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Abstract

Nanotechnology holds significant potential in agriculture, contributing to various applications such as nanofertilizers, nanopesticides,
nanoherbicides, nanosensors and more recently, electrospun nanofibers. Among such advancements, electrospinning has emerged as a
versatile and cost-effective technique for fabricating nanofibers, offering significant potential to enhance sustainability in agricultural
practices. Recent applications of electrospun fibers have primarily focused on drug delivery, wound dressings and seed coatings infused with
growth hormones. These nanofibers exhibit notable properties such as a high surface-area-to-volume ratio, excellent porosity and the ability
to facilitate controlled release of active compounds. Encapsulating microorganisms and agrochemicals within electrospun fibers offers an
environmentally friendly approach to improve soil health. By forming a protective layer, the electrospun nanofibers help safeguard seeds
against abiotic factors such as drought and temperature fluctuations, as well as biotic threats like pathogens and pests. Furthermore,
embedding natural or synthetic antimicrobial agents into electrospun films offers an eco-friendly solution for post-harvest protection by
effectively minimizing spoilage and the risk of pathogen invasion. This review emphasizes the diverse roles of electrospun nanofibers in
sustainable agriculture, including soil enhancement, seed improvement and post-harvest protection, while also promoting eco-friendly
practices using biodegradable polymers and bioactive agents.
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Introduction

The world population is projected to increase from 7.8 billion in

2020 to 9.1 billion in 2050, placing immense pressure on global
food production and agricultural sustainability (1). Feeding this
growing population while ensuring food security remains a
significant  challenge, necessitating advancements in
agricultural technologies and resource-efficient practices.
Conventional fertilizers, including nitrogen (N), phosphorus (P)
and potassium (K), are widely used to enhance crop yields.
However, these fertilizers suffer from low nutrient-use
efficiency, leading to significant nutrient losses through runoff,
leaching and volatilization. These inefficiencies not only
diminish economic returns for farmers but also contribute to
environmental degradation, including water pollution,
eutrophication and greenhouse gas emissions (2).

To address these challenges, biodegradable fertilizer
coatings have gained attention for their ability to enhance
nutrient encapsulation and minimize losses (3). Among such
advancements, electrospinning has emerged as a promising
technique for fabricating polymeric nanofibers with high
surface area and tunable properties. Compared to traditional

controlled-release fertilizers (PC-CRFs) (4).

First patented in 1900 by John Francis Cooley,
electrospinning has since evolved into a versatile platform with
applications across medicine, textiles and agriculture (5, 6).
Innovations  like coaxial electrospinning enable the
encapsulation of bioactive compounds within nanofibers,
supporting sustained and targeted delivery (7).

Fig. 1 illustrates the formulation strategy for producing
desired nanofibers by combining natural and synthetic
biopolymers. Natural biopolymers such as chitosan, cellulose,
hyaluronic acid, collagen, kefiran and alginate are derived from
various biological sources like plants, animals and microbes.
These can be chemically modified to enhance properties or
blended with synthetic biopolymers like polyvinyl alcohol
(PVA), polyethylene oxide (PEO) and polylactic acid (PLA) to
improve processability and performance. The combination of
biopolymer types and solvent system plays a critical role in
fiber formation. An optimized solvent system ensures
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Fig. 1. Biopolymer and solvent system optimization for nanofiber production via electrospinning.

appropriate viscosity, conductivity and surface tension for
successful electrospinning. The integration of all these
components results in the fabrication of desired nanofibers with
targeted structural and functional properties for various
applications such as agriculture, medicine, or packaging. This
review explores recent advancements in electrospinning for the
development of controlled-release agrochemicals such as
fertilizers, pheromone-loaded nanofibers, biodegradable
mulching films and post-harvest preservation systems
highlighting their potential in advancing sustainable agricultural
practices.

Electrospinning

Electrospinning is a versatile technique that has garnered
significant attention in the field of materials science, particularly
for its ability to produce continuous fibres with diameters
ranging from submicron to nanometre levels. This process,
which has been rediscovered in the early 21% century, utilizes
electrostatic forces to draw a polymer solution into fine fibres,
making it distinct from traditional fibre spinning methods such
as melt-spinning and dry-spinning. The unique properties of
nanofibers, including their high surface area to volume ratio
approximately a thousand times greater than that of human hair
-enable a wide range of applications. These applications span
various fields, including nano catalysis, tissue engineering,
protective clothing, filtration and nano-electronics (8).

Fig. 2 illustrates a schematic diagram of a typical
electrospinning unit, a spinneret with a heated nozzle tip, a
high-voltage power supply and a rotating drum collector. The
polymer solution is extruded through the nozzle, forming a
droplet at the tip. Upon applying high voltage, electrostatic
forces overcome the surface tension, forming a Taylor cone
and ejecting a charged liquid jet. This jet initially travels in a
straight path but quickly undergoes bending instabilities,
forming a whipping motion. As the solvent evaporates, solid
nanofibers are formed and deposited uniformly onto the
rotating collector as a nanofiber mat. This technique enables
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Fig. 2. Typical electrospinning set-up.

the fabrication of uniform, tunable fibers with the potential for
controlled release and functional agricultural applications.

