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Abstract

Accurate price forecasting is crucial in the agricultural sector, where farmers face significant challenges due to price volatility. Price
fluctuations directly influence the livelihoods of producers and the affordability for consumers, making crop management difiicult for
farmers. Agricultural time series data are often highly complex and nonlinear, making price prediction, a challenging task. While various
forecasting approaches, including stochastic models, machine-learning techniques and hybrid models, have been explored, their
effectiveness is often limited due to the inherent complexity of agricultural datasets. Recently, waveletenhanced models have emerged
as a robust approach, effectively capturing both short-term fluctuations and long-term trends. Wavelet decomposition plays a vital role in
denoising data and extracting inherent patterns, thereby improving predictive accuracy. This study investigates the applicaton of wavelet
-based models for forecasting the monthly wholesale tomato prices in key South Indian markets such as Bangalore, Chennai and
Trivandrum. The findings address the forecasting challenges posed by the volatility of tomato prices, providing valuable insghts for
stakeholders, including farmers, traders and policymakers, to facilitate informed decision-making. Further, the study highlights the
necessity of a robust price policy to stabilize market fluctuations, safeguard farmers livelihoods and ensure fair returns. Hence,
incorporating advanced forecasting techniques, such as wavelet-based models can significantly improve market stability and promote
sustainable agricultural development.
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Introduction Unlike traditional statistical models, wavelet-based
techniques capture the patterns in both time and frequency
dimensions. By decomposing the data into multiple
resolution levels, wavelet-based models enhance the
predictive capability of traditional forecasting techniques,
making them particularly useful for agricultural price
forecasting (8). Vegetables being highly perishable and
seasonal exhibit significant price volatility (9). Tomato is a
highly volatile crop and one of the most widely consumed
staple foods globally, making their price stability crucial for
economic security (10). In India, tomato production is
concentrated in key states such as Andhra Pradesh, Madhya
Pradesh, Karnataka, Gujarat, Odisha West Bengal (11).
However, its supply chain faces challenges related to
limited storage infrastructure, transportation inefficiencies
and post-harvest losses. These factors lead to unstable
market conditions, affecting producers and consumers (12).
The fluctuating prices of tomato often create economic
disruptions at the household level. Despite its significance,
the tomato price fluctuation is highly susceptible to external
factors such as climate variability, natural calamities and

Price forecasting is crucial for farmers, stakeholders,
consumers and policymakers, facilitating informed market
planning and strategic decision-making (1). Farmers face
substantial challenges due to unpredictable price
fluctuations, which complicate the effective marketing of
their produce (2). The lack of accurate price forecasting
often leads to financial instability and increased post-
harvest losses. Therefore, precise forecasting models are
crucial to mitigate these challenges to enhance the market
stability (3). Time series modelling plays a fundamental role
in forecasting by identifying the hidden patterns and
structures within the data (4). The efficiency of a forecasting
method primarily depends on the characteristics and
nature of the dataset (5). Advancements in statistical and
machine learning techniques have significantly enhanced
price forecasting accuracy across diverse domains such as
finance, agriculture, economics and business (6). The
wavelet decomposition method stands out as a powerful
tool in analyzing complex and volatile time series data (7).
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market dynamics (13). The perishable nature of tomatoes
further contributes to price volatility, making it imperative
to predict market trends to help farmers make strategic
harvesting and selling decisions (14). Hence, accurate
forecasting models are essential for optimizing market
strategies, reducing uncertainty and supporting informed
decision-making (15).

