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Abstract

Rice is one of the most extensively cultivated crops worldwide; however, traditional paddy cultivation has raised significant
environmental concerns, particularly the emission of greenhouse gases (GHGs), namely methane gas. According to FAOSTAT 2020,energy
consumption in agriculture is around 0.9 Gt CO,-eq in 2018. Methane, a major GHG, is released into the atmosphere from rice fields
through three primary pathways: diffusion, ebullition or rising bubbles and plantmediated transport. Its production is primarily a
microbially mediated anaerobic process, promoted by the flooded conditions typical of paddy systems. Methane emissions can vay
considerably based on climatic factors such as air and soil temperature, as well as the season of cultivation. Rice fields emit GHGs even
during fallow periods. Additionally, varietal differences among rice cultivars significantly influence methane release, with breeding efforts
targeting low-emission varieties showing promising results. Agronomic practices, including alternate wetting and drying (AWD), optimized
nutrient management and the incorporation of specific organic amendments, have been effective in reducing methane emissions fom
paddy fields. This review provides a comprehensive overview of greenhouse gas (GHG) emission especially methane, its production

process or methanogenesis, emission pathways as well as the practical mitigation strategies to be adopted in lowland rice cutivation.
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Introduction

The rising temperature of Earth and the GHG emissions linked
with various agricultural practices have become critical
concerns. According to IPCC (Intergovernmental Panel on
Climate Change) 2022, GHG emissions from Agriculture, Forest
and Land Use (AFOLU) is about 11.9 + 4.4 GtCO»-eq yr * from
2010 to 2019. From this rice cultivation contributes to 0.49-
0.723 GtCO,-eq yr' in 2010. About 70 % of methane, one of the
most potent GHG is from anthropogenic activities namely,
agriculture, agro based industries, mining etc (1).

Rice is an essential food for many of the global
population, so balancing food security with emission reduction
is complex. Asia is the largest consumer and producer of rice. It
consists of largest area in rice field which significantly
contributes towards GHG emission. In 2018, India and China
emitted maximum methane through agriculture and each
country contributed to its estimated 650 million tonnes (Mt)
COeq annual emissions as reported by FAOSTAT, 2020. The
energy consumed in agriculture was 0.9 Gt CO,-eq yr' in 2018,
which had increased by 23 % since 2000 (2).

The major factors which contribute towards GHG
emission are the peaty composition of soil in the wetland with
high organic matter and a very low pH (2.6 to 6.3). The acidic

environment can suppress certain microbial activities, though
it remains conducive for methane-producing bacteria under
flooded conditions. Rising temperatures, particularly during
shorter rainy seasons, may increase methane emissions due to
enhanced bacterial activity. Climate change brings additional
complexities, including variable rainfall patterns, higher
average temperatures and salinity shifts, all of which can
intensify methane emissions from rice paddies.

Therefore, to identify more effective strategies to tackle
the GHG emission from wetlands and to bridge the gap by
knowledge of latest technology, this review explores methane
emission pathways, influencing factors and the latest
strategies to reduce emission from rice fields.

Literature review methodology

A systematic literature review of articles on the strategies for
controlling GHG emission from lowland rice fields was
undertaken. Articles were searched from multiple databases,
including Google scholar search engine, Web of Science and
Science Direct. Keywords such as methanogenesis, methane
emission from rice field, mitigation strategies in rice fields etc.
were used for searching of articles. These keywords form part
of article title or abstract. The article search was limited to
those published till 2024. Selected writings include research
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articles, review articles, conference papers and short
communications with direct and contextual relationship to the
GHG emission from the rice fields and its mitigation practices.
Literatures were collected focussing the research studies in
Asia, over past two decades (1997-2024).

This review article aims to
interconnected specific objectives:

connect three

i. To know in detail the process of methane emission from rice
i.e. methanogenesis.

ii. To study the factors which boost GHG emission in rice.

iii.To assess the mitigation practices for controlling the GHG
emission in rice.

