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Introduction 

With the rising global population and increasing demand for 

animal protein, there is a pressing need for alternative, 

sustainable feed sources. Insects have emerged as a viable 

solution, offering high-quality protein, efficient biomass 

conversion and environmental resilience (1-3). Among these, 

Black Soldier Fly (BSF) have gained significant attention due 

to their short life, rapid growth and high adaptability to 

farming systems (4). 

 Hermetia illucens L., commonly known as BSF, belongs 
to the family Stratiomyidae, order Diptera (Fig. 1). BSF has a 

cosmopolitan distribution, thriving in tropical and warm 

temperate climates (5). However, due to its inability to 

tolerate cold temperatures, BSF cannot survive in regions like 

northwestern Europe and regions with temperatures below            

5 °C (6). Genetic data suggests that captive populations from 

several continents trace back to a single North American 

origin, highlighting a common ancestry for many farmed 

strains (7). 

 BSF has emerged as a key candidate in sustainable 

agriculture and waste management. According to the 

European legislative framework (EG no. 1069/2009), BSF has 

been recognized as an insect for industrial rearing and 

granted the status of a farm animal (8). As the global 

population continues to grow, it becomes crucial to utilize 

available resources more efficiently. The European Union, 

Australia, Canada and the USA have established regulations 

allowing the trade and manufacture of Black soldier fly Larvae 

(BSFL) as animal feed under specific conditions. Ensuring 

legislative clarity and harmonization is essential for the 

successful industrial scaling of BSFL as a sustainable source of 

animal feed (9). 

 BSFL exhibit a high growth rate and efficiently convert 

low-grade organic waste into protein-rich biomass, 

outperforming broilers, pigs and fish in substrate protein 

conversion into body mass (4). Due to the high moisture 

content (up to 70 %) in BSFL substrates, the feed conversion 

ratio (FCR) is not suitable for comparing feed efficiency with 

other species. Instead, protein conversion ratio (PCR) and 
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Abstract  

The black soldier fly (BSF), Hermetia illucens has gained global attention for its diverse applications, particularly its efficiency in 

organic waste conversion, achieving 50-70 % waste reduction. The larvae produce high-value biomass containing 30-57 % protein and 
21-42 % lipids, making them an excellent protein-rich feed ingredient. Additionally, BSF shows strong potential for biodiesel 

production, with conversion yields reaching up to 94 %. Key biological traits such as global adaptability, rapid development and 

efficient feed conversion make BSF suitable for scalable farming. Recent advances in genetic research, microbiome optimization and 

selective breeding are examined, highlighting their potential to enhance productivity and adaptability. The environmental and 
economic advantages of BSF-based bioconversion systems such as reduced greenhouse gas emissions, effective nutrient recycling and 

job creation; especially in developing regions are also discussed. Despite its promise, challenges persist, including the need for genetic 

diversity conservation, consistent regulatory policies and increased public acceptance. Future research priorities include optimizing 

organic waste substrates, developing targeted breeding strategies and exploring novel applications such as antimicrobial peptide 
production, chitin recovery and pigment extraction. In addition, progress in automation and bioprocessing technologies can 

significantly boost operational efficiency and scalability. By integrating innovation and encouraging cross-sector collaboration, BSF-

based solutions can play a vital role in advancing global sustainability, food and feed security and environmental resilience. 
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gross energy conversion ratio (GECR) are used, demonstrating 

that BSFL efficiently utilize nutrients. BSF prepupae, rich in 

essential macro- and micronutrients for animal feed, also 

produce saturated fatty acids, creating opportunities for use 

in various industries, including biofuels and other non-food 

applications (10). 

 The year-round availability of BSF and its byproducts 
guarantees its reliability and sustainability as a resource (11). 

Using BSFL for waste composting is also an innovative, eco-

friendly and cost-effective solution that promotes resource 

recovery and value-added products, gaining global attention 

for its self-sustaining nature. Current waste management 

technologies fail to fully utilize organic-rich waste, focusing 

mainly on disposal. Researchers are exploring sustainable 

methods to unlock its nutrient and economic value for more 

efficient waste management (5). BSFL significantly reduce 

nutrients and dry matter in organic material by 50 % or more 

and effectively decrease odorous volatile compounds by up 

to 100 % (12). This transformative potential has led to a shift 

in the perception of BSFL from being considered a nuisance to 

being recognized as a crucial component in promoting 

sustainability and waste management within the circular 

economy framework (13). Adult BSF typically rest on 

vegetation and avoid contact with humans or animals, with 

no evidence suggesting they act as vectors for pathogens. 

However, their larvae thrive in microbe-rich environments, 

including those containing pathogenic microorganisms (14).  

 Efficient insect production hinges on factors like fast 

growth, high survival rates, large body mass and robust 

reproductive capacity, all of which contribute to increased 

biomass production and the value of the produced biomass, 

particularly if the insects possess desired nutrients or 

valuable proteins. Managing healthy insect populations 

involves optimizing conditions across generations, 

minimizing inbreeding and genetic drift through well-

designed breeding programs and ensuring environmental 

factors such as temperature and diet align with life stage 

requirements. This understanding of fundamental principles 

guides effective insect production practices (15). Despite the 

extensive utilization of BSF in the growing insect farming 

sector, there remains a significant gap in research regarding 

its genetics (13). 

 BSF exhibits high genetic diversity, a factor of 

considerable importance for both scientific exploration and 

commercial utilization. Understanding the genetic 

composition of fly cultures is essential for efficient 

management, enabling the utilization of diversity in breeding 

programs (16). Most commercial production currently relies 

on unimproved BSF populations without employing specific 

breeding strategies. Inbreeding is a concern in captive 

populations maintained for many generations under 

genetically isolated conditions (17). The availability of a 

comprehensive genetic inventory and microsatellite markers 

allows for exploring gene-environment interactions, studying 

phenotypic traits and developing effective breeding 

strategies. Next-generation sequencing and improved 

genomic resources have significantly advanced our 

understanding of BSF. Furthermore, synthetic biology holds 

promise in enhancing the capabilities of BSF by generating 

transgenic variants for improved feed, industrial biomolecule 

production and waste conversion (7). 

 This review aims to consolidate current knowledge on 

the biology, nutritional value, waste management potential, 

genetics and industrial applications of BSF, while highlighting 

knowledge gaps and opportunities for future research and 

innovation.  

Life cycle and biology 

Morphology and sexual dimorphism 

The adult BSF is a large, slender insect with a segmented 
body (head, thorax and abdomen) and brownish wings. Males 

have a bronze-colored abdomen, while females exhibit a 

reddish-brown hue (14). Females (16.3 ± 0.91 mm) are larger 

than males (14.30 ± 0.19 mm) (18). The average male-to-

female ratio is 0.98 (19). 

