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Introduction to nanoparticles and abiotic Stress  

Global agriculture is seriously threatened by climate change, which is 

typified by increasing temperatures, changed precipitation patterns 

and decreased water availability. Communities in developing 

nations, where farming is a major source of food security and 

livelihood, should be especially concerned about these 

developments. Issues like food insecurity and hunger are getting 

worse as climate change intensifies and the world's population 

keeps expanding. In response to these challenges, researchers are 

increasingly exploring advanced technologies. Among them, 

nanotechnology has emerged as a promising strategy for enhancing 

plant tolerance and productivity under adverse environmental 

conditions. NPs have distinct physical and chemical characteristics 

that set them apart from their bulk counterparts because of their 

minuscule size. They are fascinating from a scientific and 

technological standpoint because they reside at the boundary 

between individual molecules and large-scale materials. Currently, 

agriculture is using a wide range of engineered nanomaterials to 

address environmental stress, including metals (Zn, Cu, Ag, Fe), 

metal oxides (TiO₂, ZnO, Fe₂O₃/Fe₃O₄, SiO₂, Al₂O₃, MgO), metalloids 

(Si) and carbon nanomaterials (e.g., carbon nanotubes). 

 In order to sense and react swiftly to external stressors, 
plants have developed sophisticated mechanisms. These adaptive 

responses can be strengthened by NPs, making plants more 

resistant to abiotic stress. By increasing their capacity to endure and 

function in challenging growth environments, crops may be able to 

increase yields by nanotechnological treatments (1-5) (Fig. 1).  
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Abstract  

Difficulties such as drought, salt and high temperatures caused by environmental problems reduce worldwide crop yields and greatly prevent 
seeds from sprouting. Because of what they are made of nanoparticles (NPs) are getting a lot of attention as a method to boost plant growth 

in tough conditions. The review covers information on how various NPs are affected by abiotic conditions and in turn influence the process of 

seed germination and the early stages of plant growth. Metallic, carbon-based and biopolymer nanoparticles modulate water uptake, activate 
germination-related enzymes (e.g., amylase, protease) and enhance antioxidant defense (e.g., superoxide dismutase, catalase), thereby 

improving seed vigour under stress. This is done because these interactions save cellular balance, which results in less oxidative stress and 

greater resistance to outside problems. The study also investigates the ways NPs get into seed cells and what impacts they have on cellular 

organelles. Topics related to NPs like their toxicity, the possibility that they last in nature for a long time and the many regulations are 
mentioned too. It is highlighted that when it comes to using nanotechnology in agriculture, emphasis ought to be placed on making sure 

things are environmentally friendly and sustainable and that nanoparticles are properly adjusted to encourage seed germination under 

stressful conditions. 

Keywords: drought; heavy metals; high temperatures; nanoparticles; salinity; seed germination; stress mitigation 

Fig. 1. The impact of abiotic stress on seed germination, the image 
contrasts untreated seedlings with those enhanced by nanoparticles, 

showing enhanced development and resilience. 
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Uptake, translocation and mechanistic interactions of 

nanoparticles in plant systems 

NPs, due to their minuscule size, can enter plant tissues through 

both belowground and aboveground structures. They penetrate 

roots via tips, lateral roots, the cortex, or damaged areas and 

aboveground parts through features like the cuticle, epidermis, 

stomata, hydathodes and other natural openings. NPs reach plant 

roots through the soil matrix via bulk flow and diffusion, influenced 

by their size, charge, solubility and surface coatings. Once near the 

root surface, they interact with root exudates and penetrate 

through two main pathways: the apoplastic and symplastic routes. 

In the apoplastic pathway, NPs move passively between cell walls 

and intercellular spaces until they are blocked by the casparian strip 

in the endodermis. To move further, they must enter the cells. The 

symplastic pathway involves active uptake through endocytosis, 

where the plasma membrane engulfs NPs into vesicles. From there, 

they move cell-to-cell via plasmodesmata (6).  

 Root hairs and sites of lateral root emergence are key zones 

for NPs entry due to thinner cell walls and higher permeability. 