Methanogenesis

Methanogenesis is the biological production of methane by
microorganisms called methanogens. Agriculture and
methane related emissions contribute towards methane
sources about 130 and 100 Tg/year respectively, besides this
waste related emission extents to 70-90 Tg/year. One of the
major anthropogenic sources is biomass burning which
causes emission by 35 Tg/year (3). Global methane emission
due to paddy cultivation is approximately 46 Tg/year (4). In
paddy field, under waterlogged conditions, the redox
potential ranges from 250 to -300 millivolts (5). As the oxygen
gets depleted in soil, reduction process occurs in sequence
and methane is released when redox potential is less than -
200mV (6). Fig. 1 depicting redox sequence, clarifies that
reduction of nitrate and manganese compounds takes place
first and then ferric compounds are reduced to ferrous form
and lastly sulphate gets convert to sulphides.

The major role in methane production is done by
methanogens (anaerobe archaea) through anaerobic
conditions by converting carbon containing compounds to
methane. The presence of anoxic zones in wetlands caters
towards production of methanogens which produce methane
and transfer it through atmosphere by the passage of rice
aerenchyma and through general methods of diffusion and
ebullition (8).

2

On the other hand, methanotrophs (methane oxidizing
bacteria) in oxidized zone causes aerobic oxidation of methane
which leads to production of carbon dioxide, this acts as an
important biotic sink. By assessing physiochemical properties
of soil, vegetation, soil fauna and climatic conditions the
efficiency of methanotrophs is determined. Anaerobic zones
are more prominent under high temperature and rainfall and
this produces more methane. Apart from this, atmospheric
pressure changes the apparent motion of methane which
influences oxygen diffusion into system and prompts methane
emission into the atmosphere (9).

Pathways of methane emission in rice field

In flooded rice soils, methane (CH,) produced by anaerobic
decomposition is released to the atmosphere through three
main pathways:

Diffusion

Methane slowly diffuses through the soil and water layers into
the atmosphere. This process is relatively slow but contributes
to overall emissions (10).

Plant mediated transport

Rice plants play a major role in methane emissions by acting as
conduits for methane to escape. Methane is taken up through
the roots and transported through specialized gas channels
(aerenchyma) in the plant stems and leaves, eventually being
released into the atmosphere. This plant-mediated pathway is
the most efficient route and accounts for the majority of
methane emissions in flooded rice fields. About 90 percent of
methane gas is released by paddy aerenchyma (11).

Rice cultivars with increased biomass and tiller
numbers indeed play a crucial role in methane dynamics
within flooded soils. The expanded aerenchyma tissue in these
cultivars facilitates better oxygen transport from atmosphere
to the rhizosphere (the root-soil interface). This oxygen
availability encourages methane oxidation by methanotrophic
bacteria in the soil, which convert methane into less harmful
compounds before it can reach the atmosphere.
Consequently, rice varieties with higher shoot biomass and
larger aerenchyma volumes help mitigate methane emissions
(12).
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Fig. 1. Conversion of complex organic carbon to methane (7).
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Ebullition

Methane can form bubbles (ebullition) in the soil, which rise
and burst at the water surface, releasing methane directly into
the atmosphere. This is a quicker release mechanism, often
occurring when methane concentrations in the soil reach a
threshold that triggers bubble formation. Methane ebullition
from paddy field can be controlled by atmospheric pressure,
soil temperature and water table (13). Reduction in
atmospheric  pressure causes lesser formation of
methane bubbles in peatlands (14). A study conducted in
Thailand demonstrated that a decline in atmospheric pressure
led to a reduction in methane ebullition (15).

It was reported that rise in temperature from 5 to 35 °C
increased CO, emission rate by 2.4-3.7 times in swamps and
peat wetlands (16). Temperature elevation can also stimulate
nitrogen mineralization in soil which provides nutrient supply
for nitrification and denitrification finally leading to N.O
production (17). The pathways of methane emission are
detailed in Fig. 2.

Seasonal variations in GHG emission

Seasonal variations in GHG emissions from rice fields are
indeed significant, with distinct differences observed
between the Kharif (monsoon) and Rabi (dry) growing
seasons. In regions of eastern India where two rice crops are
cultivated, studies have shown that methane (CH,) emissions
were about 1.8 times higher during the Kharif season (July-
November) than during the Rabi season (January-April)
during national campaign 2002 as shown in Table 1 (19).

