelet-

enhanced models, demonstrating their superiority over 

benchmark models. By utilizing wavelet techniques, this 

study offers valuable insights of the complex price dynamics 

of tomatoes in key South Indian markets, benefiting 

farmers, traders and policymakers. Further, the study 

highlights the need for well-structured price policy to 

stabilize market fluctuations and ensure fair returns for 

farmers. These findings emphasize the importance of 

adopting advanced forecasting methods to address the 

unique challenges of the agricultural sector, especially for 

highly volatile commodities like tomatoes. This study 

highlights the effectiveness of wavelet enhanced models in 

strengthening predictive accuracy and facilitating informed 

decision-making in agricultural markets.   

 

Material and Methods 

Data description 

This study analyses the monthly wholesale prices of 

tomatoes in key South Indian markets such as Bangalore, 

Chennai and Trivandrum. The dataset, covering the period 

from January 2007 to December 2023, was collected from 

Indiastat. It comprises 204 monthly observations, with 184 

used for model training and the remaining 20 reserved for 

testing purposes. This results in a 90:10 training-to-testing 

split, ensuring a robust assessment of model accuracy. The 

workflow of the study is depicted in Fig. 1.  

Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model, also referred to as the Box-Jenkins 
model, is a widely recognized tool for analysing univariate 

time series data (25). By incorporating both autoregressive 

(AR) and moving average (MA) components, ARIMA is 

particularly effective at identifying linear patterns within the 

data (26). To determine the optimal values for the model’s 

parameters, the Auto-Correlation Function (ACF) and Partial 

Auto-Correlation Function (PACF) are used. To achieve 

stationarity, differencing is often applied, which helps 

stabilize the mean and variance over time (27). The ARIMA 

model is characterized by three parameters namely p 

(autoregressive lag), d (the degree of differencing) and q 

(moving average lag) (28). The general form of the ARMA (p, 

q) model is given as:    

yt =  ɸ1yt-1 + ɸ2yt-2 + ….+ ɸpyt-p + ɛt- θ1 ɛt-1 - θ2ɛt-2 - … θq ɛt-q 

The ARIMA (p, q, d) model is obtained by incorporating a 

differencing term, expressed as: ɸ(L)Δdyt = θ(L)ɛt 

 where yt  represents the actual value of the time 

series at time t, ɸi denotes the autoregressive component of 

order p, θi represents the moving average component of 

order q, d is the differencing term, ɛt is the random error at 

time t,  ɸ(L) and ɸ(L) represent the AR and MA polynomials 

of the lag operator L with orders p and q, respectively. The 

ARIMA model is particularly effective for handling non-

stationary data, which is common in real-world scenarios 

where trends and seasonality are prevalent. 
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Artificial Neural Network (ANN) 

ANN is a powerful machine-learning model used to detect 

the complex and nonlinear patterns within data (18). ANNs 

are data-driven, self-learning models inspired by the 

architecture and functioning of biological neural networks 

in the human brain (29). As a non-parametric statistical 

method, ANNs do not require prior assumptions about the 

data distribution. The fundamental structure of an ANN 

consists of three key layers such as the input layer, which 

accepts external data as input features, hidden layers, 

where the input data is processed to identify patterns and 

the output layer, which generates the final predicted output 

(30). The structure of ANN is illustrated in Fig. 2. The learning 

process of an ANN involves adjusting the weights of the 

connections between neurons to reduce prediction errors. 

This optimization is achieved iteratively through methods 

such as backpropagation and gradient descent (31). This 

self-adaptive, data-driven approach makes them an ideal 

choice for handling complex datasets. Mathematically, an 

ANN model can be represented as: 

 

 

 

 where yt represents the observed value at time t,ωj 

(j=1,2,…q) and ωij (i=1,2…p, j=1,2,…q) are the connection 

weights, which are the model parameters. p refers to the 

number of input nodes and q represents the number of 

hidden nodes. The functions g and f represent the activation 

functions applied in the hidden and output layers, 

respectively.  