Life cycle duration and environmental factors 

The average life cycle duration of BSF was 45.08 ± 4.46 days 

for males and 46.15 ± 4.12 days for females under controlled 

conditions of 29.40 ± 1.77 °C, 68.25 ± 2.32 % relative humidity 

(RH) and a 14:10 (L:D) photoperiod, when reared on fruit and 

vegetable waste (18). However, the duration can extend up to 

131 days, depending on the nutrient and energy content of 

the feeding substrates and the ambient temperature of the 

rearing conditions (20). BSF undergoes six larval instars from 

the first instar to the pupal stage. The mean durations of the 

developmental stages were 4.36 ± 0.24 days for egg hatching, 

16.07 ± 2.59 days for the larval stage, 15.4 ± 2.50 days for the 

pupal stage, 9.95 ± 1.48 days for males and 10.33 ± 1.89 days 

for females, under the same rearing conditions (18) (Fig. 2). 

Reproductive biology and mating dynamics 

Males typically emerge two days before females, with mating 

occurring approximately two days after emergence. Being an 

eurygamous insect i.e., one that requires large open spaces 

for nuptial flight-the BSF engages in mating while flying (21). 

BSF adults are weak fliers and spend most of the day resting 

on plants (14). Females deposit their eggs in dry crevices 

located close to the larval substrate. The average weight of a 

single egg mass was 29.1 mg, containing approximately 998 

eggs. Each egg had a weight of about 0.028 mg (22). 

  

 

Fig. 1. Black soldier fly. 
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Male black soldier flies congregate at lekking sites, where 

they encounter and engage with flying females. BSF males 

rely on sunlight to detect females entering their mating sites, 

with most mating pairs occurring in direct sunlight (23). BSF 

adults were found to mate an average of three times, 

occasionally with different or previous partners and in some 

instances; they mated up to nine times (24). Sunlight is 

essential for mating, with 85 % of mating events occurring at 

an intensity of 110 μmol m² s-1 (5). 

Feeding behaviour and development 

The antennae of BSFL are composed of two segments and are 
relatively short in the older instars, while proportionally 

longer in the younger larvae. When the head extends into the 

feeding substrate, the antennae are shielded from damage by 

a large, sturdy antennal pad (25). 

 The aggregation behaviour of BSFL, known as the 

larval mass effect, is typical of necrophagous Diptera and 

helps increase body temperature, thereby reducing 

developmental time. This behaviour has practical 

implications in accelerating bioconversion rates during 

industrial waste processing, making BSF a highly effective 

species for organic waste valorization (26). 

 BSFL feed in 5 min bursts, spending 44 % of their time 

near food, which causes congestion and slows consumption. 

This behaviour results in a ‘fountain’ effect, where larvae feed 

and are then pushed upward and out of the feeding mass, 

ensuring equitable access to food. This self-propagating flow 

increases the overall consumption rate; ensuring food is 

shared with those not actively feeding (27). 

 In the final larval stage, BSF larvae can reach up to 

27 mm in length and 6 mm in width. They can weigh up to 

220 mg, the highest among all developmental stages (28). At 

the end of the larval period, the prepupae migrate to a dry, 

suitable site for pupation and transform into pupae. 

Prepupae require a minimum of 10 days to pupate in a dry 

environment (29). 

Digestion and microbial interaction 

Digestive anatomy and enzyme activity 

Findings revealed that the BSF larval head resembles that of 

campodeiform insect larvae, larvae with an elongated, 

flattened body adapted for active movement, typical of 

scavenger species. The highly developed mandibular-

maxillary complex, characteristic of Stratiomyidae and like 

other scavenger larvae, enhances the intake of semiliquid 

food through a sweeping apparatus. The mouthparts 

function like a “tunnel boring machine,” in which the 

hypopharynx helps sort finer organic particles from coarser 

inorganic ones, while the maxillary rasp and lacinial teeth, 

specialized structures in the maxilla used for scraping and 

tearing food, aid in breaking down material from semiliquid 

substrates for efficient digestion (25). 

 The alimentary canal of BSFL is composed of a short 

foregut, an elongated midgut divided into anterior (AMG), 

middle (MMG) and posterior (PMG) regions and a hindgut 

featuring the insertion of Malpighian tubules. Each midgut 

region exhibits distinct chemical and functional properties 

(Fig. 3). The anterior midgut (pH ~ 6) contains columnar cells 

with secretory activity and high amylase and lipase activity. 

The middle midgut (pH ~ 2) is characterized by copper cells, 

contributing to pathogen elimination and microbiota 

regulation through strong acidity and high lysozyme activity. 

The posterior midgut (pH ~ 8) facilitates protein digestion 

through serine proteases and exopeptidases, while also 

contributing to lipid and polysaccharide breakdown. The 

presence of elongated microvilli enhances nutrient 

absorption (30). 

 Gut extracts from BSFL show high amylase, lipase and 

protease activities, including strong trypsin-like protease 

activity, indicative of their polyphagous nature. These 

enzymatic activities, such as leucine arylamidase,                                     

α-galactosidase, β-galactosidase, α-mannosidase and                          

α-fucosidase, suggest that BSFL can digest a wide range of 

food waste and organic materials more efficiently than other 

fly species, such as house flies (31). 

Microbiome composition and functions 

The gut microbiome of BSFL plays a crucial role in feed 

biodegradation and its bacterial composition is distinct from 

that of other insect species. The microbiota is primarily 

dominated by the phyla Firmicutes and Proteobacteria, with 

diet being a significant influence on its composition. Both 

host genetics and diet shape the microbial diversity, which, in 

turn, determines the metabolic potential of the larvae (32).  

  

 

Fig. 2. The lifecycle of black soldier fly. 
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 The microbiota also varies across different regions of 

the gut, with distinct microbial communities in the anterior, 

middle and posterior parts due to the differences in luminal 

pH. This diverse microbial community is essential for insect 

health, as it affects the balance between advantageous and 

harmful bacterial populations. Core microbial species, 

including Enterococcus, Klebsiella, Morganella, Providencia 

and Scrofimicrobium, have been identified in the BSFL gut 

microbiome. Sequencing the BSF larval gut microbiome can 

help identify genes encoding enzymes capable of degrading 

complex waste. Additionally, microbial consortia with 

complementary metabolic functions can be identified and 

utilized for efficient waste degradation. DNA-based amplicon 

sequencing is used to identify bacterial and fungal taxa while 

also determining their relative abundance and community 

diversity. In contrast, RNA-based sequencing (transcriptomics), 

along with proteomics and phenotype microarrays, provides 

insights into the functional roles of the microbiome (33). 

Enzyme discovery and industrial applications of gut 

enzymes 

BSFL gut hosts a diverse microbial community crucial for 

digestion and nutrient acquisition. One such enzyme CS10, a 

cellulase isolated from the BSF gut microflora, exhibits strong 

industrial potential. It shows optimal activity at 50 °C and pH 7.0 

and functions as an endo-β-1,4-glucanase, efficiently 

degrading cellulose. CS10 remains stable between 20-50 °C and 

within a pH range of 4.0-10.0, making it highly suitable for 

industrial applications. Additionally, it is resistant to chemical 

inhibitors, further supporting its potential for use in biomass 

conversion, biofuel production and waste management (34). 