Several factors contribute to this seasonal disparity. In
coastal saline soils of Odisha, India, during wet season, the
cumulative seasonal CHs flux ranged between 119.51 and
263.60 kg/ha, while in dry season, a lower CH; emission of
15.35-100.88 kg/ha was observed (20). Methane production
was remarkable in non-saline alluvial soil (630.86 ng CH4/g)

compared to acid sulphate pokkali soil (12.97 ng CH4/g) due to
presence of sulphates. It was also observed that methane
production was low in coastal saline soil (142.36 ng CH4/g) but
increased upon leaching the soil of its salt content (21).
Waterlogged conditions are conducive to anaerobic
decomposition promoting methane production (22), hence
monsoon rains in kharif results in higher methane emission
compared to dry rabi. Other factors such as elevated CO,,
increase in temperature and its combination has increased the
methane emission by 28-120 %, 38-74 % and 82-143 %,
respectively (23).

There is significant effect of water management in the
fallow season as it controls the production and emission of
CHa during the fallow and the following rice seasons. The
population and activities of methanogens are lower in rice
fields that are drained and dry in the fallow season (24). In
fallow season, the methanogenesis is prevented by draining
the overlaying water layer. This has a significant influence on
CHs production and emission in subsequent rice season,
because after reflooding much time is taken by methanogens
to regain the population (25). But CH4 is continuously
produced and emitted in flooded rice fields in the fallow
season (26). Therefore, CHs flux is found in flooded condition
and not in drained fields during fallow season (27).

Investigation on the impact of different rice straw
treatments on methane emissions in different seasons showed
that the incorporation of rice straw especially in the second
crop season resulted in substantially higher methane fluxes
compared to removing rice stubble or burning the straw (28).

Post-harvest management significantly influences the
net Global Warming Potential (GWP) of paddy rice cultivation
by altering GHG emissions during the post-harvest period and
the subsequent growing season, without compromising the
carbon sequestration potential. Specifically, the combined use
of non-winter flooding and delayed straw incorporation is
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Fig. 2. Pathways of methane emission in rice (18).
Table 1. Effect of seasons Rabi and Kharif on methane flux
Seasons Soil organic carbon (%) Methane flux (g/m?) Enhancement factor
Rabi 1.08 12.98
Kharif 0.92 23.04 1.8
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more effective in reducing both methane (CH,) and carbon
dioxide (CO,) emissions. This effectiveness is primarily due to
avoiding straw incorporation during periods of higher
temperatures conditions that favour increased CH, production
and enhancing soil redox potential (Eh) in the next growing
season, which suppresses anaerobic microbial activity
responsible for methane emissions (29).

Impact of varietal difference in methane emission

Studies have shown that certain hybrid rice varieties with 50-
60 % more shoot biomass emit less methane than traditional
indica varieties as it has enhanced aerenchyma which
improves oxygen flow to the rhizosphere, thereby fosters
methane oxidation and reduces methane emissions (30). In
Indonesia, the amounts of CHs; emitted for 1 kg grain
production ranged from 53 (Atomita-4) to 74 (Kapuas and
Walanai) when chemical fertilizer was added and from 89-93
(IR-64, Bengawan solo and Atomita-4) to 121 (Kapuas) g CH./
kg when chemical fertilizer along with rice straw was used as
soil amendment as shown in Table 2 (31).

Similarly, study on varietal variation in methane
emission was conducted in Bangladesh and Binadhan-17
recorded lowest emission among the six varieties tried (32).
This variation among the rice cultivars might be due to
distinguishing characters of root exudates, root tissues and leaf
litter decay, low photosynthate in grain and pattern of growth
duration (33). In China, three mid-season japonica rice cultivars
(Wuyujing 3, Zhendao 88 and Huaidao 5) were studied for root
morphological and physiological traits, but it was negatively
correlated with methane flux. The root exudates (malic
acid, succinic acid and citric acid) promoted the abundance
and activity of methanotrophs, which was the primary factors
underlying the low CHs emissions in the paddy fields (34).