The flexibility of electrospinning allows for the
fabrication of nanofibers from a diverse array of materials,
including polymers, composites, ceramics and even metal
nanofibers, either directly or through post-spinning processes.
Despite the existence of alternative methods for nanofiber
production, such as phase separation and template synthesis,
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electrospinning stands out due to its ease of use and
adaptability (9). A typical electrospinning setup requires
minimal equipment, including a high-voltage power supply, a
syringe and a conducting collector. Recent advancements in
electrospinning have focused on the creation of various fibrous
assemblies, which are crucial for enhancing the performance of
devices made from nanofibers. The arrangement of these fibres
can significantly influence their functionality, making it
essential to explore different electrospinning designs and
setups (10).

Nanofiber loaded with fertilizer

A promising method for introducing plant nutrients is the
application of electrospun polymeric fibers as controlled-release
substrates. This is due to the very high surface area-to-volume
ratio of these fibers compared to conventional polymer-coated
fertilizers (4). The use of electrospun polymeric fibers as
controlled-release substrates improves fertilizer use efficiency
and addresses some environmental concerns associated with
overuse (11). Among these fibers, electrospun PVA fibers are
widely used for nutrient encapsulation (12). However, PVA is
water-soluble and leads to the quick release of encased
nutrients, necessitating the use of chemical cross-linking agents
such as glutaraldehyde to enhance water resistance (13). To
resolve this issue, coaxial electrospinning can be used, where the
PVA fibers are arranged in core/shell configurations, with the
outer phase being hydrophobic to improve structural stability
(14). Coaxial electrospinning technology is favourable for
fabricating fibrous membranes in core/shell configurations and
can be successfully employed for the preparation of Slow-release
fertilizers (SRFs) (15).

Fig. 3 illustrates the comparative effectiveness of
ordinary fertilizers versus slow-release fertilizers in agricultural
applications. On the left, ordinary fertilizers are shown to cause
significant nutrient losses through volatilization, leaching and
surface runoff, leading to reduced nutrient availability for crops
and increased environmental pollution. In contrast, the right
side demonstrates how slow-release fertilizers provide a
controlled and targeted release of essential nutrients like

nitrogen (N), phosphorus (P) and potassium (K). This method
enhances nutrient use efficiency, supports sustained plant
growth and minimizes environmental impact, highlighting the
advantages of adopting slow-release fertilizers in precision
agriculture.

Core/shell-structured fibers based on PVA have also
gained attention in other industries. For instance, amoxicillin
trihydrate-loaded silk fibroin/PVA core/shell nanofibers have
been utilized for targeted drug release and improved wound
healing (16). Similarly, to prevent corrosion, carbon steel
surfaces have been coated with oleic acid and benzotriazole
inhibitors embedded in PVA-core/shell nanofibers (17). Other
applications include skin-graft PVA/gelatin core/shell fibers
crosslinked with transglutaminase and PVA/polycaprolactone
(PCL) fibers containing doxorubicin for sustained drug release
in cancer treatment (18). This core/shell architecture
significantly reduces burst release rates and prolongs the
release of active substances, making it a valuable technique for
various industries, including agriculture (19).

Pheromone-loaded nanofiber

Pheromones, or sex pheromones, are chemical signals produced
by insects to communicate, particularly for mate attraction (20).
Beyond their natural role in reproduction, they have emerged as
eco-friendly alternatives to chemical pesticides in pest
management. This is achieved by saturating fields with synthetic
pheromones to confuse male insects and disrupt mating (21).
However, their high volatility and susceptibility to environmental
conditions like evaporation and rainfall limit their effectiveness
(22). To overcome these limitations, researchers have explored
encapsulating pheromones in polymeric carriers to enhance
stability and enable controlled release.

Electrospun nanofibers, with their high porosity and
surface area, have proven effective for pheromone delivery
(22). Hellmann et al. demonstrated that polyamide (PA)
nanofibers, unlike cellulose acetate (CA) ones, were bead-free
and encapsulated pheromones efficiently. Despite bead
formation, CA fibers offered higher loading capacity due to
their solubility and biodegradability (23). Thermogravimetric
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Fig. 3. Advantages of slow-release fertilizers (SRFs) in comparison to an ordinary fertilizer.
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analysis (TGA) showed that CA and PA fibers sustained
pheromone release for 55 and 31 days, respectively (24).
Similarly, Bisotto-de-Oliveira et al. used electrospun polymers
like PCL, PEG-PCL, ethyl cellulose and PVP to encapsulate
Trimedlure for trapping Ceratitis capitata. These nanofiber
formulations, containing 0.02-10% w/v of pheromones,
performed significantly better than controls in field trials, with
consistent trapping efficiency across different matrices (25).
Their biodegradability and non-toxicity make pheromone-
loaded electrospun fibers a sustainable and effective tool in
integrated pest management (26).