PulSS4 (Pullulanase Secretory System 4) is a novel pullulanase 

enzyme identified from the gut bacteria of BSF that facilitates 

the breakdown of complex polysaccharides, such as pullulan, 

contributing to carbohydrate digestion. It exhibits activity in a 

temperature range of 10-50 °C, with optimum activity at 40 °C 

and is active in a pH range of 6.5-10.5, with an optimum pH of 

9.0. The enzyme retains more than 80 % of its original activity 
across a broad pH range of 5-11 when incubated for 24 hr at 30 °C. 

Additionally, PulSS4 demonstrates high chemical stability, 

remaining active in the presence of various chemical reagents, 

including 10 % polar organic solvents and 1 % non-ionic 

detergents (35). Additionally, Hermetia illucens Serine Protease 

1 (Hi-SP1) functions as a chymotrypsin-like protease that is 

active specifically during the larval stage, while Hermetia 

illucens Serine Protease 2 (Hi-SP2) is a trypsin-like protease with 

broader expression throughout larval development. Both 

enzymes contribute significantly to protein digestion. The 

optimum temperature for the activity of Hi-SP1 and Hi-SP2 is 

approximately 37  °C, with an optimal pH of around 7.2 (36). 

Manipulating the gut microbiota and associated digestive 

enzymes is considered a promising strategy to improve 

productivity and sustainability in industrial BSF rearing systems 

(2). 

Rearing and farming 

Rearing system components 

The BSFL system consists of the Larvero, where the larvae 

feed and develop and the fly house, where the adult flies live 

and breed (Fig. 4). A properly managed rearing facility is vital 

for maintaining a steady supply of healthy BSF larvae and 

adults for waste processing. Substrates and early instar larvae 

(4-6 days old) are placed in the Larvero of the BSFL treatment 

unit to initiate the composting process. The number of BSFL 

introduced is determined by the amount of waste relative to 

the available volume and surface area (37). Specialized 

harvesting equipment is often unnecessary, as BSFL 

prepupae exhibit a self-harvesting behaviour, migrating away 

from the feeding substrate in search of pupation sites. At this 

stage, prepupae have emptied their digestive tracts, no 

longer feed and use their mouthparts to move in search of a 

safe location (29). 

Environmental and operational parameters 

Optimal rearing temperatures (27-30 °C) enhance survival, 

development and longevity in BSF, while extreme heat (36 °C) 

severely impairs growth and survival, highlighting critical 

trade-offs in life history traits. These flies are native to (sub)-

tropical and warm-temperate climates, with their mating 

behaviour being influenced by the availability of space and 

sunlight. However, small-scale indoor rearing has posed 

challenges due to their sensitivity to artificial light sources 

and cage dimensions. Larval competition strongly influences 

key life-history traits, such as development time, body weight 

and survivorship. Lower larval densities typically result in 

larger individuals and faster development. BSF growth is 

Fig. 3. Digestive system of black soldier fly. 
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shaped by various biotic and abiotic factors. These include 

the feeding substrate’s type, depth and aeration, alongside 

temperature, moisture, pH, feeding rate and larval density. 

For adult BSF, factors like cage size, fly density, light exposure 

and ambient temperature and humidity are also crucial (38). 

Adult nutrition 

The adult BSF also has a functional digestive system, enabling 

it to ingest and digest food. During metamorphosis, the larval 

midgut is shed and replaced with a new epithelium, which 

forms through the proliferation and differentiation of midgut 

stem cells. These finding contrasts with earlier assumptions 

that adult BSF do not feed, highlighting a shift in our 

understanding of their biology and the potential to optimize 

reproduction via dietary manipulation. Furthermore, the type 

of food provided influences the fly’s lifespan. These results 

not only confirm that the adult BSF can feed but also suggest 

that optimizing the fly’s diet could enhance its performance 

in mass rearing systems (30). When sugar and water were 

provided to adults, it increased longevity for both sexes. A 

protein-rich diet maximizes egg production, extends the 

oviposition period and improves female longevity for 

industrial and research purposes, producing three times 

more eggs compared to protein-free diets (39). 

Substrate quality  

Substrate diversity and utilization 

Despite constituting over half of total global waste, organic 

waste remains a largely untapped resource. BSF has emerged 

as a prominent species for addressing global agricultural and 

food waste issues, serving as a source of novel biomolecules 

with diverse applications. Still widespread adoption of BSF 

remains limited due to unclear regulations, low public 

awareness and negative perceptions of insect-based 

solutions. Technical challenges such as controlled rearing 

needs, inconsistent waste streams, lack of infrastructure, high 

startup costs and competition from traditional methods like 

composting also hinder progress. BSFL demonstrate 

significant potential for biotransformation, with the 

composition of the feeding substrate significantly influencing 

their growth. They efficiently convert organic waste into 

valuable byproducts, making them a sustainable waste 

management option. BSFL can consume various substrates, 

including formulated artificial diets and organic waste 

materials such as crop residue, dairy manure, poultry 

manure, human faeces, abattoir waste and sludges (19,                  

40, 41). 

Influence of substrate composition on larval traits 

BSFL growth, pupal size, sex ratio, reproductive success and 

fatty acid profiles are all influenced by the type and 

composition of the substrate-particularly its sugar and 

protein content. Factors such as food quality, quantity, 

temperature, pH, moisture content and larval density further 

impact BSFL performance (42). The optimal initial pH for 

BSFL production ranges from 6.0 to 8.0, promoting larval 

biomass and favourable life-history traits, whereas extremely 

acidic conditions (pH 2.0 and 4.0) negatively affect growth. 

Higher substrate pH increases larval output and reduces 

greenhouse gas emissions, optimizing BSFL growth and 

minimizing environmental impact (43). Moisture content is 

another critical factor influencing BSFL growth and survival. 

Stagnant liquid in the substrate can limit larval food access, 

affecting waste reduction rates (19). Larvae favouring 

substrates with up to 70 % moisture content (4). 

Pre-treatment and fermentation technologies 

Effective pre-processing of substrates, such as municipal solid 

waste (MSW), through the segregation of biodegradables, 

inerts and metals is crucial for composting technologies (14). 

The high moisture content in MSW and the elevated 

lignocellulosic composition of agricultural waste can hinder 

composting efficiency. However, pre-treatment methods 

such as hydrothermal treatment, ionization, pulsed electric 

field discharge and microbial treatment can enhance 

biodegradability and digestibility, thereby facilitating BSFL 

consumption and growth by improving waste recovery 

efficiency and increasing biomass surface area (14, 44). 