Internalized NPs may undergo changes like dissolution or binding 

with biomolecules, influencing their behavior inside the plant. Once 

past the cortex, they can access the xylem for upward translocation. 

The surface properties of NPs, such as positive charge or 

biocompatible coatings, enhance their adhesion and uptake. 

Understanding these processes is vital for optimizing the application 

of NPs in agriculture, ensuring efficient root uptake and minimal 

toxicity while enhancing nutrient delivery and stress tolerance (7).  

 The extent and nature of NPs’ impact on plants largely 

depend on various factors including plant species, growth stage, 

type of NP, method of application, dosage and duration of exposure 

(8,9). According to the mass flow or pressure flow hypothesis, NPs 

that enter through the stomata are transported within the plant via 

the phloem, driven by pressure differences between the root and 

shoot systems (10). The pathway taken by NPs significantly 

influences essential physiological processes such as seed 

germination, antioxidant activity, nutrient absorption (macro and 

micronutrients), chlorophyll synthesis, chloroplast formation and 

overall photosynthesis (11). In Arabidopsis, for instance, NPs have 

been shown to alter intra-root signaling by modifying ethylene 

production (12). After penetrating the cell wall and membrane, NPs 

can migrate to internal tissues like the epidermis, xylem, central 

cylinder and ultimately the leaves (13). Before reaching the central 

cylinder, NPs are passively transported through the endodermis 

(14). Transport occurs via both the symplastic route (through 

plasmodesmata) and apoplastic or active pathways, driven by 

osmotic pressure, capillary action and interactions with pores in the 

cell wall (15). NPs may also breach the plasma membrane by 

forming pores or binding to transport proteins and they can enter 

cells through mechanisms like ion channels, aquaporins, or 

endocytosis. The ability of NPs to penetrate plant tissues is largely 

determined by their size (16). Larger NPs typically move through 

structures like stomata, stigma and hydathodes, while smaller 

particles especially those between 15-40 nm can pass directly 

through the cell wall (17,18). Once inside, smaller NPs (<~40 nm) can 

move symplastically and enter the translocation stream (xylem/

phloem), facilitating systemic distribution to aerial tissues (19), as 

illustrated in Fig. 2. 

 Researchers believe that nanotechnology can bring big 

improvements to agriculture. Today, scientists are coming up with 

new approaches that rely on nanotechnology to boost the quality 

of seeds, increase germination and yield more crops. As a result of 

these advancements, it will be possible to overcome difficulties 

from changes in the environment and continue providing enough 

food (20). At present, the wide use of nanotechnology in farming is 

greatly restricted due to the difficulty of dealing with agricultural 

ecosystems. At the same time, nanotechnology has a promising 

role in boosting different aspects of plant growth, such as seed 

germination, strength and output. If nanomaterials are combined 

with seeds, they could advance different processes in plants. With 

this method, the chance of seeds germinating well, the vigor of 

seedlings and total plant health may all improve under great 

conditions (21). Even though nanotechnology could bring great 

benefits, there are more concerns about its possible harm to the 

environment and people. Some researchers have brought up issues 

with the unknown dangers of nanomaterials on the ecosystem 

when they are introduced (22,23), Nanomaterials can be harmful to 

living and non-living parts of nature due to their potential toxicity, 

persistence in the environment and ability to accumulate in 

biological systems, leading to adverse effects on organisms, 

ecosystems and natural resources. They can either harm the 

bacteria in the soil (24) or lessen the number of nutrients available 

(25), which also negatively affects arthropods (26) and annelids (27). 

The reason for this is that pests may cause the crops to produce less 

and ecological problems may follow as well. Using nanomaterials 

on seeds has brought about some beneficial and some negative 

changes for their germination. The effects of nanomaterials on seed 

germination are covered in different studies and have been 

presented (Table 1 and Fig. 3). 

Fig. 2. Above ground and below ground mechanisms by showing multiple entry locations and transport channels of nanoparticles in plants. 