Recent studies have explored the diverse
methodologies for price forecasting, highlighting the
effectiveness of various models. A study on maize price
forecasting in Ghana using various time series models such
as Single Exponential Smoothing (SES), Double Exponential
Smoothing (DES), Triple Exponential Smoothing (TES),
Autoregressive Integrated Moving Average (ARIMA) and
Seasonal ARIMA (SARIMA) found ARIMA to be the most
effective model based on MAE, offering valuable insights for
agricultural planning and decision-making (16). The
effectiveness of ARIMA models for precise price forecasting
in key potato-producing regions of India had been
examined (17). The analysis of potato price volatility in India
using ARIMA, SARIMA, Artificial Neural Network (ANN) and
Long Short-Term Memory (LSTM) models identified LSTM as
the most accurate model (18). Neural network modelling
had been explored for long-term daily price forecasting of
various agricultural commodities (19). A comparative
analysis of ARIMA and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models for crude
oil price forecasting provided valuable insights of their
performance (20). An ARMA-GARCH model had been used to
analyse Korean green onion price fluctuations, to estimate
volatility and forecast prices, highlighting its effectiveness in
modelling seasonally adjusted prices (21). A trivariate ARMA
GARCH Vine Copula model for forecasting vegetable price
volatility of tomato, onion and potato across three Indian
markets demonstrated its superior accuracy over
traditional models (22). Wavelet-based denoising
techniques enhanced the accuracy of predictive models by
effectively filtering out noise while preserving essential
signal features (6). A hybrid Wavelet-ARIMA-LSTM model for
forecasting share price index futures, demonstrated that
wavelet decomposition improves prediction accuracy, with
ARIMA effectively capturing stable signals and LSTM
handling noisy data (23). The integration of wavelet
decomposition with stochastic and machine learning
models improved agricultural price prediction accuracy by
effectively handling nonlinearity and non-normality in price
data (4). Wavelet-based hybrid model combining wavelet
decomposition with ANN outperformed ARIMA, GARCH and
ANN models in forecasting tomato prices (8). Wavelet ARIMA
-ANN model outperformed individual ANN and Wavelet ANN
models in forecasting meteorological drought (24).

The main contribution of this study lies in the
application of advanced wavelet techniques that combine
traditional and machine learning models to enhance the
accuracy of tomato price forecasting. While most existing
studies have focused on major markets in Northern India,
this study is the first to apply wavelet decomposition
techniques specifically to the Southern Indian markets. The
primary objective is to assess the effectiveness of wavelet-
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enhanced models, demonstrating their superiority over
benchmark models. By utilizing wavelet techniques, this
study offers valuable insights of the complex price dynamics
of tomatoes in key South Indian markets, benefiting
farmers, traders and policymakers. Further, the study
highlights the need for well-structured price policy to
stabilize market fluctuations and ensure fair returns for
farmers. These findings emphasize the importance of
adopting advanced forecasting methods to address the
unique challenges of the agricultural sector, especially for
highly volatile commodities like tomatoes. This study
highlights the effectiveness of wavelet enhanced models in
strengthening predictive accuracy and facilitating informed
decision-making in agricultural markets.

Material and Methods
Data description

This study analyses the monthly wholesale prices of
tomatoes in key South Indian markets such as Bangalore,
Chennai and Trivandrum. The dataset, covering the period
from January 2007 to December 2023, was collected from
Indiastat. It comprises 204 monthly observations, with 184
used for model training and the remaining 20 reserved for
testing purposes. This results in a 90:10 training-to-testing
split, ensuring a robust assessment of model accuracy. The
workflow of the study is depicted in Fig. 1.

Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model, also referred to as the Box-Jenkins
model, is a widely recognized tool for analysing univariate
time series data (25). By incorporating both autoregressive
(AR) and moving average (MA) components, ARIMA is
particularly effective at identifying linear patterns within the
data (26). To determine the optimal values for the model’s
parameters, the Auto-Correlation Function (ACF) and Partial
Auto-Correlation Function (PACF) are used. To achieve
stationarity, differencing is often applied, which helps
stabilize the mean and variance over time (27). The ARIMA
model is characterized by three parameters namely p
(autoregressive lag), d (the degree of differencing) and q
(moving average lag) (28). The general form of the ARMA (p,
g) model is given as:

Y= Oryert Payiot ...t PpYept €- B €r1- B2tz - ... Ogerq
The ARIMA (p, g, d) model is obtained by incorporating a
differencing term, expressed as: ¢(L)A%:=0(L)e:

where y; represents the actual value of the time
series at time t, ¢; denotes the autoregressive component of
order p, Birepresents the moving average component of
order q, d is the differencing term, ¢ is the random error at

time t, ¢(L) and ¢(L) represent the AR and MA polynomials
of the lag operator L with orders p and q, respectively. The
ARIMA model is particularly effective for handling non-
stationary data, which is common in real-world scenarios
where trends and seasonality are prevalent.
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Fig. 1. Flowchart of the study.
Artificial Neural Network (ANN)