Certain organic wastes, such as sewage sludge and 

lignocellulosic materials, often lack essential nutrients 

required for optimal BSFL development. To support larval 

growth, these substrates can be blended with nutrient-rich, 

low-cost feedstocks such as palm kernel expeller or soybean 

curd residue. Moreover, microbial fermentation such as that 

using Aspergillus oryzae can break down complex 

lignocellulosic structures, improving nutrient accessibility 

 

Fig. 4. Flowchart of a basic BSF treatment process. 
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and overall bioconversion efficiency. For instance, fermenting 

maize straw with A. oryzae was shown to enhance protein 

content and fatty acid composition in BSFL biomass, 

although it also prolonged larval development and reduced 

adult lifespan and fecundity (40). The presence of heavy 

metals in the feed material can adversely impact BSFL life-

history traits, leading to the accumulation of toxic elements in 

the prepupa. High zinc levels cause larval mortality and 

infertility in eggs, significantly reducing production efficiency 

(45).  

Diverse applications of BSF (Fig. 5) 

Chitin 

BSF is a rich source of chitin, a multifunctional biopolymer with 
significant biological properties and diverse applications in 
biomedicine, antimicrobial agents and cosmetics (11). 
Byproducts of BSF farming, such as cocoons and sheddings, 
are abundant sources of chitin (11) and even dead flies can be 
utilized for extracting chitin as a primary product (46). The 
chitin content in BSF ranges from 8 % to 24 % depending on 
developmental stage, processing method and whether larvae, 
pupae, or sheddings are used (47). Additionally, chitin 
extracted from BSFL improves in quality and yield as the insect 
progresses through its life stages with increased crystallinity, 
enhanced thermal stability and a higher acetylation level of up 

to 94 %. This is primarily due to increased sclerotization and 
structural development of the exoskeleton. As larvae mature, 
they deposit more chitin and associated proteins (48). Among 
the various life stages of BSF, the pupal stage accumulates the 
highest amount of chitin. The high fat content in BSF makes fat 
separation an essential step before chitin extraction (11). 
However, the extraction and purification of chitin from BSF 
remain challenging due to the strong binding between chitin 
and proteins, requiring efficient processing techniques (49). Co-
fermentation has emerged as a cost-effective and eco-friendly 
technique that enhances chitin yield. Optimizing extraction 
processes is crucial for producing high-quality chitin and 

chitosan products (11). 

 

Manure 

Ineffective recycling of organic waste leads to environmental 

pollution and the loss of potential fertilizers (50). BSF 

composting is a sustainable and cost-effective solution, 

requiring minimal technical skills, low land use and offering a 

reduced ecological footprint (5). This process efficiently 

recycles nutrients, increasing nitrogen and phosphorus levels 

in treated residues while significantly reducing zoonotic 

bacteria such as Salmonella spp., to undetectable levels in 

harvested prepupae (50). 

 BSF frass, the residual by-product from larval digestion 
is a nutrient-rich organic fertilizer characterized by a balanced 
N-P-K ratio of 1:0.9:1.1 and a high dry matter content of around 
69.62 %, making it suitable for agricultural use (Table 1). Its 
slow-release properties, indicated by a low ammonium 
nitrogen content (15.78 % of total nitrogen) and a moderate 
carbon-to-nitrogen (C:N) ratio of 14.71, support long-term soil 
fertility. However, the frass shows high variability in 
micronutrient composition-particularly in iron (Fe), copper 
(Cu) and zinc (Zn) highlighting the need for feed-specific 
analysis for precision agriculture applications. With a slightly 
alkaline pH of 7.46, BSF frass can benefit acidic soils, although 
pH levels should be monitored to avoid imbalances. However, 

these values influenced by the larval feed substrate 
Additionally, post-processing methods such as composting 
may be required to stabilize the material and reduce potential 
phytotoxicity risks before field application (51). The high 
nitrogen fertilizer equivalence (NFE) of BSF manure was 
demonstrated its strong potential to enhance crop production 
sustainably in previous experiments (52). This study also 
compared the performance of BSF manure and a commercial 
organic fertilizer (SAFI) on maize (H513) under varying 
application rates. The application of BSF manure resulted in 
taller maize plants and higher chlorophyll concentrations than 
other treatments. Notably, grain yield increased by 14 % when 

7.5 t ha-1 of BSFFF was applied, compared to the same rate of 
SAFI (52). However, frass is primarily phosphorus-dominated 
and may not provide a well-balanced nutrient composition for 
all crops. Incorporating nitrogen-rich inputs could improve its 
nutritional profile, making frass-based fertilizers more effective 
(53) (Table 2). 

 

Antimicrobial peptides 

The BSF has one of the largest antimicrobial peptides (AMP) 

repertoires ever recorded in insects (55). BSF larvae thrive in 

Fig. 5. A flowchart of diverse applications of black soldier fly. 
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microbe-rich environments and serve as a potential source of 

AMPs, with their antibacterial activity increasing as the larvae 

age. AMPs play a crucial role in the innate immune defense 

against pathogens, offering an alternative to antibiotics due 

to the limited ability of microorganisms to develop resistance, 

making them promising candidates for next-generation 

antimicrobials. Peptides derived from BSF larvae have 

demonstrated strong antibacterial properties, positioning 

them as a novel source for antibacterial drug development 

(56). The Duox-TLR3 gene in BSF larvae exhibits antimicrobial 

activity by suppressing pathobionts through immune 

responses involving free radicals and AMPs. Duox and TLR3 

regulate AMP production in BSF larvae by mediating reactive 

oxygen species (ROS) generation and activating immune 

responses against pathogens, with silencing these genes 

leading to decreased AMP levels and dysbiosis (57). 

Additionally, diet influences AMP expression in BSFL, shaping 

their antibacterial activity against various bacteria. Moreover, 

BSF larvae secrete bactericidal compounds that inhibit house 

fly (Musca domestica) egg-laying and reduce foodborne 

pathogens such as Escherichia coli and Salmonella enterica. As 

a result, large-scale BSF farming does not pose a significant 

risk of disease transmission (37). 

Feed 

Food futurists anticipate that sustainability-focused societies 

will progressively embrace insects as alternative protein 

sources (14). By 2050, the consumption of animal products is 

projected to increase by 60-70 %, resulting in a higher 

demand for feed resources. However, traditional feed 

ingredients like soymeal and fishmeal are both expensive and 

may become scarce in the future. In this context, insect 

farming emerges as a sustainable alternative, offering a viable 

solution to meet the growing need for animal feed while 

reducing reliance on conventional resources (28) (Table 3). 

 The proteins found in BSFL are easily digestible, with 

protein digestibility ranging from 72.78 % to 78.67 % and are 

rich in essential amino acids, which are vital for the growth 

and development of ruminants (58). BSF larvae also have a 

high apparent metabolizable energy (AME) value (59). The 

prepupal biomass is rich in essential amino acids, with lysine, 

valine and arginine being the most abundant. Despite 

variations in the substrate, amino acid levels remained stable. 