Nanofiber loaded with biocontrol agents

The impacts of using chemicals for plant protection have led to
serious health and ecological problems. To counter these
challenges, bioprotectants have emerged as an alternative to
synthetic pesticides, which pose risks to human health and the
environment. These agents include beneficial microorganisms
such as Trichoderma and Bacillus subtilis, which act against
plant pathogens (27). The production of such microorganisms
in the form of granules or capsules enhances their effectiveness
by protecting them against environmental stresses, improving
their stability during storage and processing and facilitating
their incorporation into solid or semi-solid dosage forms for
sustained release (28). Encapsulation also increases the
convenience of applying biological agents in agricultural
settings. Recent studies have explored the use of electrospun
nanofibers for biocontrol applications. Fungal spores of
Trichoderma were successfully electrospun into solutions of
chitosan and PEO or chitosan and polyacrylamide (PAAm). The
use of PEO was found to be more beneficial than PAAm due to
its lower toxicity, although both polymers played a role in the
electrospinning process (29). Viability tests indicated that
fungal spores remained alive even after being spun in an
electric field, highlighting the potential of electrospinning as a
method for delivering bioactive microorganisms. The
electrospun fibers also demonstrated effective antifungal
activity against known phytopathogens such as Fusarium and
Alternaria (30).

Moreover, biopolymer coatings were applied directly
onto plant roots and leaves via electrospinning, providing
protection and preserving plant nutrients. These findings
support the potential of electrospun nanofibers as a
sustainable and environmentally friendly method for plant
protection. While electrospun nanofibers offer a promising
strategy for pest and disease control, further research is
needed to optimize the technology for large-scale agricultural
applications. The development of improved electrospinning
systems for industrial-scale nanofiber production could
revolutionize pest management by enabling the widespread
adoption of biodegradable, biopolymer-based solutions (30).

Nanofiber in pesticide delivery

Electrospinning enables the controlled release of pesticides,
reducing the need for frequent applications while enhancing
their efficacy. Nanofiber encapsulation protects pesticides from
photodegradation and volatilization, improving their stability (4).
Nanofibers, produced through electrospinning technology, are
emerging as a promising solution for pesticide delivery systems.
These nanofibers possess several advantageous properties that
enhance their effectiveness in agricultural applications. Firstly,
they have a high specific surface area, which allows for better
interaction with active ingredients, leading to improved drug
encapsulation rates and loading capacities

This characteristic is crucial for creating efficient pesticide
carriers that can deliver active substances in a controlled and
sustained manner, thereby enhancing the effectiveness of
pesticides while minimizing environmental impact. Moreover,
the flexibility of electrospinning technology enables the
development of multifunctional nanofibers that can incorporate
various agrochemicals, including insect pheromones and
biopesticides, into their structure. This capability not only allows
for the simultaneous delivery of multiple agents but also
facilitates the design of environmentally responsive nanofibers,
which are likely to be a focal point for future research in pesticide
delivery systems (31).

Alpha-terthienyl 0 @
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Fig. 4. Smart delivery of electrospun nanofiber-encapsulated botanical nematicide a-terthienyl from marigold for root-knot nematode control

in tomato.
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Fig. 4 illustrates the development of a bio-based nanofiber
delivery system for nematode control. Bioactive a-terthienyl is
extracted from marigold (Tagetes spp.), a plant known for its
natural pesticidal properties. The compound is then
encapsulated into nanofibers through electrospinning,
forming a stable matrix for controlled release. Upon
application to tomato plants, the nanofiber formulation acts
as a bionematicide, targeting root-knot nematodes in the
rhizosphere.  This approach combines plant-based
biopesticides with nanotechnology to enable smart, sustained
and eco-friendly pest control in agriculture.

Additionally, the use of biodegradable polymer materials
in the production of these nanofibers aligns with the global push
towards green pesticides, reducing the ecological footprint
associated with traditional pesticide formulations. However,
challenges remain, such as optimizing the release profiles of
these nanofibers and ensuring their safety and efficacy in real-
world applications .Overall, the integration of nanofibers into
pesticide delivery systems represents a significant advancement
in agricultural technology, promising to enhance both the
efficiency and sustainability of pesticide use (32).

Smart agrochemical release systems

Smart agrochemical release systems represent a significant
advancement in agricultural practices, aiming to enhance the
efficiency and sustainability of crop production. These systems
utilize nanotechnology to create smart delivery mechanisms
for agrochemicals, which can significantly reduce the negative
impacts associated with conventional chemical applications.
The integration of nanomaterials and nanocomposites allows
for controlled release of active ingredients (Als), minimizing the
uncontrolled non-targeted release that often leads to
environmental damage and toxicity to non-target species. For
instance, studies have shown that encapsulating herbicides
like atrazine in polyhydroxy butyrate-co-hydroxy valerate
(PBHA) can reduce genotoxicity in plants, demonstrating the
potential for these smart systems to improve crop health while
mitigating adverse effects on surrounding ecosystems (33).