ANN is a powerful machine-learning model used to detect
the complex and nonlinear patterns within data (18). ANNs
are data-driven, self-learning models inspired by the
architecture and functioning of biological neural networks
in the human brain (29). As a non-parametric statistical
method, ANNs do not require prior assumptions about the
data distribution. The fundamental structure of an ANN
consists of three key layers such as the input layer, which
accepts external data as input features, hidden layers,
where the input data is processed to identify patterns and
the output layer, which generates the final predicted output
(30). The structure of ANN is illustrated in Fig. 2. The learning
process of an ANN involves adjusting the weights of the
connections between neurons to reduce prediction errors.
This optimization is achieved iteratively through methods
such as backpropagation and gradient descent (31). This
self-adaptive, data-driven approach makes them an ideal
choice for handling complex datasets. Mathematically, an
ANN model can be represented as:

o D (] o)

where y: represents the observed value at time t,w;
(=1,2,...q) and wj(i=1,2...p, j=1,2,...q) are the connection
weights, which are the model parameters. p refers to the
number of input nodes and q represents the number of
hidden nodes. The functions g and f represent the activation
functions applied in the hidden and output layers,
respectively.

ARMA-GARCH

The hybrid time series modelling approach integrates both
linear and nonlinear components to enhance forecasting
accuracy (32). Traditional time series models are effective in
capturing linear dependencies but often fail to capture
complex nonlinear patterns. Nonlinear models can handle
nonlinear dependencies but may struggle with long-term
trend estimation (33). By integrating these models, hybrid
approaches provide a precise forecasting. It begins with a
linear model, such as ARMA, to capture linear patterns,
followed by the detection of nonlinearity in residuals using
the Brock-Dechert-Scheinkman (BDS) test. If nonlinear
dependencies exist, an appropriate nonlinear model is
applied to model the unexplained variations (34). The final
forecast is obtained by combining the linear and nonlinear
model predictions. For time series exhibiting volatility

INPUT LAYER

HIDDEN LAYERS

OUTPUT LAYER

Fig. 2. Structure of ANN.
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clustering, the ARCH-Lagrange Multiplier (LM test is
conducted to check for conditional heteroskedasticity (35).
If significant heteroskedasticity is detected, GARCH model is
employed to capture time-varying volatility (36). The ARMA-
GARCH hybrid approach provides a robust framework for
handling complex time-dependent data, improving
predictive performance and capturing intricate patterns
that single-model approaches might overlook (37).

Wavelet analysis

Wavelet decomposition is an effective and powerful
technique for analyzing time series data by breaking the
original signal into multiple frequency components (6). This
enables the identification of both short-term fluctuations and
long-term trends. Wavelets act as fundamental elements,
much like sine and cosine functions in trigonometry (38).
However, unlike sine and cosine waves, wavelets oscillate
and quickly diminish to zero, making them highly suitable
for signal processing (4). In cases where standard wavelet
transform methods are not applicable, the Maximal Overlap
Discrete Wavelet Transform (MODWT) serves as a flexible
alternative. Unlike conventional Discrete Wavelet Transform
(DWT), MODWT introduces redundancy, enhancing
resolution and stability in signal processing (39). DWT
typically requires the data length to be a power of two for
efficient processing. But MODWT does not have this
restriction, making it more adaptable for real-world
applications (8, 40). MODWT facilitates multi-resolution
analysis by decomposing signals into multiple sub-series at
different scales (41). It applies high-pass filters to extract
high-frequency components and low-pass filters to capture
low-frequency trends (42). Various wavelet filters, such as
Haar, D4, LA8 and BI14, generate detail coefficients (from
high-pass filters) and approximation coefficients (from low-
pass filters), enabling effective noise reduction and trend
identification (43).

The detailed coefficients are calculated as follows:

D (t) :Zkz—m Wl]_llkllj]k(t)

The approximation coefficients are given by:

A1) =Zk=_m Vipy 1 Pix (0

The original signal is represented as the sum of its
detailed and approximate components:

x(t)=27=1 Di(t)+ Ayft)

Where yix(t) is the wavelet function paired with Rjx
(t) , the scaling function. The wavelet coefficient is denoted
as Wy;x while VRj k is the scaling coefficient, t represents
time, j and k are the scale and translation parameters,
respectively and J indicates the level of decomposition,
ranging from 1 to i. The number of decomposition levels is
determined based on the length of the series (N). The
minimum levels can be found by log N and maximum levels
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by log:N ensuring the efficient capture of the signal (6). The
series is progressively decomposed until all levels are
reached. This study integrates wavelet decomposition with
ARIMA, ANN and GARCH models to enhance time series
forecasting (44). The methodology follows these steps:

Step 1: The original time series data is divided into training
and testing sets.