ARMA-GARCH 

The hybrid time series modelling approach integrates both 

linear and nonlinear components to enhance forecasting 

accuracy (32). Traditional time series models are effective in 

capturing linear dependencies but often fail to capture 

complex nonlinear patterns. Nonlinear models can handle 

nonlinear dependencies but may struggle with long-term 

trend estimation (33). By integrating these models, hybrid 

approaches provide a precise forecasting. It begins with a 

linear model, such as ARMA, to capture linear patterns, 

followed by the detection of nonlinearity in residuals using 

the Brock-Dechert-Scheinkman (BDS) test. If nonlinear 

dependencies exist, an appropriate nonlinear model is 

applied to model the unexplained variations (34). The final 

forecast is obtained by combining the linear and nonlinear 

model predictions. For time series exhibiting volatility 

Fig. 1. Flowchart of the study. 

 

Fig. 2. Structure of ANN. 
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clustering, the ARCH-Lagrange Multiplier (LM test is 

conducted to check for conditional heteroskedasticity (35). 

If significant heteroskedasticity is detected, GARCH model is 

employed to capture time-varying volatility (36). The ARMA-

GARCH hybrid approach provides a robust framework for 

handling complex time-dependent data, improving 

predictive performance and capturing intricate patterns 

that single-model approaches might overlook (37). 

Wavelet analysis 

Wavelet decomposition is an effective and powerful 

technique for analyzing time series data by breaking the 

original signal into multiple frequency components (6). This 

enables the identification of both short-term fluctuations and 

long-term trends. Wavelets act as fundamental elements, 

much like sine and cosine functions in trigonometry (38). 

However, unlike sine and cosine waves, wavelets oscillate 

and quickly diminish to zero, making them highly suitable 

for signal processing (4). In cases where standard wavelet 

transform methods are not applicable, the Maximal Overlap 

Discrete Wavelet Transform (MODWT) serves as a flexible 

alternative. Unlike conventional Discrete Wavelet Transform 

(DWT), MODWT introduces redundancy, enhancing 

resolution and stability in signal processing (39). DWT 

typically requires the data length to be a power of two for 

efficient processing.  But MODWT does not have this 

restriction, making it more adaptable for real-world 

applications (8, 40). MODWT facilitates multi-resolution 

analysis by decomposing signals into multiple sub-series at 

different scales (41). It applies high-pass filters to extract 

high-frequency components and low-pass filters to capture 

low-frequency trends (42). Various wavelet filters, such as 

Haar, D4, LA8 and BI14, generate detail coefficients (from 

high-pass filters) and approximation coefficients (from low-

pass filters), enabling effective noise reduction and trend 

identification (43).   

The detailed coefficients are calculated as follows: 

 

 

 

The approximation coefficients are given by:  

 

 

 

 The original signal is represented as the sum of its 

detailed and approximate components:  

 

 

 Where ψj,k (t) is the wavelet function paired with ɸj,k

(t) , the scaling function. The wavelet coefficient is denoted 

as  Wψj,k while Vɸj,k  is the scaling coefficient, t represents 

time, j and k are the scale and translation parameters, 

respectively and J indicates the level of decomposition, 

ranging from 1 to i. The number of decomposition levels is 

determined based on the length of the series (N). The 

minimum levels can be found by log N and maximum levels 

by log2 N ensuring the efficient capture of the signal (6). The 

series is progressively decomposed until all levels are 

reached. This study integrates wavelet decomposition with 

ARIMA, ANN and GARCH models to enhance time series 

forecasting (44). The methodology follows these steps:  

Step 1: The original time series data is divided into training 

and testing sets. 

Step 2: The series is decomposed using the Haar wavelet 

filter, which provides optimal performance. 

Step 3: Each decomposed component is separately 

modeled using ARIMA, ANN and GARCH. 

Step 4: Forecasts are generated for the combined models, 

resulting in wavelet-based ARIMA, wavelet-based ANN and 

wavelet-based GARCH. 

Step 5: Inverse Wavelet Transform (IWT) is applied to 

reconstruct the final forecast from the wavelet coefficients. 

Performance metrics 

The accuracy of the models is assessed by comparing the 

predicted values with the actual observations (45). To 

measure performance, error metrics such as Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) are employed. Models with 

lower values for these metrics are considered to provide a 

better fit, as they demonstrate greater effectiveness in 

capturing the patterns within the data (46). The 

mathematical representations of these metrics are as follows: 

 

 

 

 

 

 

 where yt represents the actual values, Ῡt is the 

forecasted values and n is the number of observations in 

the time series. 