Furthermore, the binding ability of these nano
compositions aids in understanding their distribution,
bioavailability and toxicity levels, which are crucial for optimizing
their use in agricultural settings. The development of smart
agrochemical release systems also addresses the challenges
posed by traditional agrochemical practices, such as the
premature loss of growth-promoting ingredients and their
extended degradation in soil. By utilizing nanotechnology, these
systems can enhance nutrient utilization and improve disease
resistance in crops, ultimately contributing to food security for a
growing global population. However, the implementation of
these systems is not without challenges. Concerns regarding the
potential toxicity of nano pesticides and their effects on non-
target organisms must be carefully evaluated. The balance
between biodegradability, concentration and size of the
incorporated Als is critical in determining the safety and efficacy
of these smart agrochemicals. As research continues to explore
the interactions between nanoparticles and plant systems, it is
essential to validate these technologies to ensure they lower
agroecological risks while promoting sustainable agricultural
practices. Overall, smart agrochemical release systems hold
promise for revolutionizing crop protection and production,

paving the way for a more sustainable agricultural future (34).
Electrospun sensors for precision farming

Nanofiber-based sensors have emerged as a promising tool for
real-time monitoring of soil and crop conditions. Electrospun
nanofibers functionalized with conductive polymers or metal
nanoparticles can detect changes in soil moisture, nutrient levels
and pH, allowing for optimized irrigation and fertilization (35).
These sensors integrate with smart farming systems to enhance
decision-making and resource efficiency. These sensors leverage
electrospinning technology to create nanofibers that possess
unique properties such as high surface area and porosity, which
are crucial for effective sensing applications. The ability to
fabricate composite nanofibers using a variety of materials,
including polymers, carbon nanostructures and metal
nanoparticles, enhances the performance of these sensors. This
versatility allows for the development of sensors that can detect
a wide range of analytes, from soil moisture levels to nutrient
concentrations, thereby providing farmers with real-time data to
optimize their farming practices. The integration of electrospun
nanofibers into sensor designs not only improves sensitivity and
response times but also enables the customization of sensors to
meet specific agricultural needs, making them highly adaptable
for different crops and environmental conditions.

Moreover, the structural characteristics of electrospun
nanofibers contribute significantly to their effectiveness in
precision agriculture. The interconnected porosity and
predictable pore geometries of these nanofibers facilitate the
rapid diffusion of analytes, reducing mass transport resistance
and enhancing the overall sensing performance. This is
particularly beneficial in applications where timely detection is
critical, such as monitoring for pathogens or assessing crop
health. Additionally, the ability to functionalize the surface of
electrospun nanofibers with various nanomaterials allows for
the creation of multifunctional sensors that can provide
comprehensive data on multiple parameters simultaneously.
As a result, electrospun sensors not only support precision
farming by enabling more informed decision-making but also
contribute to sustainable agricultural practices by minimizing
resource waste and maximizing yield potential. The ongoing
advancements in electrospinning technology and material
science promise to further enhance the capabilities of these
sensors, paving the way for smarter and more efficient farming
solutions in the future (36).

Real-time soil monitoring

An analysis of Table 1 reveals electrospun nanofiber sensors
improve soil health assessment by detecting changes in
moisture levels, pH and nutrient concentrations (37). These
sensors enable precision irrigation, reducing water waste and
enhancing crop yields. Real-time soil monitoring (RTCSM) is an
innovative approach that significantly enhances our ability to
assess soil quality and manage agricultural practices
effectively. Traditional soil measurement methods often rely
on laboratory analyses, which can be time-consuming, costly
and labour-intensive. These methods typically provide discrete
data points that may not accurately reflect the dynamic nature
of soil conditions. In contrast, RTCSM offers continuous, real-
time data on various soil parameters, including
physicochemical properties like moisture and nutrient levels,
as well as biochemical factors such as microbial activity and the
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Table 1. Examples of nanotechnology-based sensors for soil nutrient and pH sensing

Nanomaterial

Sensor Category Employed Target Analyte(s) Working Mechanism
Electrochemical Sensor Carbo?cl;l\le_lrr;?tu bes Nitrogen Enhanced electron transfer boosts sensitivity to nitrate ions
Optical Sensor Quantum Dots Phosphorus Fluorescence variation with changing phosphate concentration
Colorimetric Sensor ~ Gold Nanoparticles Potassium Color shift due to nanoparticle aggregation induced by potassium ions

Electrochemical Sensor ~ Graphene Oxide

Up conversion

Nitrate, Phosphate

Fluorescence Sensor

Nanoparticles Mn)
} : Nanoporous -
lon-Selective Sensor Membranes Ammonium

Raman Sensor Silver Nanoparticles Nitrate, Phosphate

Conductometric Sensor Zinc Oxide Nanorods  Nitrate, Ammonium

Molybdenum
Electrochemical Sensor Disulfide Phosphate
Nanosheets
Fluorescence Sensor Carbon Dots Potassium
- Carbon Nanotubes
Electrochemical Sensor (CNTS) pH
Optical Sensor Quantum Dots pH
Colorimetric Sensor ~ Gold Nanoparticles pH
Field-Effect Transistor Graphene pH
Up conversion
Fluorescence Sensor Nanoparticles pH
Raman Sensor Silver Nanoparticles pH
Conductometric Sensor Zinc Oxide Nanorods pH
Molybdenum
Electrochemical Sensor Disulfide pH
Nanosheets
Fluorescence Sensor Carbon Dots pH
- - Polydiacetylene
Colorimetric Sensor Nanofibers pH