Threonine, isoleucine, methionine and tryptophan were also 

present in consistent amounts, highlighting the nutritional 

reliability of BSF prepupae (6), though it is deficient in 

methionine, cysteine and tryptophan (59). Proteins can be 

extracted from BSF larvae using conventional methods such 

as aqua-based, salt, detergent and alkali solvent extraction, as 

well as non-conventional techniques like microwave, 

ultrasound, enzyme and pulsed electric field-assisted 

extraction (60).  

 BSF can partially synthesize fatty acids through de 

novo biosynthesis, utilizing carbohydrates as a primary source 

Nutrient BSF 
Larvae 

Fishmeal Soymeal 

Chemical composition                                     
(% in dry matter) 

   

Crude Protein 42.1 70.6 51.8 

Lipid 26.0 9.9 2.0 

Calcium 7.56 4.34 0.39 

Phosphorus 0.90 2.79 0.69 

Ca:P Ratio 8.4 1.56 0.57 

Essential amino acids                               
(g/16g Nitrogen) 

   

Methionine 2.1 2.7 1.32 

Cystine 0.1 1.2 0.80 

Valine 8.2 4.9 4.50 

Isoleucine 5.1 4.2 4.16 

Leucine 7.9 7.2 7.58 

Phenylalanine 5.2 3.9 5.16 

Tyrosine 3.6 3.1 3.50 

Histidine 3.0 2.4 3.05 

Lysine 6.6 7.5 6.18 

Threonine 3.7 4.1 3.78 

Tryptophan 0.5 1.0 1.36 

Non-essential amino acids               
(g/16g Nitrogen)    

Serine 3.1 3.9 5.18 
Arginine 5.6 6.2 7.64 

Glutamic Acid 13.2 12.6 19.99 

Aspartic Acid 11.0 9.1 14.14 

Proline 6.6 5.6 5.40 

Glycine 5.7 6.4 4.52 

Alanine 7.7 6.3 4.54 

Table 3. Comparison of nutritional composition of BSF larvae,                   
fishmeal and soymeal (28) 

Manure Organic C (%) N (%) C:N P (%) K (%) Ca (%) Mg (%) 

BSF manure 50.0 3.22 14.71 1.24 2.93 0.88 0.47 

Rabbit manure 30.1 1.01 29.8 0.54 1.95 1.15 0.40 

Cow dung 26.5 1.86 14.24 0.82 2.11 1.01 0.51 

Poultry manure 17.8 2.91 6.12 0.84 3.79 3.34 0.64 

Green manure 23.6 2.51 9.40 0.52 3.04 3.01 0.10 

Pig manure 20.1 2.16 9.77 0.80 2.16 1.45 0.54 

Table 2. Comparative nutrient composition of different manures (51, 54) 

Table 1. Physico-chemical composition and nutrient profile of BSF 
manure (51) 

Category Parameter Unit Value 
Physical Dry Matter (DM) % 69.62 ± 18.80 

 Organic Matter 
(OM) 

% DM 86.22 ± 5.17 

 pH - 7.46 ± 1.12 

 Electrical 
conductivity 

mS cm-1 4.03 ± 1.69 

Macronutrients Total Nitrogen 
(N) 

g kg-1 DM 32.20 ± 8.37 

 Ammonium-N 
(NH₄+-N) 

g kg-1 DM 5.60 ± 3.08 

 C:N Ratio - 14.71 ± 4.56 
 Phosphorus (P) g kg-1 DM 12.40 ± 4.34 
 Potassium (K) g kg-1 DM 29.30 ± 10.26 
 Magnesium (Mg) g kg-1 DM 4.70 ± 2.12 
 Calcium (Ca) g kg-1 DM 8.80 ± 8.27 
 Sulfur (S) g kg-1 DM 6.30 ± 3.02 
Micronutrients Copper (Cu) mg kg-1 DM 43.76 ± 64.33 
 Boron (B) mg kg-1 DM 34.54 ± 26.94 
 Zinc (Zn) mg kg-1 DM 136.32 ± 98.15 
 Manganese (Mn) mg kg-1 DM 79.54 ± 35.00 

 Iron (Fe) mg kg-1 DM 1808.40 ± 
1736.06 
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of acetyl-CoA. However, it cannot produce polyunsaturated 

fatty acids; instead, it accumulates them from the diet and 

metabolizes them into saturated forms (61). Saturated fatty 

acids (SFA) constitute up to 76 % of the total fatty acids in 

larvae, followed by monounsaturated fatty acids (MUFA) at up 

to 32 and polyunsaturated fatty acids (PUFA) at up to 23 %. 

Regardless of dietary composition, lauric acid (C12:0) is the 

most abundant SFA, making up as much as 52 % of the total 

fatty acid content, while palmitic acid (C16:0) and oleic acid 

(C18:1 n-9) contribute 12-22 % and 10-25 %, respectively (10) 

(Table 4). 

 BSF biomass is nutritionally rich in protein, fat and 

minerals, while having relatively low fiber content. Its crude 

protein content ranges from 30 % to 57 %, while fat content 

varies between 21 % and 42 % of dry matter based on the 

substrate (Table 4). A study on metabolic changes in the 

nutritional composition of BSF from egg to adult revealed 

significant shifts in both crude fat and protein content. During 

larval development, a rapid increase in crude fat was 

observed from 4 to 14 days, reaching a maximum of 28.4 % in 

dry mass. At the same time, crude protein content 

continuously decreased, hitting a minimum of 38 % at the 12-

day larval stage before peaking at 46.2 % in the early pupa 

stage. A sharp decrease in crude fat occurred from early 

prepupae (24.2 %) to late pupae (8.2 %). Crude protein, 

however, reached its highest value of 57.6 % at the 

postmortem adult stage, with a fat content of 21.6 % (6). 

 Studies indicate that BSF larvae can be a partial 

substitute for traditional animal feed in poultry, pig and fish 

diets. However, replacing feed entirely or excessively may lead 

to reduced performance due to the larvae’s high fat content, 

ash content and the effects of processing (42). BSF larvae 

have the potential to be processed into a textured protein 

with a unique flavor for human consumption. However, their 

acceptance is limited by social stigmas, legal restrictions on 

waste-fed organisms and existing taboos surrounding insect 

consumption (14). Large-scale biorefineries could significantly 

enhance the sustainability of BSFL for human consumption in 

the future (3). 

Biodiesel 

The bioconversion of waste by BSF not only supports effective 

waste management but also serves as a sustainable source of 

biodiesel, positioning it as a valuable alternative feedstock for 

renewable energy (64). Biodiesel production from BSFL 

demonstrates significant potential across different scales. A 

small-scale urban biofuel plant can generate approximately 

122.73 L/day of biodiesel from 1 ton of organic waste, while 

medium-scale rural production increases to 1678.85 L/day. 

Large-scale industrial plants can achieve an impressive 

output of 22272.73 L/day, underscoring the scalability and 

economic feasibility of BSFL as a biofuel source (65). 