 

Results  

Summary statistics 

This study examines the descriptive statistics of monthly 

wholesale tomato prices in Bangalore, Chennai and 

Trivandrum to assess the price distribution and volatility 

across these markets (Table 1). The results indicate substantial 

fluctuations, as Bangalore and Chennai have minimum (₹150/

qtl) and maximum (₹8600/qtl) prices. The mean price is 

₹1435.82/qtl in Bangalore, ₹1690.01/qtl in Chennai and 

₹2243.05/qtl in Trivandrum, with slightly lower median 

values, suggesting a right-skewed distribution. Price 

dispersion, measured by standard deviation, is highest in 

Bangalore (₹1186.88), followed by Chennai (₹1157.77/qtl) and 

Trivandrum (₹1098.04/qtl), indicating notable fluctuations. 

Skewness values of 2.52 (Bangalore), 1.86 (Chennai) and 1.81 

(Trivandrum) confirm a positively skewed distribution, 

indicating occasional price spikes. Kurtosis values further 
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reveal that Bangalore (8.94) has a more peaked distribution 

than Chennai (5.11) and Trivandrum (4.40), indicating 

frequent extreme price variations. The coefficient of variation 

(CV) is highest for Bangalore (82.66 %), followed by Chennai 

(70.35 %) and Trivandrum (48.95 %), indicating that 

Bangalore exhibits the highest relative price volatility. Cuddy-

Della Valle Index (CDVI) is also greater in Bangalore (67.76) 

and Chennai (63.55) than in Trivandrum (38.26), suggesting 

higher price instability in these markets. Bangalore exhibits 

the highest level of price fluctuations, making it the most 

volatile market among the three markets. Fig. 3 shows the 

tomato price distributions across different markets, 

confirming the above-observed findings regarding the 

nonlinear and non-stationary nature of prices in all the 

markets. These findings emphasize the significant price 

variations across different regions, which are essential for 

price forecasting and market stability.  

Preliminary test  

The Augmented Dickey-Fuller (ADF) test is a widely utilized 

statistical method in time series analysis to determine 

whether a series is stationary. The test is based on the null 

hypothesis that the series contains a unit root, indicating it is 

non-stationary. Rejecting this hypothesis confirms 

stationarity in the data. Table 2 presents the results of the 

preliminary test for time series analysis. ADF test results for 

Bangalore, Chennai and Trivandrum, indicates that test 

statistics for all markets are significantly lower than their 

respective critical values. This indicates that the data is 

stationary, confirming the absence of a unit root and making 

it suitable for further time series forecasting. The Box-Pierce 

test is used to check for autocorrelation in a time series 

dataset. A significant p-value (< 0.01) suggests that there is 

strong evidence of autocorrelation in the residuals of the time 

series model. Shapiro-Wilk test indicates that all datasets 

significantly deviate from normality (p-values < 0.01), 

highlighting the need for caution in applying parametric 

statistical methods. The Jarque-Bera test also confirms the 

non-normality across all the markets. To examine the 

presence of nonlinearity in the dataset, the BDS test is 

Table 1. Descriptive statistics of tomato price series (Rs./qtl) 

Descriptive Statistics Bangalore Chennai Trivandrum 

Minimum 150 150 630 

Maximum 8600 8600 6709 

Mean 1435.82 1690.01 2243.05 

Median 1111.50 1423.50 2014.50 

Mode 727.96 885.11 850.27 

Standard Deviation 1186.88 1157.77 1098.04 

Skewness 2.52 1.86 1.81 

Kurtosis 8.94 5.11 4.40 

CV 82.66 70.35 48.95 

CDVI 67.76 63.55 38.26 

Fig. 3. Statistical charts of tomato price distribution. 

Time series plot                                                   Raincloud plot 

   

                         Violin plot                                                   Kernel density plot 
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conducted across different markets. As shown in Table 2, the 

results reveal the presence of nonlinearity in the data. The 

test statistics for different epsilon values show significant 

fluctuations, suggesting a complex underlying structure in 

the data. This confirms the necessity for advanced modelling 

techniques. Since the BDS test validates the nonlinear 

characteristics of the dataset, machine learning models 

emerge as a powerful alternative, as they can effectively 

capture complex dependencies without relying on rigid 

assumptions, thereby enhancing predictive accuracy.   