It is also reported that long-duration varieties namely,
Ratna and Shyamla, emitted more CHs than short duration
varieties Ananda and Kranti (35). On the contrary, reports also
show that, irrespective of the cultivar, the methane emission
proportionately increased with soil temperature during day
but decreased exponentially as soil pH increased beyond 7
(36).

Table 2. Amount of methane emitted for 1 kg of rice production for
different varieties

Varieties amended with
chemical fertilizer

Amount of methane emitted for 1
kg grain production

Bengawan solo 67.3
IR-74 65.1
IR-64 67.2
Atomita-4 52.6
Cisanggarung 66.9
Way seputih 58.6
Kapuas 70.8
Walanai 73.9
Varieties amended with rice

straw and chemical fertilizer

Bengawan solo 89.7
IR-74 97.3
IR-64 88.9
Atomita-4 92.9
Cisanggarung 108.2
Way seputih 112.7
Kapuas 120.6
Walanai 107.1

Effect of nitrogen application on GHG emission

Nitrogen (N) application is indeed critical for achieving high
rice yields, but it also influences GHG emissions, especially
nitrous oxide (N,0) and methane (CH,).

Nitrous oxide emission: Rice plant is considered as channel
between soil and atmosphere for N,O emission. It might be
formed in mitochondria via the nitrate-nitrite-nitric oxide
(NOs-NO,-NO) pathway when the cells experience hypoxic or
anoxic stress by using enzymes cytoplasmic nitrate reductase
(NR) (37). The application of traditional N fertilizers in rice
paddies has been observed to increase N,O emissions, which
is significant, given N,O’s high global warming potential
(approximately 298 times that of CO, over 100 years) (38).

High rates of N fertilizer application correlate with
increased N,O emissions. This is because excess N in the soil
promotes nitrification and denitrification processes,
particularly under intermittent wet and dry conditions. Under
flooded, anaerobic conditions, N,O emissions are typically
low, but as the field dries, N,O can be released in substantial
quantities (39).

Methane emission

Nitrogen fertilizers also stimulate the growth of methanogens
(methane-producing microbes) in the rhizosphere. These
microbes thrive in anaerobic conditions and decompose
organic matter to produce methane. Thus, higher N
applications can inadvertently increase methane emissions
by fostering conditions favourable to methanogens (40).

Factors affecting methane emission

Environmental factors including high soil saturation and
temperature

Anaerobic condition is prominent in saturated soil which makes
a conducive environment for CH, emission because of
dominance of obligate anaerobic methanogens. The drying of
saturated soils makes it aerobic and reduces CH4 emission (41).
Recent studies have evaluated the impact of elevated
temperatures under free-air temperature increase (FATI)
conditions, simulating a 2 °C rise in ambient soil temperature.
Interestingly, this moderate warming did not significantly alter
the abundance of mcrA and pomA genes, which encode key
functional proteins in methanogens and methanotrophs,
respectively. This suggests that the methanogenic and
methanotrophic microbial populations are relatively resilient to
moderate increases in soil temperature.

Mid-season drainage (MSD) practices, especially when
implemented after the rice tillering stage and irrigation
resumed post-heading, were found to improve soil
oxygenation. Enhanced O, availability during these stages led
to a notable reduction in CH, emissions during the late growth
period of rice (42). Under warming conditions, there was a
significant increase in the abundance of ammonia-oxidizing
archaea (AOA) and bacteria (AOB), indicating enhanced
nitrification activity. This was attributed to increased soil
mineralization driven by higher temperatures (43). The
intensified ammonia oxidation resulted in greater nitrate (NO;)
availability, subsequently promoting denitrification processes.
This was evidenced by a substantial rise in the abundance of
the nirS gene, which encodes for cytochrome cd1-type nitrite
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reductase. In contrast, the abundance of other key
denitrification genes such as narG (nitrate reductase) and nirK
(copper-containing nitrite reductase) remained unaffected by
warming. This suggests that denitrifier populations harboring
these genes are either less responsive or less sensitive to
elevated temperature regimes (44).