Step 2: The series is decomposed using the Haar wavelet
filter, which provides optimal performance.

Step 3: Each decomposed component is separately
modeled using ARIMA, ANN and GARCH.

Step 4: Forecasts are generated for the combined models,
resulting in wavelet-based ARIMA, wavelet-based ANN and
wavelet-based GARCH.

Step 5: Inverse Wavelet Transform (IWT) is applied to
reconstruct the final forecast from the wavelet coefficients.

Performance metrics

The accuracy of the models is assessed by comparing the
predicted values with the actual observations (45). To
measure performance, error metrics such as Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) are employed. Models with
lower values for these metrics are considered to provide a
better fit, as they demonstrate greater effectiveness in
capturing the patterns within the data (46). The
mathematical representations of these metrics are as follows:

1 n ~
RMSE= |~ ) e Ot — F0)2

1 -
MAE= ~21, |yt — Jel

n -~
) .
MAPE == E | 22 100
n t=1 ¥t

where y: represents the actual values, Yiis the
forecasted values and n is the number of observations in
the time series.

Results
Summary statistics

This study examines the descriptive statistics of monthly
wholesale tomato prices in Bangalore, Chennai and
Trivandrum to assess the price distribution and volatility
across these markets (Table 1). The results indicate substantial
fluctuations, as Bangalore and Chennai have minimum (I150/
gtl) and maximum (I8600/qtl) prices. The mean price is
%1435.82/qtl in Bangalore, 1690.01/qtl in Chennai and
%2243.05/qtl in Trivandrum, with slightly lower median
values, suggesting a right-skewed distribution. Price
dispersion, measured by standard deviation, is highest in
Bangalore (21186.88), followed by Chennai (1157.77/qtl) and
Trivandrum (%1098.04/qtl), indicating notable fluctuations.
Skewness values of 2.52 (Bangalore), 1.86 (Chennai) and 1.81
(Trivandrum) confirm a positively skewed distribution,
indicating occasional price spikes. Kurtosis values further
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Table 1. Descriptive statistics of tomato price series (Rs./qtl)

Descriptive Statistics Bangalore = Chennai Trivandrum
Minimum 150 150 630
Maximum 8600 8600 6709

Mean 1435.82 1690.01 2243.05
Median 1111.50 1423.50 2014.50
Mode 727.96 885.11 850.27
Standard Deviation 1186.88 1157.77 1098.04
Skewness 2.52 1.86 1.81
Kurtosis 8.94 5.11 4.40
cv 82.66 70.35 48.95
CDVI 67.76 63.55 38.26

reveal that Bangalore (8.94) has a more peaked distribution
than Chennai (5.11) and Trivandrum (4.40), indicating
frequent extreme price variations. The coefficient of variation
(CV) is highest for Bangalore (82.66 %), followed by Chennai
(70.35 %) and Trivandrum (48.95 %), indicating that
Bangalore exhibits the highest relative price volatility. Cuddy-
Della Valle Index (CDVI) is also greater in Bangalore (67.76)
and Chennai (63.55) than in Trivandrum (38.26), suggesting
higher price instability in these markets. Bangalore exhibits
the highest level of price fluctuations, making it the most
volatile market among the three markets. Fig. 3 shows the
tomato price distributions across different markets,
confirming the above-observed findings regarding the

nonlinear and non-stationary nature of prices in all the
markets. These findings emphasize the significant price
variations across different regions, which are essential for
price forecasting and market stability.