 

https://plantsciencetoday.online


3 

Plant Science Today, ISSN 2348-1900 (online) 

 

S.no. Particle used Seed type Remarks Physiological process References 

1. Fe2O3 Vigna mungo 
Seeds primed 120 min with Fe2O3 quantum dots 

attains maximum germination percentage 
@500 ppm (93 %). 

Enhanced enzyme activity 
(amylase), ROS balance and 

hormonal signaling 
(30) 

2. Silver Lolium multiflorum, 
Panicum vigatum 

Ag NPs coated with gum Arabic considerably 
slowed the growth of Juncus effusus and Scirpus 

Cyprinus. 

Allelopathic suppression, 
interference in cell division 

(31) 

3. TiO2 
Linum usitatissiumum, 
Solanum lycopersicum 

and Vigna radiata 

Treatment with TiO₂ with sizes corresponding 
to 25 and 32 nm indicated stimulatory effect on 

root growth and seed germination. 

Increased photosynthesis, ROS 
scavenging, nutrient uptake (32) 

4. TiO2 Triticum aestivum 

Lower concentrations of TiO shortened the 
germination durations, while larger 

concentrations repressed the germination of 
seeds. 

Hormonal regulation (ABA/GA 
balance), oxidative stress (33) 

5. TiO2 Switch grass [Panicum 
virgatum] 

When compared to control sets, the mean seed 
germination was reduced by around 50 % at a 

concentration of 2.5 % TiO; however, 
germination was not adversely affected by 

concentrations lower than 2.5 %. 

Toxicity induced oxidative 
stress, membrane damage 

(34) 

6. CuO Hordeum sativum When compared to control seeds, NPS reduced 
seed germination by 23 %. 

Disruption of mitochondrial 
respiration, membrane 

integrity 
(35) 

7. Al2O3, CuO Solanum lycoperscion 
After receiving NPs, there was no impact on 

seed germination. When compared to control 
sets. 

No significant physiological 
alteration 

(36) 

8. 
Amine-modified 
polystyrene and 

TiO2 
Lettuce 

Following exposure to TiO₂ and amine-modified 
polystyrene, there were notable reduction in 
both length of the plant (root, shoot) sulfate-

modulated polystyrene did not have any 
inhibitory effects. 

Interference with auxin 
signaling, cell elongation 

 (37) 

9. Ag, Cu, Au Eruca sativa 

The optimal positive response for Ag NP was 
demonstrated by the 42 day seed germination. 

Ag NPs were the only ones that showed 
complete seed germination. 

Ag enhances antimicrobial 
action, hormonal activity (38) 

10. 

Multiwalled 
carbon 

nanotube, Al, 
Al2O3, Zn and ZnO 

Raphanus sativus, 
Brassica napus, Lolium 

multiflorum, Lactuca 
sativa, Zea mays and 

Cucumis sativus 

  Zea mays and Lolium multiflorum seed 
germination were only impacted by Zn-based 

nanoparticles. 

Zn influences protein 
synthesis, enzyme activation 

(39) 

11. TiO2 Foeniculum vulgare 

After being treated with NPs at low 
concentration, the seed germination index 

increased; the germination of the seeds was 
improved; at 40 ppm of NPs, the germination 

was improved. length up to 31.8 % in 
comparison to the control group. 

Enhanced water uptake, 
hormonal balance 

 (40) 

12. SiO2 Lycopersicum esculentum 

Applying NPs had stimulatory effects on the 
characteristics of seed germination; the time for 

seedling emergence and the optimal 
concentration for enhancing seed germination 

were found to be at 8 gL. 

Improved cell wall loosening, 
water uptake 

 (41) 

13. Chitosan Oryza sativa 

Chitosan nanoparticle treatment increased rice 
seed germination and was thought to be a 

germination elicitor; in a conclusive test, fewer 
seeds germinated at higher concentrations of 

the nanoparticle. 

Modulated immune response, 
seed enzyme activation 

(42) 

14. Cu2O 
Lycopersicum esculentum 

  

Seed germination was stimulated by low 
concentrations (20 ppm); higher concentrations 

were found to inhibit seed germination. 