 Lignocellulosic biomass, derived from agricultural 

waste, is another promising resource for biofuel production. 

This approach offers a sustainable alternative to fossil fuels, 

addressing global energy shortages while mitigating climate 

change impacts (47). Additionally, BSFL biodiesel production 

produces fewer carbon emissions than other biodiesel 

feedstocks, such as microalgae, used cooking oil and non-

edible oils, making it an environmentally friendly alternative. 

The diet of BSFL plays a crucial role in biodiesel yield, as it 

directly influences fat accumulation (Table 5). BSFL contains 

substantial amounts of fatty acids, contributing up to 70 % 

extractable oil, which can be efficiently converted into 

biodiesel (66). 

 The extracted lipids undergo transesterification using 

sulfuric acid as a catalyst in methanol, facilitating the 

conversion into biodiesel (64). Despite its promise, research 

on biodiesel production from invertebrates, particularly 

insect larvae, remains scarce. Compared to traditional 

catalytic methods, BSFL biodiesel production is highly 

efficient, achieving up to 94 % yield through non-catalytic 

transesterification. This process eliminates the need for costly 

catalysts and simplifies downstream purification, significantly 

reducing both production costs and energy input (66). 

 Harvesting fifth instar BSFL is more beneficial for 

biodiesel production due to its higher lipid content, greater 

FAME yield and lower chitin content, which reduces 

processing challenges (70) (Table 6). 

Pigments 

Table 4. Crude Protein (CP) and Crude Fat (CF) composition of black 
soldier fly larvae and prepupae reared on different substrates 

Parameter Fifth instar BSFL Sixth instar BSFL 
Lipid content (%) 34.23 ± 0.65 25.88 ± 0.36 
Chitin content (%) 7.61 ± 0.93 18.62 ± 1.25 
Protein content (%) 34.66 ± 0.31 37.70 ± 0.14 
Nitrogen content 
(%) 

6.07 ± 0.01 7.32 ± 0.06 

FAME yield (%) ~33 ~25 

Biodiesel 
composition                 
(FAME %) 

C12:0 (~60 %), 
C14:0 (~15 %), 
C16:0 & C18:1              

(~10 %) 

Similar 

Table 6. Comparison of biochemical composition and biodiesel yield 
between fifth and sixth instar black soldier fly larvae (70) 

Organic waste 
Biodiesel produced

(g/1000 BSFL) 
Reference 

Cattle manure 35.5 g (67) 
Pig manure 57.8 g (67) 
Chicken manure 91.4 g (67) 
Rice straw (30 %) + 
Restaurant solid waste 
(70 %) 

21.9 g (68) 

Food waste 94.0 g (69) 

Table 5. Biodiesel production from black soldier fly larvae reared on 
different organic waste sources 

Substrate 
Growth 

stage 
% CP % CF References 

Abattoir waste larvae 56.3 NA (62) 
Human feces larvae 35.5 NA (62) 
Primary sludge larvae 16.9 NA (62) 
Digested 
sludge 

larvae 14.7 NA (62) 

Cow manure Prepupae 41.2 ± 2.1 35.7 ± 2.9 (41) 
Poultry 
manure 

Prepupae 41.7 ± 4.0 36.2 ± 3.5 (41) 

Pig manure Prepupae 42.8 ± 4.49 36.5 ± 3.9 (41) 
Restaurant 
waste 

Prepupae 43.1 38.6 (6) 

Biogas 
digestate 

Prepupae 42.2 21.8 (6) 

Chicken feed Prepupae 41.2 33.6 (6) 
Vegetable 
waste 

Prepupae 39.9 37.1 (6) 

Fruits Prepupae 37.8 41.7 (63) 

Horse manure Prepupae 40.9 12.9 (63) 

FAME: Fatty Acid Methyl Ester. 
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BSF adult flies are a potential source of natural pigments, 

including melanin and ommochromes (71). Eumelanin-type 

pigments are synthesized throughout all life stages of BSF, 

including larvae, pre-pupae, pupae and adult flies (dead flies), 

with the highest melanin content found in the cuticles, where 

it remains even after adult emergence. Melanin is also present 

in the insect body in a complex with lipids. It can be extracted 

in two forms: as a melanin-chitin complex and as water-

soluble melanin, while ommochromes are specifically 

extracted from BSF eyes (71, 72). These pigments exhibit 

strong antioxidant and antiradical properties. It can also be 

used as natural antioxidants and as food colorants. These 

pigments hold significant industrial and biotechnological 

potential in biomedical applications as natural antioxidants, 

in environmental remediation for contaminant sorption and 

in biodegradable pigment production (71). Melanin is also 

known for its distinct physical and chemical properties. These 

attributes make it a promising alternative biopolymer with 

potential applications in environmental sustainability (73). 

Economic and environmental potential of BSF farming 

BSFL offer environmental sustainability, economic efficiency 

and industrial applications, creating new economic 

opportunities for industries and entrepreneurs, especially in 

developing countries (5). BSFL efficiently utilize organic 

waste, often at little or no cost, enabling effective waste-to-

feed conversion (11). Low-cost insect-based feed production 

can generate employment and improve livelihoods for both 

farmers and urban entrepreneurs. Inclusive business models 

can integrate smallholder farmers into BSFL-based 

agribusiness, enhancing income opportunities and food 

system resilience (1). The use of BSF-derived animal feed can 

help offset waste collection costs, fostering small-scale 

entrepreneurial ventures in organic waste management. With 

a well-established market, BSFL production could further 

enhance profitability for small-scale entrepreneurs (19). 

Inclusive business models that incorporate insects in animal 

feed can help address socio-economic and environmental 

challenges in developing countries. This approach aligns with 

the United Nations’ Sustainable Development Goals by 

promoting sustainability and economic resilience. 

Additionally, organizing farmers into cooperatives can 

enhance supply consistency and strengthen their position 

within the value chain (44). Centralized BSFL plants yield the 

highest financial returns, while decentralized approaches 

offer benefits such as job creation, reduced transport costs 

and smaller footprints. A hybrid model, with decentralized 

waste treatment and centralized larvae processing, can 

optimize both financial viability and community benefits. 

Local government support is a key to strengthening 

decentralized networks. Key improvements needed for the 

expansion of BSF farming include enhanced government 

support, cost-effective investments, lower operational 

expenses, improved coordination among regulatory bodies 

and increased consumer acceptance (74). A lack of 

harmonized regulations across countries remains a major 

bottleneck for international trade and scalability of BSF-

derived products. Developing globally accepted safety 

standards and feed regulations is critical (9).  