Results of different models used in the study 

The study employed a diverse set of stochastic, machine 

learning, hybrid and wavelet enhanced models, including 

ARIMA, ANN, ARMA-GARCH, Wavelet-ARIMA, Wavelet-ANN, 

Wavelet-GARCH each optimized to improve the forecasting 

accuracy. Following preliminary time series diagnostics, 

ARIMA models were initially fitted based on the lowest 

Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values (Table 3). This led to the selection of 

ARIMA (1, 0, 2) for Bangalore, ARIMA (1,0,1) for Chennai and 

ARIMA (2, 0, 1) for Trivandrum, effectively capturing the 

linear dependencies within the time series data for these 

markets. To further evaluate the residuals, the ARCH-LM test 

was conducted to detect heteroskedasticity. The results 

indicated a significant ARCH effect in the Chennai market, 

highlighting the potential volatility and the need for 

alternative models that can more effectively capture this 

pattern. In contrast, the residuals from the Bangalore and 

Trivandrum markets showed no signs of an ARCH effect, 

implying stable variance over time. Given the presence of 

conditional heteroskedasticity in Chennai, an ARMA-GARCH 

model was fitted to effectively capture the volatility (Table 

4). The ARMA (1, 2) + GARCH (1, 1) configuration emerged as 

the best-fitting model for the Chennai market, with the 

Table 2. Results of the preliminary tests for time series data 

Nonlinearity test Stationary test 

Bangalore 
Embedding dimension 

Market 
ADF test 

2 3 Statistic p-value 

Epsilon Parameter Statistic p-value Statistic p-value Bangalore -5.89 0.01 

eps[1] 593.44 11.72 < 0.001 11.91 < 0.001 Chennai -5.46 0.01 

eps[2] 1186.88 7.88 < 0.01 7.03 < 0.01 Trivandrum -4.21 0.01 

eps[3] 1780.32 6.99 < 0.01 5.96 < 0.01 
Autocorrelation test 

eps[4] 2373.76 6.16 < 0.01 5.25 < 0.01 

Chennai 
Embedding dimension 

Market 
Box-Pierce Test 

2 3 Statistic p-value 

Epsilon Parameter Statistic p-value Statistic p-value Bangalore 66.05 <0.01 

eps[1] 489.4 9.84 < 0.001 10.26 < 0.001 Chennai 72.33 <0.01 

eps[2] 978.8 9.01 < 0.001 8.85 < 0.001 Trivandrum 99.05 <0.01 

eps[3] 1468.2 8.52 < 0.001 8.55 < 0.001 Normality test 

eps[4] 1957.61 7 < 0.01 6.96 < 0.01 Shapiro-Wilk Statistic (W) p-value 

Trivandrum 
Embedding dimension Bangalore 0.77 <0.01 

2 3 Chennai 0.85 <0.01 

Epsilon Parameter Statistic p-value Statistic p-value Trivandrum 0.84 <0.01 

eps[1] 549.02 22.13 < 0.001 25.36 < 0.001 Jarque Bera Statistic (X2) p-value 

eps[2] 1098.04 14.48 < 0.001 14.47 < 0.001 Bangalore 916.67 <0.01 

eps[3] 1647.06 10.41 < 0.001 9.72 < 0.001 Chennai 1028.2 <0.01 

eps[4] 2196.08 8.76 < 0.001 7.89 < 0.01 Trivandrum 282.59 <0.01 

Bangalore 

ARIMA(1,0,2) AIC = 2951.56 BIC = 2967.63 

ARCH-LM test 
Statistic 16.82 

p-value 0.15 

Parameter ar1 ma1 ma2 mean 

Estimate -0.17 1.01 0.45 1288.64 

SE 0.23 0.21 0.13 110.31 

Chennai 

ARIMA(1,0,1) AIC = 2980.47 BIC = 2993.33 
ARCH-LM test 

Statistic 23.32 
p-value 0.02 

Parameter ar1 ma1 mean 
Estimate 0.37 0.39 1396.42 

SE 0.09 0.07 126.88 

Trivandrum 

ARIMA(2,0,1) AIC = 2939.15 BIC = 2955.23 
ARCH-LM test 

Statistic 10.86 
p-value 0.54 

Parameter ar1 ar2 ma1 mean 

Estimate 0.64 -0.11 0.34 2201.09 

SE 0.14 0.11 0.12 145.57 

Table 3.  Estimates of ARIMA model 

https://plantsciencetoday.online


7 

Plant Science Today, ISSN 2348-1900 (online) 

lowest AIC (15.94) and BIC (16.06) values. This model 

captures the trend and volatility in tomato price data of 

Chennai market. The ANN architectures (Table 5) were 

optimized for each region, with Bangalore utilizing a 5-2-1 

network optimized with 15 weights, Chennai employing a 2-

5-1 network with 21 weights and Trivandrum adopting a 4-2-1 

network with 13 weights. These configurations were 

determined by fine-tuning the parameters to effectively 

capture the intricate nonlinear relationships within the data.  