Cu influences ROS 
detoxification, energy 

metabolism 
(43) 

15. Hydroxyapatite Solanum lycopersicum 
There was no discernible inhibitory effect on 

seed germination when hydroxyapatite 
concentration increased (2-2000 ppm). 

Acts as phosphorus source, no 
stress response triggered 

(44) 

16. 
TiO2, ZnO, 
Al2O3, CuO 

Raphanus sativus, 
Cicumis sativus, Solanum 

lycopersicon and 
Medicago sativa 

Different NP treatments resulted in inhibition of 
seed germination; TiO treatment, up to a 
specific dosage, increased root and shoot 
growth; and ZnO and CuO NP treatments 

showed results. inhibiting the length of the 
roots and shoots 

Variable effects: growth 
regulation, ROS balance, 

enzyme activity 
 (45) 

17. ZnO, TiO2, CuO, 
Ag 

Avena sativa and 
Trifolium alexandrinum 

nanoparticle treatment increased rice seed 
germination and was thought to be a 

germination elicitor. 

Synergistic enhancement of 
antioxidant defense and 

nutrient availability 
(46) 

18. 
Monometallic 
and bimetallic 
nanoparticles 

Silybum marianum 

The application of nanoparticle therapy greatly 
accelerated germination; the highest positive 
effect was observed when silver nanoparticles 
were suspended; the average germination rate 

of every seed tested exceeded 85 %. 

Ag-induced microbial 
inhibition, protein synthesis 

(47) 

19. Nano zero-valent 
iron and Ag 

Genus Lolium, Hordeum 
vulgare, Linum 
usitatissimum 

The germination of seeds was completely 
suppressed at 1000-2000 ppm of nZVI. 

Induced oxidative stress, iron 
toxicity, DNA damage 

(48) 

20. ZnO Peanut Favorable impact on the seed sprouting. 
Zn boosts enzyme systems like 

dehydrogenase, membrane 
integrity 

(49) 

Table 1. Influence of various nanoparticles on seed germination 
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Role of NPs in modifying seed germination 

With staples like grains, legumes and nuts making up a sizable 

amount of the world's caloric intake, seeds are an essential source of 

nutrition in the human diet (28). Particularly for species that do not 

reproduce vegetatively, seeds are essential to plant reproduction. 

They maintain the genetic diversity and continuity of plant 

populations by acting as biological carriers of genetic information. 

Through its ability to interact with various physiological processes, 

nanotechnology has become a promising tool for improving seed 

germination. Improved germination rates, seedling vigor and overall 

plant performance may result from the modulation of water intake, 

enzyme activation and metabolic activities by NPs, especially in 

harsh climatic circumstances (29).   

Specific effects of abiotic stress 

Agricultural crops are subject to a wide range of stresses, which can 
be classified as either biotic (originating from living things) or abiotic 

(originating from environmental variables that are not living). Since 

abiotic stresses are mostly unpredictable and inevitable in nature, 

they are very important. These include drought, salinity, high 

temperatures (cold and heat) and heavy metal contamination. 

Because plant responses are diverse and dynamic, it is challenging 

to accurately measure the effect of abiotic stress on crop output. 

These responses may be elastic (reversible adaptations) or plastic 

(permanent changes), depending on the intensity and duration of 

the stress. 

 Plants cope with abiotic stress through two primary 

strategies: avoidance and tolerance. Avoidance mechanisms involve 

the plant’s ability to evade stress by altering growth or development 

patterns. For example, some plants exhibit escape strategies, where 

they accelerate their life cycle and complete reproduction before the 

onset of severe stress. This includes utilizing available soil moisture 

efficiently and enhancing gas exchange rates through rapid growth. 

Plants may also adjust morphologically and physiologically to avoid 

damage by shedding leaves to reduce water loss, delaying or 

reducing seed germination, closing stomata during the night to 

conserve water and adopting a compact growth form, which 

minimizes the surface area exposed to adverse conditions. These 

adaptive responses are crucial for plant survival and productivity in 

fluctuating environments (Table 2a, Table 2b). In the table spell out if 

some of the above processes are affected in plants. 

