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Abstract

Lawsonia inermis L., a plant of immense significance as the natural source of dye “Mehend” is rich in secondary metabolites that impart
important medicinal properties. These phytochemicals offer plant-based alternatives to synthetic drugs, which are often associated with
harmful side effects, reinforcing the need to explore such natural compounds. The main objective of this study is to find plant-based lead from
among the phytochemicals present in Lawsonia inermis L., against Nsp3 protein. Methanolic extracts from the plant was used and a group of
phytochemicals were verified and identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass
spectrometry, which were then subjected to phytochemical screening. The shortlisted best ligands (caffeic acid and lawsone) were subjected
to molecular dynamic simulations for 100 ns, where RMSD, Rg and RMSF were analysed along with the binding affinities to the protein.
Lawsone and caffeic acid emerged as good candidates. Molecular dynamic simulations indicated that lawsone, a naphthoquinone, formed
stable complexes with Nsp3, exhibiting favourable RMSD, RMSF and Rg values, as well as a strong binding affinity of -20.72 kcal/mol. Our
analysis shows the prospective possibility of lawsone, as a potential antiviral compound. This also highlights the interactions of a
naphthoquinone, against Nsp3 protein, increasing the medicinal importance of the plant. Previous studies usually reveal phenols and
flavonoids to be effective antiviral agents. This study, for the very first time, reveals the potential of lawsone (naphthoquinone and the main
pigment of the plant), against Nsp3 protein.
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Introduction Herbal medicines use a strong combination of bioactive
compounds, which have less toxic side effects, providing
therapeutic benefits with reduced toxicity (14,15). Although,
vaccines serve to be effective, there have been reports of many
side effects and they are comparatively costly (16,17). Natural
bioactive compounds (phenols and flavonoids) serve as
effective antiviral agents by hindering viral replication,
translation, transcription, viral packaging and assembly (18,19).
Quercetin, apigenin, naringenin, curcumin, chebulagic acid and
punicalagin have shown effective action against viruses like HIV,
DENV, Influenza and others (20,21). The antiproliferative
potential of polyphenols is of utmost importance, as they have
been reported to inhibit a wide range of viruses like, influenza
virus, coronavirus, rhinovirus, syncytial virus, rotavirus, hepatitis
virus, herpes virus, dengue virus and many more (22,23). Hence,
in this study, we aim to find plant-based alternatives, from
Lawsonia inermis L., whose mention has been found in the
Ayurvedic texts (9,24). The phytochemicals identified were
analysed against Nsp3, an important protein needed for the
maintenance of the viral life cycle of SARS-CoV-2 (25).

India with its rich diversity of medicinal plants stands tall among
the countries which have a long history of plant-based
medicines (1-4). Ayurveda which originated around 5000 years
ago is gradually witnessing an era of commercialization, with a
rise in demand for alternatives to diseases, with less harmful
side-effects (5,6). The market of medicinal plants in India, is
expected to value at around 8 billion US dollars by 2022. A
knowledge and practise which originated in India, is slowly
spreading globally, providing potential cure and treatment to
many (7). Dravyaguna, a part of Ayurveda dealing with the
properties and uses of medicinal plants, has mention of
Madyantika, or Lawsonia inermis, being useful in the commercial
and medicinal sectors (8). Some of the important medicinal
properties of Lawsonia inermis, include, anti-carcinogenic,
immune-stimulatory, antidiabetic, antiproliferative and many
more (9-11). This can be attributed to the bioactive compounds
present in the plant, especially which are rich in phenols and
flavonoids (12,13).
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Among the many important roles played by Nsp3 protein, it aids
in polyprotein processing by binding to viral proteins (26). Nsp3
protein, along with Nsp4 and Nsp6 are involved in formation of
Double-Membrane Vesicles (DMV) in coronavirus-infected cells,
playing a key role in virus survival (27,28). Apart from this, the
protein also helps in virus replication, by interacting with 3CLpro
and PLpro (27,29). Methanolic extracts of Lawsonia inermis L.,
were seen as potential sanitizers, exhibiting strong antimicrobial
activity, suggesting their role in bacterial and viral growth
inhibition (30). The target protein Nsp3 holds immense
importance in the virus survival. Hence, targeting this protein
can substantially lower the pathogenicity of the virus, providing
a plant-based alternative (31). Based on previous analyses, this
work, for the very first time investigates the interaction of
identified bioactive compounds from Lawsonia inermis L.,
against the Nsp3 protein.

Materials and Methods
Preparation of protein

Nsp3, the largest multidomain protein encoded by the virus has
an average molecular weight of 200kDa (32). The structure was
obtained from RCS PDB database (Fig. 1). For processing the
PDB protein file, MGL tools were used, where, polar hydrogens
were added, ligand and water molecules were removed before
docking.