 While the benchmark models successfully captured 

the overall price trends across various markets, wavelet 

transformation was applied to improve forecasting accuracy 

by breaking down each series into distinct frequency 

components. Using the Haar wavelet filter, the series was 

decomposed up to a maximum of seven levels (with the 

highest J = log2 N, where N = 204). Fig. 4 represents the 

wavelet decomposition levels of tomato price series across 

different markets. The summary statistics of wavelet 

coefficients for tomato prices across different markets 

Table 4.  Estimates of the ARMA-GARCH model 

Chennai 

ARMA (1,2) + GARCH (1,1) AIC = 15.94 BIC = 16.06 

Parameter mu ar1 ma1 ma2 omega alpha1 beta1 

Estimate 1115.0 0.07 0.95 0.40 180200 0.37 0.33 

SE 240.5 0.19 0.17 0.11 44820 0.12 0.11 

p-value <0.001 0.68 <0.001 <0.001 <0.001 0.001 0.002 

Table 5. Estimates of ANN model 

      Market Network architecture Parameters (Weights) 
      Bangalore 5-2-1 15 

      Chennai 2-5-1 21 

      Trivandrum 4-2-1 13 

Fig. 4. Wavelet decomposition levels of tomato price data of different markets. 
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provide valuable insights of price dynamics. In wavelet 

analysis, V1 represents the approximation coefficients, 

capturing the long-term trend, while W1-W7 denotes the 

detail coefficients at various levels, reflecting short-term 

fluctuations at different frequencies. The wavelet 

decomposition of tomato prices of Bangalore market (Table 

6, Fig. 5) reveals significant short-term volatility in W1-W3, 

characterized by high standard deviations and leptokurtic 

distributions. Lower frequency levels (W5-W7) show reduced 

fluctuations but exhibit negative skewness, indicating 

frequent downward price movements. The approximation 

coefficient (V1) represents the overall trend with minimal 

skewness, suggesting stable long-term price behavior. For 

Chennai (Table 7, Fig. 6), short-term fluctuations (W1-W3) 

exhibit higher variability, as indicated by larger standard 

deviations, while long-term trends (W5-W7) remain more 

stable. Skewness and kurtosis indicate symmetric 

distribution, except for slight negative skewness at finer 

levels. Similarly, the wavelet decomposition of Trivandrum’s 

tomato prices (Table 8, Fig. 7) indicates substantial short-

term variability in W1-W3, with high standard deviations and 

positive skewness. Lower wavelet levels (W5-W7) show 

declining volatility but exhibit negative skewness, implying 

more frequent downward movements. The approximation 

coefficient (V1) represents a stable long-term trend with slight 

positive skewness. These decomposed series were 

subsequently utilized as inputs for the ARIMA, ANN and 

GARCH models. This process ensured the effective utilization 

of the distinct frequency components extracted from the data 

and enhancing the forecasting performance.  

Selection of the best fitting model 

The forecasting performance of different models across 

Bangalore, Chennai and Trivandrum markets reveals 

varying levels of accuracy (Table 9). In Bangalore, Wavelet-

ANN outperformed the benchmark models, highlighting the 

effectiveness of wavelet-based approaches, with RMSE 

(1302.42), MAPE (25.93 %) and MAE (863.48). In Chennai, 

Wavelet ARIMA achieved the highest predictive accuracy, 

achieving the lowest RMSE (548.04), MAPE (20.27 %) and 

MAE (406.61), followed closely by Wavelet ANN and Wavelet 

GARCH. Similarly, in Trivandrum, Wavelet ANN exhibited 

superior forecasting accuracy with RMSE (891.57), MAPE 

(17.87 %) and MAE (666.79). Hence, wavelet-enhanced 

models consistently provided more precise predictions 

across all the markets, highlighting their advantage in 

effectively capturing the price fluctuations. The radar charts 

(Fig. 8) compare the performance of various forecasting 

Fig. 5. Histogram of wavelet coefficients of Bangalore market.  