Effects of NPs on seed germination under salinity stress 

NPs plays a key role in mitigating the adverse effects of salinity 

stress on plants. For instance, treatment with silver NPs (Ag NPs) 

in Lathyrus sativus under salt stress improves germination rate, 

shoot and root lengths, as well as seedling fresh and dry weights 

by enhancing osmotic regulation and reducing the harmful 

impact of salinity (65, 66). Similarly, adding Cu NPs to the soil 

significantly promotes growth and yield in wheat, while 

decreasing oxidative stress caused by salinity (67). Pre-treatment 

of wheat seeds with Ag NPs modulates antioxidant enzyme 

activities, reduces oxidative damage and enhances tolerance to salt 

stress during germination (68). Moreover, ZnO NPs have been found 

to increase dry weight in sunflowers exposed to saline conditions 

(69). The physiological responses of Brassica napus under salt stress 

are enhanced by cerium oxide (CeO) NPs at concentrations of 100 

and 200 mg/kg (70). In basil plants exposed to salt stress, the 

application of Ag NPs also promotes seed germination (71,72). By 

reducing adverse effects on germination percentage and shoot 

Fig. 3. The flow chat gives about the penetration of NPs in plants. 

Type of particle 
used Treatment Crop Stress induced Effects References 

Aluminum oxide Seed soaking Glycine max Salinity 

Controlled the activity of the 
tricarboxylic acid cycle, 

membrane permeability and the 
ascorbate-glutathione pathway. 

 (50) 

Mn3O4 Foliar application Cucumber Salinity 

Enhanced luminescence 
concentration, net transpiration 

and yield each have an impact on 
metabolomics. 

 (51) 

Mn Foliar application sweet peppers  
Saltiness 

  
improved sprouting of seeds and 

root growth.  (52) 

Fe In nutrient media Grape 
Salinity 

  
Reduced levels of H2O2, 

antioxidant enzymatic activity.  (53) 

Fe Foliar application Moldavian balm 
Salinity 

  
Increased TAT, RAS and RA gene 

expression. 
 (54) 

Fe Seed soaking Jowar 
Saltiness 

  
Increased lipid peroxidation, 

photosynthetic rate  (55) 

Fe 
50% of the pots were 
filled with nano-zinc 

oxide suspension. 
Mineral nutrient Saltiness 

decreased the amount of MDA and 
began the plant's growth. 

(56) 

CeO2 Spraying Mouse-ear cress Salinity 

Enhanced photosynthesis, 
biomass, chlorophyll 

concentration and mesophyll K + 
retention in leaves 

(57) 

CeO2 
Within the ground 

  
Brassica napus 

Saltiness 
  

 Enhanced photosynthetic 
equipment efficiency and biomass 

in plants 
 (58) 

Table 2a. Impact in enhancing crop tolerance to salinity stress 
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length under salt stress, Ag NPs increase plant resilience in Satureja 

hortensis (73). When sprayed to cumin plants, Ag NPs greatly 

increased their ability to withstand salty conditions (74). Finally, 

high concentrations of NaCl (75) can induce oxidative damage to 

mint plants, but FeO₄ NPs shield them from this harm. 

 NPs effects on drought-stressed seed germination. Abiotic 

stressors like drought severely reduce agricultural yield (76,77). 

Applying NPs can improve physiological characteristics, boost 

antioxidant enzyme activity and increase phytohormone levels, all of 

which can mitigate the impacts of drought. Analcite NPs, for 

instance, have been demonstrated to enhance wheat germination 

and growth when applied to hot, dry soil (78). Furthermore, the 

application of ZnO NPs to dried soybean seeds promotes 

germination rates (79). Cu and Zn NPs help wheat plants survive 

drought by increasing relative moisture content and antioxidant 

enzyme activity, decreasing Thio barbituric acid concentrations, 

controlling reagent precipitation, preserving the amount of 

photosynthetic pigment in leaves and reducing stress damage (80). 