 BSFL significantly mitigate environmental pollution by 

reducing volatile emissions from decomposing animal waste, 

a major contributor to environmental degradation. BSFL 

systems also demonstrate high water use efficiency and 

require significantly less land compared to conventional 

livestock systems, making them ideal for sustainable protein 

production in resource-limited settings (12). The life cycle 

assessment (LCA) of BSFL-based food waste conversion 

indicates a low global warming potential (GWP) of 17.36 kg 

CO₂ per ton of processed waste (44). Minimal waste retention 

time is crucial for effective pathogen reduction, with 

antibacterial effects potentially stemming from interactions 

between larval secretions and bacterial structures (50). 

Genetic diversity and population structure 

The BSF is a useful model for studying genetic differentiation, 

dispersal patterns and geographic lineages (7). Recent 

phylogenetic analyses have revealed a close relationship 

among certain haplotypic populations of BSFL across 

different biogeographic regions, suggesting a cosmopolitan 

distribution potentially influenced by anthropogenic factors 

(75). The assembly of the BSF genome was achieved using 

advanced sequencing technologies such as Pacific 

Bioscience, 10X Genomics linked read and high-throughput 

chromosome conformation capture sequencing, resulting in a 

highly contiguous genome spanning 1.01 gigabases (Gb) with 

99.75 % of scaffolds successfully assembled into 

pseudochromosomes representing the organism's seven 

chromosomes. Notably, chromosomes one to six in BSF 

resemble autosomes, while chromosome seven exhibits’ 

characteristics typical of an X chromosome in males, 

highlighting the unique sex determination system of BSF (76). 

The ‘677 CO1 sequences’ refer to genetic data obtained from 

analysing the cytochrome oxidase subunit 1 (CO1) gene in 

BSF. The CO1 gene is commonly used as a DNA barcode 

marker due to its high variability among species, universal 

primer design, established reference in molecular taxonomy, 

ease of sequencing, ability to provide phylogenetic insights 

and its application in biodiversity studies. This gene is 

commonly utilized in molecular studies for genetic diversity 

analysis and species identification due to its relatively 

conserved nature and informative data about evolutionary 

relationships. Analysis of 677 CO1 sequences globally 

identified 52 haplotypes, including ten major ones, 

showcasing significant genetic diversity. Phylogenetic 

analyses of 60 complete mitochondrial genomes revealed 

evolutionary relationships among major haplotypes, 

estimating separation events to over 2 million years and 

suggesting complex migration patterns (77) (Fig. 6).  

 Research investigating genetic and phenotypic 

changes during the early domestication of BSF revealed rapid 

differentiation and eventual collapse due to inbreeding 

depression, emphasizing the importance of maintaining 

genetic diversity and phenotypic variation for long-term 

population viability and productivity. Effective genetic 

management, including the maintenance of genetic diversity 

through broad founder populations and the introduction of 

wild flies, is crucial for sustainable and profitable 

entomofarming, particularly with species like the BSF that 

face challenges such as founder effects and loss of genetic 

diversity over generations in captivity (17). The laboratory 
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colony exhibits a severe lack of genetic diversity across 

generations when compared to natural populations, which is 

associated with phenotypic divergence, potentially influenced 

by a founder effect, genetic processes and inbreeding within 

the captive population. Notable declines in genetic diversity 

and rapid divergence of captive BSF populations from their 

wild counterparts have been observed, emphasizing the 

necessity for effective genetic management strategies in BSF 

farming. The wild BSF population has shown high genetic 

diversity, characterized by low relatedness and high 

heterozygosity, suggesting a recently admixed population. In 

contrast, the mass-reared colony exhibited a substantial 

decline in genetic diversity across generations, showing signs 

of inbreeding and relatedness coefficients comparable to full 

siblings (78). Non-metric dimensional scaling analysis 

revealed phenotypic and genetic variations across 

generations, highlighting the impact of domestication on 

traits such as clutch size, pupae weight and exclusion                   

rates (17). 

 The variability in conversion efficiency of the same feed 

or feeds with similar nutrient composition, observed in 

different laboratories, can be attributed to genetic differences 

among colonies, like differences between genetic lines in 

livestock species like chickens and pigs (79). Genetic drift, 

mutations, or selection occurring after the initial colony 

establishment are factors affecting genetic diversity and 

performance in captive insect populations. Monitoring 

inbreeding, genetic drift and introducing genetic diversity 

through outbreeding are crucial practices for maintaining 

captive insect populations' performance. Molecular genetic 

markers like microsatellites are valuable tools for evaluating 

genetic diversity and homozygosity in BSF colonies. 

Understanding details such as the number of generations since 

colony establishment, founder population size and any genetic 

bottlenecks is crucial for comprehending genetic variability 

within BSF populations (80). Successive generations of BSF 

colonies show increasing population differentiation and 

declining genetic diversity, driven by both natural and human-

mediated selection. Creating barcodes for cultures is suggested 

as an affordable method for genetic characterization and 

Fig. 6. Bayesian time tree of 57 mitochondrial genomes of Hermetia illucens, aligned using MAFFT and analyzed using BEAST. The D-loop 
regions were excluded and the tree was rooted using Exaireta spinigera (Stratiomyidae). Haplotypes based on CO1 sequences are color-coded; 

commercial individuals are marked with asterisks. Green circles indicate bootstrap support values >0.95 from maximum likelihood analysis 
(500 replicates) (77). 
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preserving DNA and specimens for later studies is 

recommended to bolster genetic research (16).  

 Genotype-by-diet interactions in BSF necessitate 

tailored breeding strategies, as the genetic background of BSF 

and environment-mediated interactions significantly impact 

larval traits, challenging the notion of broad conspecific 

plasticity. Tailored BSF breeding strategies are essential for 

efficient agricultural support, enabling precision breeding and 

feeding schemes that optimize production outcomes. 

Diversified selective breeding strategies can create resilient, 

multipurpose BSF breeds capable of consistent performance 

across various waste streams, thereby balancing profitability 

and sustainability. The influence of genotype on larval 

production further highlights the importance of selecting 

appropriate genetic backgrounds for optimal production (81). 

Additionally, maintaining genetic soundness and optimizing 

breeding conditions are crucial for sustaining healthy breeding 

stocks and enhancing the efficiency and quality of insect 

production. High-quality insect populations depend on both 

genetic health maintenance and optimized rearing 

environments, emphasizing the interconnectedness of genetic 

and environmental factors in successful BSF production (15). 

Genomic resources and tools 

Next-generation genome-wide DNA sequencing has also 
proven beneficial for insect farming, allowing for the selection 
of desirable traits and enhancing efficiency and productivity. 