Ligand preparation

Seeds of Lawsoniainermis L. were obtained from the National
Bureau of Plant Genetic Resources (NBPGR), New Delhi (IC
627437). Leaves of four-month-old Lawsonia inermis L. were
dried, weighed, crushed and kept in 80 % methanol overnight for
optimum extraction of phytochemicals (33). The leaf extract was
subjected to Ultra-High-Performance Liquid Chromatography
Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-QTOF-
MS) (Agilent UHPLC-QTOF-MS model 6500 series). For the
process, 10 uL sample was injected, using Acquity UPLC BEH C18
column (100 mm x 2.1 mm, 1.7 um) (34), with gradient mobile
phases, A: ultrapure water (0.5 % acetic acid) and B: acetonitrile:
methanol (50:50). A group of 14 phytochemicals (Fig. 2) were
reported among which some were validated from the list
provided in a previous work (35), along with which, some more
compounds were also identified. Table 1 summarises the data
from the PubChem Database.

Fig. 1. Protein Nsp3 (PDB ID: 8AZC) downloaded from the RCSB PDB.

Docking analysis of ligand with the protein

Docking was done by AutoDock Vina (15), against the Nsp3 protein.
Following which, the complexes were further processed for
molecular dynamic simulations for 100 ns, with the CHARMM ffT92
force field (15). The log file obtained gave 9 poses for the ligand-
protein complexes, along with RMSD values and binding affinity.
Poses with the highest binding affinity and low RMSD values (less
than 24) were considered (36). The interactions were recorded
using the Discovery Studio (https://www.3ds.com/products/biovia/
discovery-studio) and the interacting residues were noted, along
with the number of hydrogen bonds.

Lipinski’s rule of five

Ligands were analysed using Lipinski’s rule of five, which highlights
the drug “potential” of a ligand (http://www.scfbio-iitd.res.in/
software/drugdesign/lipinski.jsp) (37).

In silico ADME analysis

Swiss ADME was used to study the behaviour of the ligands in the
human body by, analysing characteristics such as metabolism,
absorption, excretion and distribution (http://www.swissadme.ch/
index.php) (38,39).

Bioactivity score

This parameter helps us to know about the interaction of the
prospective drug candidates with the drug receptors present in the
body, done by Molinspiration  software  (https://
www.molinspiration.com/). A bioactivity score of 0 and more,
shows good bioactivity, whereas lower scores indicate poor activity
(40,41).

ADMET analysis

This analysis can help predict the performance of a drug in the body
(42,43), which is done by ADMET analysis.

Molecular dynamic simulations

AutoDock Vina and Discovery Studio give a very stringent overview
of the proteins-ligand interactions (44). This limitation can be
overcome by molecular dynamic simulations between complexes,
in a solvation box, for a specific time-period (45,46). From the
previous analysis, lawsone and caffeic acids were shortlisted which
were further analysed (47). GROMACS is a versatile program and
can be easily customized. For charge neutralization, 2 sodium
atoms were added to each of the systems, which further aided in
the smooth running of the simulations (48).

The force field used in the dynamic studies were
CHARMM36 (charmm36-jul2022) and the SPC water model. The
energy minimization was done, which ensures structural stability.
Once the system was energy minimized and evaluated as positive
for potential energy (Fig. 3), we achieved equilibration for the same.
The equilibration was done for temperature and pressure both (The
system was equilibrated within 1 ns). This was achieved at
temperature equilibration in 1000 ps [1 ns, maintaining an average
temperature of 300.022 K]. Temperature equilibration was done to
increase system stability before simulation (49). In addition, the
system got pressure equilibrated within 1000 ps, maintaining an
average pressure of -0.258134 bar. The above process of energy
minimization and equilibration (temperature & pressure) ensures
structural stability, needed for further processing of molecular
dynamic simulation by GROMACS. The system was simulated for
100 ns and the trajectory was recorded every 10 ps.
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Fig. 2. MS spectrum of phytochemicals.

a) Lawsone; b) Chlorogenic acid; c) Caffeic acid; d) Umbelliferone; e) Rutin; f) Quercetin; g) Kaempferol; h) Luteolin-3-O-glucoside; i) Luteolin-7-
0-B-D-glucopyranoside; j) Apigenin; k) Lalioside; l) Luteolin; m) Lyoniresinol; n) Quercetin-3-O-3-D-glucopyranoside