Across different abiotic stresses, NPs consistently promote seedling 

vigor by enhancing antioxidant activity, modulating hormonal 

pathways and improving osmotic balance. While the specific 

mechanisms vary, the overarching trend indicates that 

nanomaterials can bolster early  stage plant resilience under both 

drought and salinity stress (81). Furthermore, SiO2 NPs applied to 

barley under drought conditions improve shoot length and relative 

water content (RWC), while decreasing superoxide radical 

production and membrane injury (82). 

Effects of NPs on seed germination under heavy metal stress 

Treating plants with NPs either through soil or foliar application can 

reduce toxicity caused by oxidative stress, enhance plant growth 

and photosynthesis and mitigate the harmful effects of heavy metal 

stress. As a result, NPs also contribute to the remediation of 

environments contaminated with heavy metals. When plants face 

heavy metal exposure, applying NPs decreases the heavy metal 

concentration in the soil, regulates the expression of genes involved 

in metal transport, strengthens the plant’s antioxidant defenses, 

improves physiological functions and encourages the production of 

protective substances such as organic acids, phytochelatin and root 

exudates (83). Phytoremediation is an environmentally friendly and 

cost effective technique that uses green plants to clean up heavy 

metal-contaminated soils and water bodies. This method relies on 

the natural ability of certain plants to uptake, accumulate and 

detoxify heavy metals through various mechanisms. One of the 

most common methods is phyto extraction, where plants absorb 

heavy metals from the soil and translocate them to the aerial parts, 

which can then be harvested and safely disposed of. Phyto 

stabilization involves the immobilization of heavy metals in the root 

zone through root exudates or precipitation, thereby reducing their 

mobility and bioavailability in the soil (84). Rhizofiltration utilizes 

plant roots, especially from aquatic or hydroponically grown plants, 

to absorb or adsorb heavy metals from polluted water. 

Phytovolatilization is another process where plants take up specific 

heavy metals like mercury or selenium, convert them into volatile 

forms and release them into the atmosphere. Although not effective 

for all types of metals, phytodegradation, which primarily addresses 

organic contaminants, can support metal remediation indirectly by 

enhancing soil health (85). The success of phytoremediation 

depends on plant species, pollutant type and environmental factors. 

Overall, phytoremediation offers a sustainable and non-invasive 

approach for restoring ecosystems impacted by heavy metal 

pollution (86). For example, under arsenic stress, Si NPs applied to 

maize reduce negative effects on maximum quantum efficiency, 

photochemical quenching and non-photochemical quenching of 

photosystem II, while also decreasing total chlorophyll, carotenoid 

and protein content (87). Titanium dioxide (TiO2) NPs play a critical 

role in alleviating heavy metal-induced oxidative stress by limiting 

cadmium toxicity and improving physiological traits and 

photosynthesis rates in soybean plants (88). In pea seedlings 

subjected to chromium stress, treatment with Si NPs increases 

activities of antioxidant enzymes like ascorbate peroxidase (APX) 

and superoxide dismutase (SOD), thereby reducing oxidative 

damage (89). Additionally, Si NPs have been found to reduce 

aluminum toxicity in maize by activating antioxidant defense 

mechanisms (90). 

 

Future prospects and Conclusion 

Interactions between plants and NPs lead to both physiological and 

structural changes in plants. However, the effectiveness of NPs 

application depends on several factors, including the chemical 

composition, size, surface charge, reactivity, dosage, frequency of 

application, plant species and the specific plant part treated. A 

notable area in this context is nanoparticle-based plant delivery 

systems. Thanks to nanotechnology, it is now possible to precisely 

alter genes and regulate their expression by delivering tailored DNA 

into plant cells. The introduction of desirable features into 

genetically distinct organisms is accelerated by this method. A wide 

range of characteristics, including different hues, increased yields 

and changing growing seasons, can be incorporated into seeds. 

Nanomaterials offer dual application modes internally for genetic 

transformation and externally for precise nutrient or pesticide 

delivery both aimed at improving stress tolerance and productivity. 

Additionally, NPs can be utilized to precisely administer herbicides 

and nutrients, providing a novel way to improve crop protection 

while lessening the impact on the environment. 