Micronutrients (Fe, Zn, Cu,

High conductivity enables efficient nutrient ion detection

Fluorescence emission upon selective micronutrient ion binding

Selective ion transport for detecting ammonium ions

Surface-enhanced Raman scattering for precise nutrient detection

Conductivity changes upon interaction with nutrient ions

High surface area promotes phosphate detection via electrochemical
activity

Fluorescence quenching triggered by potassium ion presence
Electron transfer enhancement improves pH sensitivity

Quantum dot fluorescence properties shift with pH changes
Color modification due to pH-induced nanoparticle aggregation

High surface area of graphene increases pH detection sensitivity
Fluorescence emission shifts with varying pH levels

Surface-enhanced Raman scattering enables pH detection

Conductivity modulation based on pH response
High electroactivity and surface area enhance pH sensing

pH alters fluorescence intensity of carbon dots

Color change of nanofibers in response to pH variation

presence of contaminants like heavy metals and emerging
contaminants (ECs) (38).

This continuous monitoring capability is crucial for
timely decision-making in agricultural management, allowing
for immediate adjustments to practices such as irrigation,
fertilization and pest control, ultimately leading to improved
soil health and crop vyields. Despite its potential, the
implementation of RTCSM faces several challenges. The
complexity of soil properties, including texture, porosity and
chemical composition, can interfere with monitoring accuracy
and data interpretation. Additionally, current sensor
technologies, such as potentiometric sensors, often struggle to
meet the detection limits required for certain contaminants,
leading to issues with accuracy and reliability. Furthermore, the
integration of RTCSM data with existing agricultural models
and practices is essential for maximizing its benefits. This
integration can enhance our understanding of soil processes
and improve strategies for soil management, food security and
climate change mitigation. By addressing these challenges and
advancing sensor technology, RTCSM can revolutionize how
we monitor and manage soil, providing a more sustainable
approach to agriculture and environmental stewardship (39).

Enhanced sensitivity and response time

Electrospun nanofiber-based sensors exhibit high sensitivity
due to their large surface area and porous structure, leading to
faster response times compared to conventional sensors (40).
Electrospun nanofiber-based sensors have gained significant
attention due to their enhanced sensitivity and rapid response
capabilities. These sensors leverage the unique properties of

nanofibers, which include a high surface-area-to-volume ratio,
tailored pore structures and large stacking density. Such
characteristics allow for effective surface modification, which is
crucial for improving sensor performance. The high surface
area facilitates greater interaction with target analytes, leading
to increased sensitivity. This is particularly beneficial in
applications where detecting low concentrations of
contaminants is essential. Moreover, the design of electrospun
nanofibers enables fast response and recovery times. The small
diameter of the fibers allows for quicker diffusion of gases or
liquids, which means that the sensors can detect changes in
concentration almost instantaneously. This rapid response is
vital in various applications, such as environmental monitoring
and safety systems, where timely detection of hazardous
substances is critical (41).

The versatility of electrospun nanofibers also extends to
their use in different types of sensors, including acoustic wave
sensors, resistive sensors, optical sensors, optoelectronic
sensors and amperometric sensors. Each type utilizes the
inherent properties of nanofibers to achieve specific detection
mechanisms, further enhancing their applicability across
various fields. In summary, the combination of high sensitivity
and rapid response in electrospun nanofiber-based sensors
makes them a promising solution for addressing global
challenges related to contamination and safety. Their ability to
provide quick and accurate readings positions them as a
valuable tool in both research and practical applications,
paving the way for advancements in sensor technology and
environmental protection (42).
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Biodegradable mulch film fabrication

Electrospun nanofibers, fragmented into sub pieces within
extended polymeric solute drafting structures through
atomization, have enabled the fabrication of biodegradable
and biocompatible biomaterials. These nanofibers have
recently been assembled for seed coating applications in
agriculture, making them highly suited for enhancing
germination and early plant development (43). Due to their
diverse structural compositions, nanofibers offer numerous
advantages, with vertical electrospinning emerging as the
preferred method for fabrication. Vertical electrospinning
provides a perfectly aligned electric field, leading to finer
filament production (44). An innovative approach in seed
coating involves the development of Colorado-coated seeds,
which, when combined with a mechanical rotary method,
improve coating uniformity and enhance seed interaction with
acidic or basic agents, ultimately promoting better crop growth.
Mechanically rotating coated seeds ensure even distribution of
the nanofiber layer, facilitating respiration and water absorption
for optimal germination (45). Palestinian civil society and
agricultural experts have identified dissolvable, cross-linked, low-
biodegradability nanofiber-coated seeds from Indonesia as
advanced materials for enhancing crop cultivation across a wide
range of vegetation. Unlike conventional thick grainy seed
coatings, nanofiber coatings facilitate better oxygen exchange,
improving aerobic respiration. This enhancement is crucial for
energy production, cell division and seedling expansion,
ultimately increasing seed strength and germination rates (46).