Bangalore V1 W1 W2 W3 W4 W5 W6 W7 

Minimum 1076.55 -1977.5 -2863.75 -1379 -1245.19 -1026.91 -931.77 -638.34 

Maximum 1803.41 2930 2427.5 1660.5 1146.81 637 433.45 333.76 

Mean 1435.82 0 0 0 0 1.26 0 1 

Median 1406 -1 -34.25 -10.25 16.38 44.36 109.72 118.93 

Std Deviation 186.42 555.75 643.92 479.3 400.48 280.24 311.99 294.71 

Skewness 0.09 0.43 0.03 0.23 -0.32 -1.33 -1.43 -0.73 

Kurtosis -1 7.01 4.19 1.31 0.97 2.9 1.39 -0.88 

Table 6. Descriptive statistics of wavelet coefficients of tomato price data of Bangalore market 
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 Table 7. Descriptive statistics of wavelet coefficients of tomato price data of Chennai market 

Chennai V1 W1 W2 W3 W4 W5 W6 W7 

Minimum 1153.45 -1812 -1761.75 -1514.88 -862.86 -503.33 -436.09 -365.78 

Maximum 1669.97 1805.5 1690 1315.63 803.19 420.31 394.88 399.69 

Mean 1391.17 0 0 0 0 29.17 25.75 -18.49 

Median 1357.92 7.75 17 28.25 -27.47 29.17 25.75 -18.49 

Std Deviation 155.47 440.24 526.65 455.11 347.74 194.68 199.92 238.32 

Skewness 0.29 0.06 0.18 -0.11 0 -0.27 -0.51 0.08 

Kurtosis -1.33 4.12 1.96 0.76 -0.02 -0.53 -0.64 -1.29 

Fig. 6. Histogram of wavelet coefficients of Chennai market. 

Fig. 7. Histogram of wavelet coefficients of Trivandrum market. 
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models across three different markets. A model’s polygon 

being closer to the centre indicates lower error values with 

superior predictive performance. Across all three markets, 

wavelet-enhanced models consistently exhibit lower error 

values, highlighting the effectiveness of integrating wavelet 

decomposition with statistical and machine learning 

models for enhanced forecasting accuracy. The Diebold 

Mariano (DM) test was performed to evaluate the 

forecasting accuracy of benchmark models against wavelet-

enhanced models. As presented in Table 10, the results 

indicate the superior performance of wavelet-based models 

across different markets. Specifically, the test statistics were 

negative, with smaller p-values, confirming that models 

such as Wavelet ARIMA, Wavelet ANN and Wavelet GARCH 

consistently outperformed benchmark models like ARIMA, 

ANN and ARMA-GARCH in terms of forecasting accuracy. 

These findings highlight that integrating wavelet 

decomposition with benchmark models provides a robust 

approach for forecasting tomato prices, particularly in 

markets exhibiting high volatility and nonlinear trends. 

Across all the markets, the wavelet-enhanced models 

outperformed well than standalone individual models.  

 

Table 8. Descriptive statistics of wavelet coefficients of tomato price data of Trivandrum market 

Trivandrum V1 W1 W2 W3 W4 W5 W6 W7 
Minimum 1872 -1913 -2149 -1156 -1111 -1032 -847 -715 
Maximum 2704 2036 2009 1533 1108 655 459 568 

Mean 2243 0 0 0 0 0 0 0 
Median 2200 2 15 9 -4 47 114 83 

Std Deviation 254 428 528 409 367 311 356 393 
Skewness 0.37 0.2 0.07 0.21 -0.11 -1.12 -1.18 -0.34 
Kurtosis -1.16 5.62 3.6 1.52 0.88 1.84 0.34 -1.11 

Table 9. Performance metrics of different models 

Market Models RMSE MAPE MAE 

Bangalore 

ARIMA   1631.84   35.90  980.63 

ANN   1450.47   31.68   906.17 

WARIMA   1256.21   28.41 886.33 

WANN   1302.42   25.93 863.48 

Chennai 

ARIMA 593.01 27.78 500.64 

ANN 609.95 29.96 530.45 

GARCH 641.25 31.47 576.86 

WARIMA 548.04 20.27 406.61 

WANN 551.04 22.97 448.78 

WGARCH 558.37 25.53 460.7 

Trivandrum 

ARIMA  1578.13   24.68  971.56 

ANN  1426.50   21.96  875.76  

WARIMA 962.7  19.47  686.94 

WANN  891.57  17.87  666.79 

Fig. 8. Radar plot. 