Preliminary test

The Augmented Dickey-Fuller (ADF) test is a widely utilized
statistical method in time series analysis to determine
whether a series is stationary. The test is based on the null
hypothesis that the series contains a unit root, indicating it is
non-stationary.  Rejecting this hypothesis  confirms
stationarity in the data. Table 2 presents the results of the
preliminary test for time series analysis. ADF test results for
Bangalore, Chennai and Trivandrum, indicates that test
statistics for all markets are significantly lower than their
respective critical values. This indicates that the data is
stationary, confirming the absence of a unit root and making
it suitable for further time series forecasting. The Box-Pierce
test is used to check for autocorrelation in a time series
dataset. A significant p-value (< 0.01) suggests that there is
strong evidence of autocorrelation in the residuals of the time
series model. Shapiro-Wilk test indicates that all datasets
significantly deviate from normality (p-values < 0.01),
highlighting the need for caution in applying parametric
statistical methods. The Jarque-Bera test also confirms the
non-normality across all the markets. To examine the
presence of nonlinearity in the dataset, the BDS test is
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Fig. 3. Statistical charts of tomato price distribution.
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Table 2. Results of the preliminary tests for time series data
Nonlinearity test Stationary test
Embedding dimension ADF test
Bangalore Market
2 3 Statistic p-value
Epsilon Parameter Statistic p-value Statistic p-value Bangalore -5.89 0.01
eps[1] 593.44 11.72 <0.001 11.91 <0.001 Chennai -5.46 0.01
eps|[2] 1186.88 7.88 <0.01 7.03 <0.01 Trivandrum -4.21 0.01
eps[3] 1780.32 6.99 <0.01 5.96 <0.01 Autocorrelation test
eps[4] 2373.76 6.16 <0.01 _ _ 5.2':'3 <0.01 .
Chennai 5 Embedding dimension : Market Stftci):t—ilzlerce E\ilue
Epsilon Parameter Statistic p-value Statistic p-value Bangalore 66.05 <0.01
eps[1] 489.4 9.84 <0.001 10.26 <0.001 Chennai 72.33 <0.01
eps|[2] 978.8 9.01 <0.001 8.85 <0.001 Trivandrum 99.05 <0.01
eps[3] 1468.2 8.52 <0.001 8.55 <0.001 Normality test
eps[4] 1957.61 7 <0.01 6.96 <0.01 Shapiro-Wilk Statistic (W)  p-value
Trivandrum Embedding dimension Bangalor.e 0.77 <0.01
2 3 Chennai 0.85 <0.01
Epsilon Parameter Statistic p-value Statistic p-value Trivandrum 0.84 <0.01
eps[1] 549.02 22.13 <0.001 25.36 <0.001 Jarque Bera Statistic (x?)  p-value
eps[2] 1098.04 14.48 <0.001 14.47 <0.001 Bangalore 916.67 <0.01
eps[3] 1647.06 10.41 <0.001 9.72 <0.001 Chennai 1028.2 <0.01
eps[4] 2196.08 8.76 <0.001 7.89 <0.01 Trivandrum 282.59 <0.01

conducted across different markets. As shown in Table 2, the
results reveal the presence of nonlinearity in the data. The
test statistics for different epsilon values show significant
fluctuations, suggesting a complex underlying structure in
the data. This confirms the necessity for advanced modelling
techniques. Since the BDS test validates the nonlinear
characteristics of the dataset, machine learning models
emerge as a powerful alternative, as they can effectively
capture complex dependencies without relying on rigid
assumptions, thereby enhancing predictive accuracy.

Results of different models used in the study

The study employed a diverse set of stochastic, machine
learning, hybrid and wavelet enhanced models, including
ARIMA, ANN, ARMA-GARCH, Wavelet-ARIMA, Wavelet-ANN,
Wavelet-GARCH each optimized to improve the forecasting
accuracy. Following preliminary time series diagnostics,
ARIMA models were initially fitted based on the lowest

Table 3. Estimates of ARIMA model

Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) values (Table 3). This led to the selection of
ARIMA (1, 0, 2) for Bangalore, ARIMA (1,0,1) for Chennai and
ARIMA (2, 0, 1) for Trivandrum, effectively capturing the
linear dependencies within the time series data for these
markets. To further evaluate the residuals, the ARCH-LM test
was conducted to detect heteroskedasticity. The results
indicated a significant ARCH effect in the Chennai market,
highlighting the potential volatility and the need for
alternative models that can more effectively capture this
pattern. In contrast, the residuals from the Bangalore and
Trivandrum markets showed no signs of an ARCH effect,
implying stable variance over time. Given the presence of
conditional heteroskedasticity in Chennai, an ARMA-GARCH
model was fitted to effectively capture the volatility (Table
4). The ARMA (1, 2) + GARCH (1, 1) configuration emerged as
the best-fitting model for the Chennai market, with the

ARCH-LM test

ARIMA(1,0,2) AIC =2951.56 BIC =2967.63 Statistic 16.82
p-value 0.15
Bangalore Parameter arl mal ma2 mean
Estimate -0.17 1.01 0.45 1288.64
SE 0.23 0.21 0.13 110.31
ARCH-LM test
ARIMA(1,0,1) AIC =2980.47 BIC=2993.33 Statistic 23.32
Chennai p-value 0.02
Parameter arl mal mean
Estimate 0.37 0.39 1396.42
SE 0.09 0.07 126.88
ARCH-LM test
ARIMA(2,0,1) AIC=2939.15 BIC =2955.23 Statistic 10.86
p-value 0.54
Trivandrum Parameter arl ar2 mal mean
Estimate 0.64 -0.11 0.34 2201.09
SE 0.14 0.11 0.12 145.57
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Table 4. Estimates of the ARMA-GARCH model