Table 1. Identified phytochemicals with their PubChem ID and formula

Sl. No Name PubChem ID Chemical formula
1 Lawsone 6755 C10Hs0s
2 Chlorogenic acid 1794427 Ci6H1809
3 Caffeic acid 689043 CoHsO4
4 Umbelliferone 5281426 CoHe05
5 Rutin 5280805 C27H30016
6 Quercetin 5280343 Ci15H1007
7 Kaempferol 5280863 C15H100s
8 Luteolin-3-0-glucoside 12309350 C21H2001:1
9 Luteolin-7-O-B-D-glucopyranoside 5280637 Cy1H20044
10 Apigenin 5280443 Cq5H1005
11 Lalioside 189452 C14H15010
12 Luteolin 5280445 Cy5H1006
13 Lyoniresinol 11711453 C22H250s
14 Quercetin-3-0-B-D-glucopyranoside 12304324 Cy1H004,
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Fig. 3. Potential energy plots.

a) Lawsone; b) Caffeic acid complex with Nsp3 protein

Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA) was employed to calculate the free energy of binding
(AG) of complexes using g mmpbsa tool of GROMACS (50). This
canbecalculated as:

AGbind = Gcomplex‘ (Gprotein) + Gligand

Results and Discussion
Docking analysis of phytochemicals

For a good drug candidate, strong interactions with the protein

are required (Fig. 4, Table 2) Negative energy values define a
spontaneous interaction. More negative values indicate a strong
binding affinity between protein-ligand complexes (40,51). The
highest number of hydrogen bonds was shown by Luteolin-3-0-
glucoside. Lawsone, was also seen to exhibit a high binding
affinity of -7.4 kcal/mol.

Phytochemical screening

The drug candidacy can be very easily comprehended by
Lipinski’s rule of 5, where lipophilicity (logP) of less than 5, less
than 10 hydrogen bond acceptors, less than 5 hydrogen bond
donors and a molecular mass of less than 500 Dalton, will
increase the drug candidacy (Table 3). All the phytochemicals
showed good performance, except chlorogenic acid, luteolin-3-
0-glucoside, luteolin-7-O-3-D-glucopyranoside, quercetin-3-0-3
-D-glucopyranoside and lalioside.

In silico ADME analysis

Gastrointestinal absorption was good for all the phytochemicals
except, rutin, luteolin-3-O-glucoside, chlorogenic acid and
luteolin-7-O-B-D-glucopyranoside (Table 4). A score of >0.55 is
considered good. Lawsone shows the highest bioactivity score,
of 0.85, which is an indicator of the extent and rate at which the
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Fig. 4. Binding residues of protein Nsp3 with phytochemicals.

a) Lawsone; b) Chlorogenic acid; c) Caffeic acid; d) Umbelliferone; e) Rutin; f) Quercetin; g) Kaempferol; h) Luteolin-3-O-glucoside; i) Luteolin-7-
0-B-D-glucopyranoside; j) Apigenin; k) Lalioside; l) Luteolin; m) Lyoniresinol; n) Quercetin-3-O-3-D-glucopyranoside

Table 2. Binding residues of phytochemicals with protein Nsp3

Binding affinity e .
Sr.No Name (kcal/mol) H bonds Binding residues

1. Lawsone 7.4 4 Ala 129 (A), Ser 128 (A), Val 49 (A)
2. Chlorogenic acid -8.2 5 Val 49 (A), Ala 50 (A), Ala 38 (A), Gly 46 (A), Lys 44 (A)
3. Caffeic acid -7.0 3 Ala 129 (A), Asn 40 (A), Leu 126 (A)
4. Umbelliferone -6.7 1 Asn 40 (A)
5. Rutin 9.0 3 Leu 126 (A), Ala 129 (A), Ser 128 (A)
6. Quercetin -8.4 6 Ser 128 (A), Leu 126 (A), Lys 44 (A), Gly 47 (A)
7. Kaempferol -8.2 3 Gly 46 (A), Gly 47 (A), Ala 38 (A)

. . ] Ser 128 (A), Ala 129 (A), Ala 154 (A), Phe 156 (A), Gly 47
8. Luteolin-3-O-glucoside 10.0 8 (A), Lys 44 (A), Asn 40 (A)
9. Luteolin-7-O-B-D-glucopyranoside -10.0 6 Leu 126 (A), Ser 128 (A), A(l2)154 (A), Gly 47 (), Asn 40
10. Apigenin -8.7 4 Leu 126 (A), Ala 129 (A), Ser 128 (A), Lys 44 (A),
1L Lalioside 75 5 Ala 38 (A), Ala 50 (A), Ser(Al)28 (A), Leu 126 (A), Val 49
12. Luteolin 8.9 5 Leu 126 (A), Gly 47 (A), Ser 128 (A), Lys 44 (A),
13. Lyoniresinol -6.5 2 Ala 154 (A), Leu 126 (A)
14. Quercetin-3-0-B-D-glucopyranoside -7.9 - -
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Table 3. Summary of ligands and their characters and violations to Lipinski’s rule of 5