The primary goal of seed coating is to stimulate
germination and aid in early seedling development. Seeds
typically contain 5-15 % moisture, rendering them metabolically
inactive. Upon water uptake (imbibition), seeds initiate
metabolic processes, including the production of plant
hormones such as abscisic acid (ABA) and gibberellic acid (GAs),
which regulate germination and energy utilization (47). Seed
germination has been significantly improved by wire-based seed
coatings due to their high fluid uptake ability (FUA). Research on
hybrid nanofiber coatings has demonstrated remarkable
increases in seedling growth, confirming that fibrous coatings
support germination processes. Additionally, electrospun
nanofibers provide mechanical benefits that allow plants to
thrive in specific environments, including areas with limited

7

arable land (43). These coatings not only promote germination
but also provide long-term benefits during the early growth
phases of plants.

Nanofibers in seed coatings

Polymers, sourced from natural raw materials or produced
through biological processes, are highly adaptable materials for
seed coating. Their biocompatibility, biodegradability and low
toxicity make them ideal for agricultural applications.
Additionally, they function as controlled-release carriers of
agrochemicals, ensuring a sustained and efficient nutrient supply
to plants (48). Several biopolymers, including polysaccharides,
polypeptides and semi-synthetic biopolymers, have been studied
for seed coating applications. Among these, polysaccharides
stand out due to their broad availability, excellent gas barrier
properties and mechanical strength. Examples include cellulose,
chitin, starch, pectin, gums and alginates unbranched polymers
of monosaccharides linked by glycosidic bonds. Cellulose, in
particular, is valued for its high biocompatibility and thermal and
mechanical stability (49). Chitosan, another commonly used
polysaccharide, has demonstrated excellent seed-coating
properties, improving germination rates and seedling health (50).

Fig. 5 shows a seedling coated with electrospun
nanofibers containing embedded nutrients. The nanofiber
network acts as a delivery system, slowly releasing nutrients to
support early plant growth. This method enhances germination
and seedling vigor while minimizing nutrient loss.

Though semi-synthetic polymers such as PHB, PHV and
PHA show promise, their high-cost limits usage. In contrast,
starch-based biopolymers offer a more affordable and eco-
friendly solution (51). Electrospun nanofibers (NFs) and
biopolymer nanoparticles (NPs) outperform traditional coatings
by enabling targeted, sustained nutrient release through their
porous, nanoscale structure (43).

Biopolymer coatings such as nanocellulose, gelatin and
PVA improve oxygen and moisture transfer, supporting better
germination and yield (52). These nanofibers also reinforce
coating integrity, reduce peeling and ensure uniform distribution
of active compounds. Examples include cellulose acetate for
weed control and gelatin composites for nutrient delivery (47).
Thus, biopolymer-based seed coatings offer a sustainable and
effective solution aligned with modern agricultural needs (53).

Nutrients

Fig. 5. Electrospun nanofibers as a seed coating.
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Antimicrobial
storage

electrospun materials for post-harvest

Over the past decade, the global vegetable and fruit market has
grown due to population increases, improved living conditions
and rising social awareness about health and nutrition. However,
maintaining post-harvest quality remains a major challenge,
primarily due to inadequate storage and microbiological
contamination. To address these issues, innovative antimicrobial
materials incorporating metal oxide nanoparticles such as silver
(Ag), titanium dioxide (TiO,) and zinc oxide (ZnO) have been
developed (54). Among these materials, nano-silver (nano-Ag) is
particularly effective due to its large surface area and broad-
spectrum antibacterial properties against E. coli, S. aureus and L.
monocytogenes. Nano-Ag disrupts microbial growth by binding to
phosphorus and sulfur in cell membranes, proteins and DNA,
leading to structural breakdown and impaired cellular functions.
Additionally, it triggers the synthesis of reactive oxygen species
(ROS), which oxidize cell walls and membranes, further damaging
the bacteria (55). Nano-TiO, also exhibits strong antimicrobial
activity, particularly due to its photocatalytic properties under UV
light. When exposed to photons with sufficient energy (greater
than its 3.2 eV band gap), TiO, generates ROS capable of
destroying a broad spectrum of microorganisms (56).

Natural antimicrobials such as essential oils (EOs),
chitosan, lysozyme and lactoferrin inhibit microbial growth
through membrane disruption and interference with metabolic
processes (57, 58). Electrospun nanofibers effectively incorporate
these agents due to their high surface area and controlled
release capabilities (59). Yet, challenges remain in humid
environments, which are mitigated through cross-linking to
enhance structural stability (60).

Ethylene, a key ripening hormone, causes fruit softening.
Electrospun films with essential oils like thyme or jasmine delay
this by preserving cell wall integrity. PLA submicrofibers with
eugenol improved cucumber firmness by boosting lignin and
proline levels (61, 62). In mushrooms, cinnamon oil-infused
nanofiber membranes provided antimicrobial protection and
maintained respiration balance (63).