ARMA (1,2) + GARCH (1,1) AIC=15.94 BIC = 16.06
Parameter mu arl mal ma2 omega alphal betal
Chennai Estimate 1115.0 0.07 0.95 0.40 180200 0.37 0.33
SE 240.5 0.19 0.17 0.11 44820 0.12 0.11
p-value <0.001 0.68 <0.001 <0.001 <0.001 0.001 0.002

Table 5. Estimates of ANN model

Market Network architecture  Parameters (Weights)
Bangalore 5-2-1 15
Chennai 2-5-1 21
Trivandrum 4-2-1 13

lowest AIC (15.94) and BIC (16.06) values. This model
captures the trend and volatility in tomato price data of
Chennai market. The ANN architectures (Table 5) were
optimized for each region, with Bangalore utilizing a 5-2-1
network optimized with 15 weights, Chennai employing a 2-
5-1 network with 21 weights and Trivandrum adopting a 4-2-1
network with 13 weights. These configurations were

determined by fine-tuning the parameters to effectively
capture the intricate nonlinear relationships within the data.

While the benchmark models successfully captured
the overall price trends across various markets, wavelet
transformation was applied to improve forecasting accuracy
by breaking down each series into distinct frequency
components. Using the Haar wavelet filter, the series was
decomposed up to a maximum of seven levels (with the
highest J = log:N, where N = 204). Fig. 4 represents the
wavelet decomposition levels of tomato price series across
different markets. The summary statistics of wavelet
coefficients for tomato prices across different markets
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provide valuable insights of price dynamics. In wavelet
analysis, V1 represents the approximation coefficients,
capturing the long-term trend, while W1-W7 denotes the
detail coefficients at various levels, reflecting shortterm
fluctuations at different frequencies. The wavelet
decomposition of tomato prices of Bangalore market (Table
6, Fig. 5) reveals significant short-term volatility in W1-W3,
characterized by high standard deviations and leptokurtic
distributions. Lower frequency levels (W5-W7) show reduced
fluctuations but exhibit negative skewness, indicating
frequent downward price movements. The approximation
coefficient (V1) represents the overall trend with minimal
skewness, suggesting stable long-term price behavior. For
Chennai (Table 7, Fig. 6), short-term fluctuations (W1-W3)
exhibit higher variability, as indicated by larger standard
deviations, while long-term trends (W5-W7) remain more
stable. Skewness and kurtosis indicate symmetric
distribution, except for slight negative skewness at finer
levels. Similarly, the wavelet decomposition of Trivandrum’s
tomato prices (Table 8, Fig. 7) indicates substantial short-
term variability in W1-W3, with high standard deviations and
positive skewness. Lower wavelet levels (W5-W7) show
declining volatility but exhibit negative skewness, implying
more frequent downward movements. The approximation

coefficient (V1) represents a stable long-term trend with slight
positive skewness. These decomposed series were
subsequently utilized as inputs for the ARIMA, ANN and
GARCH models. This process ensured the effective utilization
of the distinct frequency components extracted from the data
and enhancing the forecasting performance.

Selection of the best fitting model

The forecasting performance of different models across
Bangalore, Chennai and Trivandrum markets reveals
varying levels of accuracy (Table 9). In Bangalore, Wavelet-
ANN outperformed the benchmark models, highlighting the
effectiveness of wavelet-based approaches, with RMSE
(1302.42), MAPE (25.93 %) and MAE (863.48). In Chennai,
Wavelet ARIMA achieved the highest predictive accuracy,
achieving the lowest RMSE (548.04), MAPE (20.27 %) and
MAE (406.61), followed closely by Wavelet ANN and Wavelet
GARCH. Similarly, in Trivandrum, Wavelet ANN exhibited
superior forecasting accuracy with RMSE (891.57), MAPE
(17.87 %) and MAE (666.79). Hence, wavelet-enhanced
models consistently provided more precise predictions
across all the markets, highlighting their advantage in
effectively capturing the price fluctuations. The radar charts
(Fig. 8) compare the performance of various forecasting