Fertilizer type

In alkaline soil, application of urea may cause decrease in CH,
emissions. Urea hydrolysis increases soil pH, which limits the
proliferation of neutrophilic methanogens (45). However, in
acidic soils, shifting of soil pH from acid to neutral due to urea
hydrolysis causes methanogenesis. Studies have indicated
that urea can be substituted by ammonium sulphate which
reduces CHs emissions in high acidic soil (46).

Soil type and tillage

Gradual rise in methane emission was observed during early
transplant stage loam and clay loam soil, but sudden
increase was noticed in sandy loam. The total amount of
methane emitted was highest in sandy loam, followed by
loam and clay loam. Hence, the highest amount of methane
emission was in sandy loam, succeeded by loam and clay
loam (47). However, when tillage depth was increased from
10 cm to 20 cm the emission was reduced in all three types of
soil texture.

Organic inputs

Excessive use of organic materials works as substrate for
methanogenic bacteria which increases methane emission
(48). Application of organic matter causes decrease in Eh and
is a potent source of C which has an influencing role in
increase of methane production (49). However, methane
production rate depends on the quantity and quality of
organic materials applied (C/N ratio, cellulose content,
degree of humification and others).

Estimation of greenhouse gas

GHG is estimated by closed chamber method in which gas is
collected through syringe and analysed by gas
chromatography. According to recent studies conducted in
Indian Institute of Rice Research- ICAR, Hyderabad, India,
samples are taken using chamber (50 cm 30 cm 100 cm) built
of 6 mm acrylic sheets. The chambers are kept on aluminium
stand, which is inserted in soil. The system is made airtight by
filling the water in channel beneath the aluminium stand.
Thermometer is placed inside the chamber to measure
temperature during sampling and a battery is placed to
homogenize the air inside the chamber as shown in Fig. 3.
Gas sample of approximately 20 mL is collected from the
syringe and sampling was done at 0, half hr and one hr (50).
The greenhouse gas intensity (GHGI) indicates the amount of
emission released during per unit production of grain. It can
be calculated by dividing global warming potential (GWP) to
grain yield (51).

GHGI (kg CO, eq kg™ grain) =

GWP (kg CO, eq ha) / grainyield (kg ha)
Solutions to minimise the emission from rice fields
Breeding low emission rice varieties

Breeding paddy for reducing methane emission without
compromising the yield is an effective mitigation practice. The
rice cultivar SUSIBA2, which contains a transcription factor for
sugar signalling from barley, suppressed CHs emissions by
allocating more photosynthates to aboveground biomass than
to roots, whereas photosynthate allocation was reduced in
grains after the removal of spikelets which markedly increased
CH; emissions (52). The enhanced expression of starch
biosynthesis genes (OsSUT1, OsSUT5 and OsDOF11) in panicles
and grains of Milyang360 rice variety led to increase in sucrose
absorption by cells and its transport to the grains, resulting in
better yields. The downregulation of root exudate transporter
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Fig. 3. Gas sample collection using close chamber technique (50).
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genes, including OSALMT1, OsSWEET11 and OsSWEET14 led to
reduction in root exudates, which ultimately reduced CHs
emissions as methanogens feed on these root exudates (53).
The variety SUSIBA-2 emits 70 % less methane compared to the
conventional variety Nipp rice. Presence of low fumarate levels
and high ethanol in roots decreased the methanogenesis
process (54).

Alternate Wetting and Drying (AWD)

The AWD system is a water saving technology in rice
cultivation. It uses water 20-25 % lesser than continuous
flooding. In Thailand, in acid sulphate paddy field the total
water use was reduced by 42 % after following AWD (55). While
effective drainage through AWD significantly lowers methane
emissions, its efficiency depends on factors like soil type, water
management and agricultural practices (56). AWD at a
threshold of -15 cm did not cause any yield reduction because
rice roots could absorb moisture from saturated soils (57).
Moreover, AWD reduced unregulated water use and, in many
cases, enhanced grain yield due to optimized water availability
supporting root development, grain filling and improved
carbon allocation from source to sink (58). However, it's
important to note that in some locations, AWD has led to a
yield reduction of 8-11 % compared to conventional irrigation
methods (59).