Although traditional polyethylene films retain firmness,
they can trap moisture and promote spoilage. Electrospun
nanofiber films offer superior antimicrobial and moisture control
(64). Managing ethylene via photocatalytic TiO, nanofibers
reduces ripening and spoilage by degrading ethylene gas into
CO, and 0, (65). The effectiveness of ethylene control through
electrospun nanofiber technology has been demonstrated in
various studies, particularly for climacteric fruits such as
tomatoes and bananas. By incorporating TiO,-based coatings,
fruit degradation can be minimized, maintaining freshness and
reducing odour during storage (66). These advancements
indicate that electrospun nanofiber mats can revolutionize post-
harvest food storage by improving antimicrobial efficacy,
ethylene management and overall food preservation. However,
further research is needed to enhance the scalability, stability
and mechanical properties of nanofiber-based packaging
materials for widespread commercial adoption.

Electrospun nanofibers for water purification

Water scarcity is a major challenge in agriculture and
electrospun nanofibers have shown significant potential for
water filtration and purification. These nanofibers can be
functionalized with metal oxides such as titanium dioxide
(Ti0,) and silver nanoparticles (AgNPs) to enhance
antimicrobial activity and remove contaminants from irrigation
water (67). The high porosity of electrospun membranes allows
for efficient water filtration while maintaining soil hydration
and minimizing waterborne plant diseases (68). Electrospun
polymeric nanofibrous membranes provide an effective means
of water treatment due to their large surface area, high
permeability and ability to be modified for specific contaminant
removal (69). Additionally, these membranes have been used to
filter wastewater, removing heavy metals, bacteria and organic
pollutants. The integration of nanofibers with antimicrobial
agents, such as silver nanoparticles, enhances their potential for
preventing microbial contamination in irrigation systems.

Fig. 6 shows a nanofiber-based water filtration system
where polluted water passes through an electrospun membrane
to vyield clean water. These membranes, fabricated by
electrospinning, offer uniform pore size (<0.2 pm), strong

Polluted water

g
Microbes #

Resistant to fouling

Biodegradable

Mechanically robust

Fig. 6. Schematic representation of removal of micro-pollutants from water by filtration through an ideal electrospun nanofiber membrane (ENM).
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mechanical properties and biodegradability. They effectively
remove fine particles and microorganisms, making them a
superior alternative to conventional membranes for sustainable
water purification. These advancements demonstrate that
electrospun nanofiber technology has the potential to
revolutionize water purification methods, making them more
effective, cost-efficient and environmentally friendly (70).

Addressing challenges and advancing electrospinning in
precision agriculture

Electrospinning holds great promise for agricultural applications;
however, it faces several critical challenges. These include high
production costs, difficulties in scaling up and environmental
concerns due to the use of toxic solvents (71). Recent research
has explored green electrospinning approaches using
biodegradable polymers and eco-friendly additives as potential
solutions (72). Electrospun nanofibers are especially attractive
for agriculture because of their unique characteristics such as a
high surface-area-to-volume ratio and porosity which enable the
controlled release of agrochemicals, enhancing their efficiency

Table 2. Various applications of nanofiber in agriculture (75-92)

and minimizing environmental impact (4, 73). Despite these
advantages, practical limitations persist, particularly in scaling
up production, achieving consistency in fiber quality and
navigating regulatory hurdles (73). Addressing these challenges
will require interdisciplinary efforts and continued innovation in
materials science and engineering to develop sustainable,
scalable and economically viable electrospinning techniques for
broad agricultural use (72).

As shown in Table 2 Electrospinning is an emerging
technology with significant potential in precision agriculture,
offering sustainable solutions to enhance productivity while
protecting the environment. It enables the creation of nanofiber-
based systems for controlled agrochemical delivery, pest
management, seed treatment and soil remediation. Electrospun
nanofibers can encapsulate fertilizers, pesticides and herbicides
for targeted release, improving nutrient use efficiency and
reducing pollution. Coaxial electrospinning, which produces core
-shell fibers, allows precise regulation of active ingredient
release, potentially responsive to pH, moisture, or microbial