Table 6. Descriptive statistics of wavelet coefficients of tomato price data of Bangalore market

Bangalore V1 w1 w2 w3 w4 W5 we W7
Minimum 1076.55 -1977.5 -2863.75 -1379 -1245.19 -1026.91 -931.77 -638.34
Maximum 1803.41 2930 2427.5 1660.5 1146.81 637 433.45 333.76
Mean 1435.82 0 0 0 0 1.26 0 1
Median 1406 -1 -34.25 -10.25 16.38 44.36 109.72 118.93
Std Deviation 186.42 555.75 643.92 479.3 400.48 280.24 311.99 294.71
Skewness 0.09 0.43 0.03 0.23 -0.32 -1.33 -1.43 -0.73
Kurtosis -1 7.01 4.19 1.31 0.97 2.9 1.39 -0.88
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Fig. 5. Histogram of wavelet coefficients of Bangalore market.
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Table 7. Descriptive statistics of wavelet coefficients of tomato price data of Chennai market

Chennai Vi w1 w2 W3 w4 W5 we W7
Minimum 1153.45 -1812 -1761.75 -1514.88 -862.86 -503.33 -436.09 -365.78
Maximum 1669.97 1805.5 1690 1315.63 803.19 420.31 394.88 399.69
Mean 1391.17 0 0 0 0 29.17 25.75 -18.49
Median 1357.92 7.75 17 28.25 -27.47 29.17 25.75 -18.49
Std Deviation 155.47 440.24 526.65 455,11 347.74 194.68 199.92 238.32
Skewness 0.29 0.06 0.18 -0.11 0 -0.27 -0.51 0.08
Kurtosis -1.33 4.12 1.96 0.76 -0.02 -0.53 -0.64 -1.29
Histogram
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Fig. 6. Histogram of wavelet coefficients of Chennai market.
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Fig. 7. Histogram of wavelet coefficients of Trivandrum market.
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Table 8. Descriptive statistics of wavelet coefficients of tomato price data of Trivandrum market

Trivandrum V1 w1 W2 W3 W4 W5 W6 W7
Minimum 1872 -1913 -2149 -1156 -1111 -1032 -847 715
Maximum 2704 2036 2009 1533 1108 655 459 568

Mean 2243 0 0 0 0 0 0 0
Median 2200 2 15 9 -4 47 114 83

Std Deviation 254 428 528 409 367 311 356 393
Skewness 0.37 0.2 0.07 0.21 -0.11 -1.12 -1.18 -0.34
Kurtosis -1.16 5.62 3.6 1.52 0.88 1.84 0.34 -1.11

Table 9. Performance metrics of different models models across three different markets. A model’s polygon
Market Models RMSE MAPE MAE being closer to the centre indicates lower error values with
superior predictive performance. Across all three markets,
ARIMA 1631.84 3590  980.63 wavelet-enhanced models consistently exhibit lower error
ANN 1450.47 31.68 906.17 values, hlg.h.llghtmg the effe.ctllveness of |ntegr§t|ng Wave.let
Bangalore decomposition with statistical and machine learning
WARIMA 1256.21 2841 886.33 models for enhanced forecasting accuracy. The Diebold
WANN 1302.42 25.93  863.48 Marlano. (DM) test was performed to eyaluate the
forecasting accuracy of benchmark models against wavelet-
ARIMA 593.01 27.78 500.64 enhanced models. As presented in Table 10, the results
indicate the superior performance of wavelet-based models
ANN 609.95 29.96 530.45 . op .
across different markets. Specifically, the test statistics were
GARCH 641.25 31.47 576.86 negative, with smaller p-values, confirming that models
Chennai such as Wavelet ARIMA, Wavelet ANN and Wavelet GARCH
WARIMA 548.04 20.27 406.61 consistently outperformed benchmark models like ARIMA,
WANN 551.04 22.97 448.78 ANN and ARMA-GARCH in terms of forecasting accuracy.
These findings highlight that integrating wavelet
WGARCH 558.37 25.53 460.7 decomposition with benchmark models provides a robust
ARIMA 1578.13 24.68 971.56 approach for forecasting tomato prices, particularly in
markets exhibiting high volatility and nonlinear trends.
Tvand ANN 1426.50 21.96 875.76 Across all the markets, the wavelet-enhanced models
rivandarum . ..
WARIMA 962.7 19.47 686.94 outperformed well than standalone individual models.
WANN 891.57 17.87 666.79