Market Wavelet based model Benchmark model DM Test Statistic p-value 

Bangalore 
  

WARIMA ARIMA -2.10 0.0213 

WANN ANN -1.78 0.0342 

Chennai 

WARIMA ARIMA -3.61 0.0041 

WANN ANN -3.05 0.0024 

WGARCH ARMA-GARCH -4.38 0.0001 

Trivandrum 
WARIMA ARIMA -3.14 0.0020 

WANN ANN -3.24 0.0021 

Table 10. DM test results of tomato price series of different markets 
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Discussion 

This study examines the benchmark, machine learning 

models and wavelet-enhanced techniques in forecasting 

tomato prices across three markets namely Bangalore, 

Chennai and Trivandrum. By analysing ARIMA, ANN, ARMA-

GARCH and wavelet enhanced models, the study provides 

insights of each model’s ability to capture the patterns in the 

data. The forecasting performance across these markets 

indicates that wavelet-based models consistently outperform 

traditional models in terms of accuracy as observed from the 

previous studies (4, 6, 8, 42). In Bangalore, Wavelet ANN 

achieved the lowest error metrics, making it the most 

effective model for price forecasting. Traditional ARIMA 

exhibited the highest errors, highlighting its limitations in 

capturing complex price variations. Similarly, in Chennai, 

Wavelet ARIMA demonstrated the best performance, 

highlighting the superior predictive capability. Wavelet ANN 

also performed well, while ANN and ARMA-GARCH exhibited 

relatively higher errors, emphasizing their limitations in 

handling the price fluctuations. In Trivandrum, Wavelet ANN 

again emerged as the top-performing model, closely followed 

by Wavelet ARIMA, whereas ANN and ARIMA exhibited higher 

errors, indicating their reduced adaptability to capture the 

price variations. Overall, wavelet enhanced models 

consistently delivered predictions that are more accurate 

across all the markets, highlighting the advantage of wavelet-

based models in capturing both short-term fluctuations and 

long-term price patterns effectively (39). Traditional ARIMA 

and ANN models performed moderately but had higher 

errors, making them less reliable for precise price forecasting. 

These findings suggest that wavelet-enhanced models offer 

the most accurate price forecasts for tomatoes in Bangalore, 

Chennai and Trivandrum markets (8). This is particularly 

valuable for farmers, as precise price forecasts enable them 

to make well-informed decisions to maximize the profits (43, 

47). Forecasting price fluctuations allow farmers to mitigate 

financial risks, enhance supply chain efficiency and make 

strategic marketing decisions regarding storage and 

transportation (46). Since vegetables lack a Minimum 

Support Price (MSP), the government should provide feasible 

solutions to introduce price stabilization measures, 

particularly for highly volatile crops like tomatoes (25). This 

study would contribute to determining an optimal MSP and 

formulating effective agricultural policies, as suggested by 

previous research (36). Furthermore, accurate price forecasting 

supports policymakers and traders in market planning, 

ensuring price stability and minimizing the adverse effects of 

market volatility. 

 

Conclusion  

This study explored the wholesale tomato price data across 

key South Indian markets such as Bangalore, Chennai and 

Trivandrum by employing various predictive models, including 

ARIMA, ANN, ARMA-GARCH and wavelet-enhanced models 

such as Wavelet ARIMA, Wavelet ANN and Wavelet GARCH. The 

results highlight the superior performance of wavelet-based 

models, particularly Wavelet ANN and Wavelet ARIMA, which 

consistently outperformed traditional benchmark models in 

terms of forecasting accuracy. Lower RMSE, MAPE and MAE 

values demonstrated the robustness of these models in 

capturing both short and long-term price patterns in the data. 

Future research could focus on optimizing filter selection and 

decomposition levels to further enhance forecasting accuracy 

and better understand of the seasonal and irregular patterns in 

agricultural time series data. Tomatoes are highly volatile 

crops lacking an MSP, exposing farmers to unpredictable price 

fluctuations. To ensure financial security and market stability, 

the government should consider implementing a fixed price 

policy. Such a measure would safeguard the farmers’ livelihoods 

and reduce the market uncertainties. For farmers and market 

stakeholders, this study offers the advanced decision-making 

approach for optimizing marketing strategies, mitigating 

financial risks and enhancing market efficiency. This study 

highlights the crucial role of advanced forecasting techniques in 

strengthening market stability, optimizing decision-making and 

creating sustainable agricultural practices.   
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