Nanofiber Material Solvent Application Reference
Nylon 6 (PA6) Formic acid Pesticide biosensor for aquatic crops (75)
. - Mating disruption by (Z)-9-dodecenyl acetate encapsulation for
Polyamide 6 Formic acid European grape moths (76)
P. agglomerans and B. caribensis encapsulation for seed
PVA bw treatment (77)
PLLA Chloroform/MetOH Thiram fungicide-controlled release formulation (78)
PVAc DMF Pheromone delivery system for pest deterrence (79)
PA6/PPy/RGO Formic acid Electrochemical sensing of malathion pesticide (80)
PVA DW Detection of pesticide residues (81)
PVP/TiO2 DMF Water crop pesticide biosensor (82)
PVA/PVP/Glycerol (Gly) DW Soil biostimulant and biofirptélci?g with Bacillus and Serratia (83)
PVA/AChE/IA DW Sensor for pesticide detection (84)
CA and gelatin Ac:DW Nanocomposite seed cover W;tCQicc)ﬁO and Cu? ions for fungicidal (85)
SBS DW Sustained pheromone elution system (79)
™ Cellulose NF/plasticizers/ . N
Cellulose (Innofresh™) surfactant mixture/KSb Protective cherry coating film (86)
PVA DW Bradyrhizobium-based seed encapsulation for soybeans (87)
CA Ac Controlled pheromone delivery for Grapholita molesta (79)
PVP THF Nanofiber-based pheromone release (79)
PCL EtOH Slow-release pheromone encapsulation (79)
Co-polyester PHA-b-MEG and Poly " -
(ethylene oxide) PEO Brij S20 Encapsulation system for pheromone OLA release (88)
FesO.N Ps/PMI\(/ICANI\I{'FSs)/carbon horns DMF Biosensor for detecting Aflatoxin (AFB1) (89)
PCL Chloroform/EtOH 3D nanoscaffold for Burkholderia strain-based biofilm (90)
Ethyl cellulose (EC), solution DCM Encapsulation of Vitavax and Carbex fungicides for rice seed (91)
Toluene/ethanol 80:20 coating
CA DCM Encapsulation of Grapholita molesta pheromone (79)
Blends of (PEG)/(PCL) and blends Acetone Controlled release encapsulation for Ceratitis capitata (92)
of (PVAc)/(PVP) management
(PEDOT)/Graphene oxide (GO) EtOH Impedimetric device for detecting soil nitrate levels (75)

NPs: nanoparticles; NFs: nanofibers; PEDOT: poly(3,4-ethylenedioxythiophene); PCL: polycaprolactone; PEO: polyethylene oxide; PVP: polyvi-
nylpyrrolidone; PANI: polyaniline; PA6: polyamide-6; PS: polystyrene; PEG: polyethylene glycol; CA: cellulose acetate; CDA: Cellulose diacetate;
PVAc: polyvinyl acetate; PVA: polyvinylalcohol; PPZ: poly (diethoxy) phosphazene; PLA: polylactic acid; PHB: polyhydroxybutyrate; DMF: N,N
dimethyl formamide; THF: tetrahydrofuran; DCM: dichloromethane; EtOH: ethanol; MetOH: methanol; DW: deionized water; DDA: double dis-
tilled water; DMAc: dymethyl acetamide; Ac: acetic acid; PBAT: poly(butyleneadipate-co-terephthalate; PHMG: polyhexamethylene guanidine;
PLGA: lactide/glycolide copolymer; KSb: potassium sorbate; PVDF: polyvinylidene fluoride; SBS: styrene-butadiene-styrene copolymer; PPy:
polypyrrole; RGO: reduced graphene oxide; HP-B-CD-hydroxypropyl-B-cyclodextrin; NPK: nitrogen-phosphorus-potassium; AChE: acetylcho-

linesterase; IA: indolyl acetate.
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signals. In pest control, nanofibers embedded with pheromones
or biopesticides offer eco-friendly alternatives by disrupting pest
cycles. Biodegradable polymers further minimize environmental
impact. Electrospun seed coatings enhance germination by
retaining water, oxygen and nutrients and can deliver growth
regulators or microbes effectively. Soil health can also benefit
from functionalized nanofibers combined with biochar and
beneficial microbes, while integrated nanofiber-based sensors
allow real-time monitoring of moisture, pH and nutrients.

Future advancements may merge electrospinning with
3D printing and nanolithography to develop smart agricultural
tools and biodegradable films (74). However, scaling up
production, reducing costs and addressing environmental and
regulatory challenges require collaborative efforts. Technological
progress in materials science and precision agriculture will be
key to mainstreaming electrospinning in sustainable farming
(72).

Conclusion

The integration of electrospinning technology in sustainable
agriculture presents a transformative approach to enhance soil
health, seed coatings and post-harvest antimicrobial
protection. This innovative method not only improves nutrient
delivery and utilization but also addresses critical challenges
such as plant disease management and environmental
sustainability. The following sections will explore the
multifaceted applications of electrospinning in agriculture,
highlighting its potential to revolutionize farming practices.
Controlled Nutrient Release: Electrospun nanofibers can
encapsulate fertilizers, allowing for a slow and controlled
release, which minimizes nutrient leaching and enhances soil
health. Microbial Encapsulation: The use of electrospun
biocomposites that incorporate beneficial microbes can improve
nutrient acquisition and disease resistance in crops, promoting a
healthier rhizosphere. Seed coatings made from electrospun
nanofibers, such as those incorporating cobalt nanoparticles and
urea, have shown significant improvements in germination rates
and seed protection. The materials used in these coatings are
often biocompatible, reducing environmental impact while
enhancing crop vyield through better nutrient management.
Antimicrobial Properties: Electrospun nanofibers can be
engineered to include antimicrobial agents, providing protective
coatings for fruits and vegetables that extend shelf life and
reduce spoilage. The development of smart nanotextiles for food
packaging can further enhance food safety and quality,
addressing post-harvest losses.

In conclusion, while the applications of electrospinning
in sustainable agriculture are promising, challenges remain in
scaling these technologies for widespread adoption. The need
for further research into the long-term effects and economic
viability of these innovations is essential to fully realize their
potential in transforming agricultural practices.
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