Table 10. DM test results of tomato price series of different markets

Market Wavelet based model Benchmark model DM Test Statistic p-value
Bangalore WARIMA ARIMA -2.10 0.0213
WANN ANN -1.78 0.0342

WARIMA ARIMA -3.61 0.0041

Chennai WANN ANN -3.05 0.0024
WGARCH ARMA-GARCH -4.38 0.0001

WARIMA ARIMA -3.14 0.0020

Trivandrum

WANN ANN -3.24 0.0021

MAPE

MAE

Bangalore

—— ARIMA

MSE

ANN —— WARIMA

Chennai

—— WANN —— GARCH —— WGARCH

MAPE

MSE

MAE
Trivandrum

Fig. 8. Radar plot.
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Discussion

This study examines the benchmark, machine learning
models and wavelet-enhanced techniques in forecasting
tomato prices across three markets namely Bangalore,
Chennai and Trivandrum. By analysing ARIMA, ANN, ARMA-
GARCH and wavelet enhanced models, the study provides
insights of each model’s ability to capture the patterns in the
data. The forecasting performance across these markets
indicates that wavelet-based models consistently outperform
traditional models in terms of accuracy as observed from the
previous studies (4, 6, 8, 42). In Bangalore, Wavelet ANN
achieved the lowest error metrics, making it the most
effective model for price forecasting. Traditional ARIMA
exhibited the highest errors, highlighting its limitations in
capturing complex price variations. Similarly, in Chennai,
Wavelet ARIMA demonstrated the best performance,
highlighting the superior predictive capability. Wavelet ANN
also performed well, while ANN and ARMA-GARCH exhibited
relatively higher errors, emphasizing their limitations in
handling the price fluctuations. In Trivandrum, Wavelet ANN
again emerged as the top-performing model, closely followed
by Wavelet ARIMA, whereas ANN and ARIMA exhibited higher
errors, indicating their reduced adaptability to capture the
price variations. Overall, wavelet enhanced models
consistently delivered predictions that are more accurate
across all the markets, highlighting the advantage of wavelet-
based models in capturing both short-term fluctuations and
long-term price patterns effectively (39). Traditional ARIMA
and ANN models performed moderately but had higher
errors, making them less reliable for precise price forecasting.
These findings suggest that wavelet-enhanced models offer
the most accurate price forecasts for tomatoes in Bangalore,
Chennai and Trivandrum markets (8). This is particularly
valuable for farmers, as precise price forecasts enable them
to make well-informed decisions to maximize the profits (43,
47). Forecasting price fluctuations allow farmers to mitigate
financial risks, enhance supply chain efficiency and make
strategic marketing decisions regarding storage and
transportation (46). Since vegetables lack a Minimum
Support Price (MSP), the government should provide feasible
solutions to introduce price stabilization measures,
particularly for highly volatile crops like tomatoes (25). This
study would contribute to determining an optimal MSP and
formulating effective agricultural policies, as suggested by
previous research (36). Furthermore, accurate price forecasting
supports policymakers and traders in market planning,
ensuring price stability and minimizing the adverse effects of
market volatility.

Conclusion

This study explored the wholesale tomato price data across
key South Indian markets such as Bangalore, Chennai and
Trivandrum by employing various predictive models, including
ARIMA, ANN, ARMA-GARCH and wavelet-enhanced models
such as Wavelet ARIMA, Wavelet ANN and Wavelet GARCH. The
results highlight the superior performance of wavelet-based
models, particularly Wavelet ANN and Wavelet ARIMA, which
consistently outperformed traditional benchmark models in
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terms of forecasting accuracy. Lower RMSE, MAPE and MAE
values demonstrated the robustness of these models in
capturing both short and long-term price patterns in the data.
Future research could focus on optimizing filter selection and
decomposition levels to further enhance forecasting accuracy
and better understand of the seasonal and irregular patterns in
agricultural time series data. Tomatoes are highly volatile
crops lacking an MSP, exposing farmers to unpredictable price
fluctuations. To ensure financial security and market stability,
the government should consider implementing a fixed price
policy. Such a measure would safeguard the farmers’ livelihoods
and reduce the market uncertainties. For farmers and market
stakeholders, this study offers the advanced decision-making
approach for optimizing marketing strategies, mitigating
financial risks and enhancing market efficiency. This study
highlights the crucial role of advanced forecasting techniques in
strengthening market stability, optimizing decision-making and
creating sustainable agricultural practices.
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