Table 2b. Impact in enhancing crop tolerance to drought stress 

Type of particle Treatment Crop Stress induced Effects References 

Si 
Added to 

nutrient solution 
of seedling 

Hawthorn Drought 
Enhanced plant tolerance through the 

preservation of vital metabolic and biological 
processes 

(59) 

Titanium dioxide 
(TiO2) 

Seed priming Zea mays (Maize) Drought 
Improved seed germination, enhanced 

photosynthetic activity and better water use 
efficiency under drought stress. 

(60) 

Silver nanoparticles 
(AgNPs) Foliar spray 

Triticum aestivum 
(Wheat) Drought 

Reduced oxidative damage, increased antioxidant 
enzyme activity and improved plant biomass. (61) 

Silicon dioxide 
(SiO2) Soil application Oryza sativa (Rice) Drought 

Enhanced root development, membrane stability 
and relative water content under drought stress. (62) 

Carbon nanotubes Seed treatment 
Vigna radiata (Mung 

bean) Drought 
Increased water retention, accelerated 

germination and improved stress resistance. (63,64) 
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 The integration of NPs into plant systems not only enhances 

genetic transformation but also revolutionizes precision agriculture. 

By facilitating targeted delivery of agrochemicals, NPs minimize off-

target effects and reduce the required quantity of inputs, thereby 

lowering environmental contamination. For instance, 

nanoformulations of fertilizers ensure slow and sustained nutrient 

release, improving nutrient use efficiency and promoting healthier 

plant growth. Similarly, NPs based herbicide delivery enables 

precise weed control without harming the crop. Moreover, the 

unique physicochemical properties of NPs allow them to penetrate 

plant tissues efficiently, including through stomata or root 

absorption, making them highly effective carriers. This targeted 

approach also reduces the likelihood of resistance development in 

pests and pathogens. With continuous advancements, 

nanoparticles are being engineered to respond to specific biological 

signals, paving the way for smart delivery systems that release their 

cargo only under certain environmental or physiological conditions. 

As a result, nanotechnology holds immense potential to transform 

traditional farming into a more sustainable, efficient and responsive 

system, aligning agricultural practices with environmental 

stewardship and food security goals. 

 Priming seeds with NPs has been shown to enhance 

germination and growth, particularly in medicinal and fodder 

plants, indicating the possibility of higher agricultural productivity. 

As a conclusion it can be said that combining green synthesis with 

the remediation potential of NPs working with microorganisms 

presents viable ways to clear agricultural waste and contaminated 

soils, tackling environmental issues in farming. In summary, 

nanotechnology represents a transformative approach for 

agricultural sustainability, but realizing its full potential will require 

responsible innovation, robust regulation and coordinated efforts 

across scientific disciplines. Numerous studies have demonstrated 

that the application of NPs in agriculture can significantly enhance 

crop yield, thereby justifying their use. For instance, seed priming 

with ZnO NPs in wheat has been shown to improve yield by 20-30 % 

through enhanced germination and nutrient uptake. In rice, the 

application of nano-silica and nano-iron has led to yield increases of 

15-25 % due to improved stress tolerance and photosynthetic 

efficiency. Similarly, maize treated with NPs based priming agents 

such as Ag or Si NPs exhibited a 15-20 % increase in grain yield 

compared to conventional methods. In tomato cultivation, foliar 

application of nanofertilizers has resulted in a 20-35 % increase in 

fruit yield along with improved quality. Even in medicinal plants like 

Withania somnifera, seed treatment with NPs enhanced biomass 

and secondary metabolite content by up to 30 %. These quantified 

improvements clearly highlight the effectiveness of 

nanotechnology in boosting crop productivity, supporting 

sustainable agriculture and addressing global food security 

challenges. Despite promising outcomes, inconsistent results 

across plant species and environments highlight the need for 

standardized formulations and rigorous safety assessments. Future 

research must prioritize interdisciplinary collaboration, integrating 

plant physiology, materials science and environmental toxicology 

to develop safe and scalable nanotechnological applications in 

agriculture. 
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