Adding soil amendments

Farmers use soil amendments increasingly to get better yield
and decrease the GHG emissions. Research indicates that the
application of vermicompost can help lower methane
emissions (60), while biofertilizers like Blue-Green Algae (BGA)
and Azolla increase dissolved oxygen levels in flooded rice
fields. This rise in oxygen suppresses methanogenic activity,
thereby contributing to climate change mitigation (61). In
contrast, addition of organic material such as rice straw can
increase methane emission. In China, biochar based slow
released fertilizer decreased methane emission by 33.4 %
compared to organic fertilizer treatments in rice cultivation
(62). Similarly, in India, when rice straw was added with green
manure it increased the methane emission by 75 %. This
spike is likely due to the wide carbon-to-nitrogen (C: N) ratio
of Sesbania aculeata, which delayed nitrogen release and
encouraged anaerobic decomposition (63).

When silicate fertilizers were applied to paddy fields, the
percolated water contained high concentration of dissolved iron
materials. The concentration of active and free iron oxides in soil
which acts as an oxidizing agents and electron acceptor also
increased, leading to decreased CHsemissions during the rice
growing seasons. By the application of silicate fertilizer @ 4 mg/
ha, there was a decrease in CHs; emission by 16-20 % and
increase in rice grain yield by 13-18 % (64). Methane production
can also be supressed by controlling the Co-enzyme M, a potent
inhibitor ~ of  methanogenesis. The use of 2-
Bromoethanesulfonate  (BES) @  80mg/kg  reduced
methanogenesis as it is structural analogue of Co-M (65).

Addition of sulphate containing amendments such as
gypsum, phosphogypsum and sodium sulphate to paddy
field led to reduction in methane emission as it enhances the
activity of bacteria involved in methane oxidation (pmoA)
sulphate reduction (dsrA and dsrB) (66). In saline alkali paddy

fields application of desulfurized gypsum has decreased the
CH. emission by 78.05 % and organic fertilizer has decreased
CO; and CH.4 by 11.62 % and 65.84 % respectively. Despite the
reduction of methane and carbon dioxide, there was increase
in ammonia volatilization. Desulfurized gypsum and organic
fertilizer increased ammonia emission by 26.26 % and 45.23
% respectively. Nitrous oxide emission was also increased by
41 % in desulfurized gypsum and by 12.31 % in organic
fertilizer (67).

Efficient fertilizer use

Nitrogen fertilizers play a dual role in agricultural ecosystems.
Nitrogen stimulates crop growth and increases carbon inputs
into the soil through organic root exudates. These carbon
substrates serve as an energy source for methanogens (68).
But there are contradictory reports also which suggest that
addition of urea 200-400 kg N/ha stimulated the growth of
methanotrophs and resulted in greater methane oxidation in
soil (69). Prolonged application of sulphur coated urea
combined with uncoated urea could maintain rice yield and
reduce methane emission (70). Polymer coated controlled
release urea (CRU) reduced NH; volatilization (45.9 %), N.O
emission (27.7 %) and N leaching (24.3 %), while increasing
crop yield (7.7 %) (71). The application of different microbial
consortium increased the efficiency of inorganic fertilizers by
25 %, rice production by 33.5 % and decreased methane
emission by 37.2 % (72). Application of urea briquette and
placement by use of applicator at subsurface region could
reduce ammonia volatilisation and nitrous oxide emission (73).

Conclusion

Paddy cultivation provides a conducive environment for
methanogens, leading to significant methane emissions.
Therefore, obtaining accurate scientific data on GHG emissions
is crucial. Factors such as rice cultivar selection, seasonal
weather variations, soil characteristics, irrigation methods and
fertilizer application play critical roles in determining emission
levels. Consequently, it is essential to analyse long term,
location-specific challenges and implement practical, targeted
strategies to mitigate emissions from paddy fields.
Comprehensive studies focusing on the mitigation of GHG
emissions through various agronomic practices and breeding
approaches should be undertaken to develop effective
solutions.
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