Notably, advancements in genome editing techniques such as 
CRISPR/Cas9 have revolutionized genetic manipulation in non
-model organisms like the BSF. Utilizing tools like CRISPR/
Cas9, researchers have successfully modified the genetic 

makeup of BSF, creating flightless and enhanced feeding 
capacity phenotypes. Furthermore, CRISPR/Cas9 has become 
instrumental in precise genome engineering across diverse 
organisms, offering versatility and precision in gene editing 

(82, 83). Zinc finger nucleases (ZFNs) and transcription 
activator-like effector nucleases (TALENs) also play vital roles 
in precise genome engineering (84). Additionally, DNA pool 
sequencing has been employed to identify single nucleotide 

polymorphisms (SNPs) in BSF populations, providing valuable 
insights for developing genotyping chips and supporting 
advanced genomic selection and breeding programs (85). 
Transcriptomics and metagenomics are essential fields in 

understanding gene expression patterns, regulatory 
mechanisms and the genetic content of entire organism 
communities, particularly in entomology studies (86, 87). 
Technologies like sequencing, CRISPR/Cas9 genome editing 

and DNA pool sequencing, have revolutionized research in 
entomology, particularly concerning the BSF and insect 
farming. These technologies enable precise selection of 
desirable traits, identification of genetic variations and 

development of genotyping chips for advanced breeding 
programs. Transcriptomics and metagenomics studies 
further contribute to understanding gene expression patterns 
and the genetic content of insect communities (88). A 

transgenic system established for BSF using specific 
promoters and transposases has shown enhanced 
transformation rates, providing essential tools for genetic 
manipulation and basic research in BSF (89). 

Genetic improvements for optimizing traits 

Assessing genotype-by-diet interactions in the BSF emphasizes 

the need for tailored breeding strategies. The significant 

impacts of BSF genetic background and environment-

mediated interactions on larval traits challenge the notion of 

broad conspecific plasticity in BSF. Establishing tailored BSF 

breeding is crucial for efficiently supporting the agricultural 

sector and indicates opportunities for precision breeding and 

feeding schemes. Diversified selective breeding strategies show 

potential for creating resilient, multipurpose BSF breeds that 

perform consistently across various waste streams, aiming to 

balance profitability and sustainability in the sector. The 

influence of genotype on larval production in BSF stresses the 

critical importance of selecting appropriate BSF genetic 

backgrounds for optimal production outcomes (81). BSF larvae 

have the ability to accumulate heavy metals like cadmium, 

lead, mercury and arsenic (45). Three metallothionein genes 

(BSFMT1, BSFMT2A and BSFMT2B) were identified in BSF, 

suggesting their involvement in cadmium (Cd) tolerance. This 

research may indirectly contribute to utilizing BSF for organic 

waste conversion, highlighting the practical applications of 

understanding Cd detoxification mechanisms in BSF (90). 

 Genetic modifications, such as the use of CRISPR/Cas9 
to disrupt the PTTH gene, have been employed to extend the 

larval stage of BSF, resulting in delayed pupation and increased 

larval size and weight. This genetic manipulation improves 

waste consumption efficiency (82). Artificial selection led to 

substantial improvements in larval body weight after 10, 13 

and 16 generations of selection (91). Genetic soundness and 

optimization are crucial for maintaining healthy breeding 

stocks and optimizing insect production. Utilizing both genetic 

and environmental factors is essential for enhancing 

production efficiency and quality by understanding the genetic 

basis of desired traits and their constraints. Breeding and 

maintaining high-quality insect populations, including 

maintaining genetically healthy populations and optimizing 

rearing environments, are crucial for successful insect 

production (15). Manipulating the fatty acid content in the 

substrate of BSF larvae allows control over the resulting fatty 

acid profile of BSF oil (92). The main drawback to BSF as a food 

source is their deficiency in fat-soluble vitamins like Vitamins A, 

D and E. An alternative is to genetically engineer BSF that can 

synthesize these essential vitamins. A BSF line has been 

engineered with the two main carotenoid biosynthetic genes, 

CarRA and CarB, for the production of provitamin carotenoids 

within the Vitamin A family. This manipulation involves 

inserting transgenes into the BSF genome for the expression of 

functional protein products (93). 

 Temperature plays a crucial role in the development of 

BSF, influencing traits like adult longevity, weight and larval 

development time, which are essential for fitness and 

reproductive success. BSF showed tolerance to potential 

overwintering, with prepupae and pupae exhibiting the highest 

cold tolerance (6). The Bioforte colony underwent selective 

breeding at 12 °C and 16 °C to develop cold-tolerant BSF with 

improved production performance. After nine generations, 

there were significant improvements in larvae weight, survival 

rate and dry matter conversion rate (94). Genetic diversity and 

gut microbiome of BSF from various global locations are 
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explored. Using genetic analysis and metagenomics, distinct 

genetic branches and predominant bacterial families in BSF 

samples are identified. Haplotype mapping reveals shared 

genetic connections among samples from different countries, 

providing key insights into BSF’s global genetics and gut 

microbiome (95). 

 The microbiota plays a pivotal role in BSF larvae 
growth, affecting organic substrate utilization and conversion 
into protein, fat and chitin (2). Specific bacteria like 
Enterococcus, Klebsiella, Morganella, Providencia and 
Scrofimicrobium are crucial in substrate breakdown and 

influence growth patterns, longevity and reproduction (44). 
The gut biome of BSF larvae is genetically adapted for 
decomposing organic matter, leading to higher levels of 
antimicrobial peptides (AMPs) and improved survival rates 

when consuming organic matter (96).  

 Identification of genes related to immune responses 
and chemoreception systems indicates adaptations to 

pathogen-rich environments and host specialization in BSF 
(82). The genes responsible for encoding AMPs derived from 
BSF were cloned in other organisms like silkworms, imparting 
disease resistance (97). A total of 180 antibiotic resistance 

genes (ARGs) and 10 mobile genetic elements (MGEs) were 
identified in the larval gut, with tetracycline resistance genes 
being predominant (98). Lastly, lignin content has been found 
to negatively impact larval growth, suggesting the need for 

lignin-degrading microorganisms in substrates rich in lignin 
(99). The continued optimization of the microbiome is 
expected to play a significant role in improving BSF traits and 
expanding its potential for industrial-scale rearing and 

biotechnological applications (2). 

 

Conclusion 

BSF (Hermetia illucens) farming presents a promising solution 
for sustainable waste management, alternative protein 

production and renewable energy generation. Advances in 
genetic research, microbiome optimization and selective 
breeding can further enhance its productivity and 
adaptability, unlocking significant environmental and 

economic benefits. However, to maximize its potential, 
challenges such as genetic diversity conservation, regulatory 
harmonization and public acceptance must be addressed. 
Future research should focus on waste substrate 

optimization, tailored breeding programs and novel 
applications, including antimicrobial peptides, chitin 
extraction and pigment production. Additionally, 
bioprocessing advancements and automation can improve 

efficiency and scalability, making BSF farming a viable 
solution for global sustainability, food security and 
environmental resilience. Integrating innovative technologies 
and fostering collaborations will allow BSF to play a critical 

role in closing nutrient loops, reducing waste and supporting 
circular bioeconomy initiatives. As research progresses and 
these technologies are scaled, BSF has the potential to 
become a key player in transforming waste management 

systems, contributing to sustainable food production and 
enhancing environmental sustainability on a global scale. 
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