SL.NO Compound Name MOI?QIUII:;II;AaSS H bond acceptors I:il obnoollcsl LOGP Molar refractivity Violations
1 Lawsone 174.15 3 1 0.83 46.39 0
2 Chlorogenic acid 354.31 9 6 0.96 83.50 1
3 Caffeic acid 180.16 4 3 0.97 47.16 0
4 Umbelliferone 162.14 3 1 1.44 44,51 0
5 Rutin 610.52 16 10 1.58 141.38 3
6 Quercetin 302.24 7 5 1.63 78.03 0
7 Kaempferol 286.24 6 4 1.70 76.01 0
8 Luteolin-3-O-glucoside 448.38 11 7 0.72 108.13 2
9 Luteolin-7-0-B-D- 448.38 1 7 1.83 108.13 2

glucopyranoside ’ ) ’
10 Apigenin 270.24 5 3 1.89 73.99 0
11 Lalioside 346.29 10 7 0.75 76.85 1
12 Luteolin 286.24 6 4 1.85 76.01 0
13 Lyoniresinol 420.45 8 4 2.92 110.31 0
14 Quercetin-3-0-B-D- 464.38 12 8 2.11 110.16 2

glucopyranoside

Table 4. Analysis of phytochemicals using Swiss ADME analysis

Name LOGS GIA BBB P-gp  CYP3A4inhibitor CYP1A2 inhibitor Bioavailability score
Lawsone -1.80 High Yes No No No 0.85
Chlorogenic acid -1.62 Low No No No No 0.11
Caffeic acid -1.89 High No No No No 0.56
Umbelliferone -2.46 High Yes No No Yes 0.55
Rutin -3.30 Low No Yes No No 0.17
Quercetin -3.16 High No No Yes Yes 0.55
Kaempferol -3.31 High No No Yes Yes 0.55
Luteolin-3-O-glucoside -3.65 Low No No No No 0.17
Luteolin-7-O-B-D-glucopyranoside -3.65 Low No Yes No No 0.17
Apigenin -3.94 High No No Yes Yes 0.55
Lalioside -1.23 Low No No No No 0.55
Luteolin -3.71 High No No Yes Yes 0.55
Lyoniresinol -3.53 High No Yes No No 0.55
Quercetin-3-0-B-D-glucopyranoside -3.04 Low No No No No 0.17
ligand enters the system, accessing the site of action. Ligands ~ AMDET analysis

that are p-glycoprotein substrates, can substantially reduce
drug metabolism, hence are not acceptable. CYP enzymes are
very important for drug absorption and metabolism, inhibitors
of which, are discouraged. Quercetin, kaempferol, apigenin and
luteolin don’t satisfy the criteria, whereas lawsone and caffeic
acid, can serve as prospective drug candidates that qualify the
screening parameters successfully.

Bioactivity score

The phytochemicals showed a high to moderate bioactivity
score, apart from umbelliferone, which showed lowest score in
kinase Inhibition of -1.30. For G protein-coupled receptor
(GPCR), lon channel modulator (ICM), Enzyme inhibitor (El),
Protease inhibitor (PI) and Nuclear receptor ligand (NRL), high
bioactivity score was shown by chlorogenic acid (Table 5).

All 14 phytochemicals were tested for ADME and toxicity to
further screen the compound’s candidature as effective drugs
(Table 6). Regarding the absorption parameters, all
phytochemicals showed optimal values. The distribution result
showed that the compounds are well distributed in tissue. All
compounds also showed a good renal elimination by not being
renal organic cation transporter 2 (OCT2) substrates. AMES
toxicity was not shown for the selected compound list. Only
umbelliferone showed hepatotoxicity. Comparing all the
parameters, lawsone and caffeic acid showed best results
among the ligands.

Molecular Dynamic (MD) simulations

A dynamic interaction between the complexes can be understood
by MD simulations. Docking methods give a stringent view, which
can be easily overcome by simulation studies (45). These simulation
studies also help in making the process of drug discovery less time

Table 5. Bioactivity score of the phytochemicals with the Molinspiration software

SL.NO Name GPCR ICM Kl NRL Pl El
1 Lawsone -0.76 -0.13 -0.41 -0.86 -0.74 0.20
2 Chlorogenic acid 0.29 0.14 -0.00 0.74 0.27 0.62
3 Caffeic acid -0.48 -0.23 -0.81 -0.10 -0.79 -0.09
4 Umbelliferone -1.22 -0.72 -1.30 -0.92 -1.30 -0.35
5 Rutin -0.05 -0.52 -0.14 -0.23 -0.07 0.12
6 Quercetin 0.06 -0.19 0.28 0.36 -0.25 0.28
7 Kaempferol -0.10 -0.21 0.21 0.32 -0.27 0.26
8 Luteolin-3-0-glucoside 0.10 -0.01 0.18 0.28 -0.02 0.43
9 Luteolin-7-O-B-D-glucopyranoside 0.09 -0.02 0.15 0.27 -0.01 0.42
10 Apigenin -0.07 -0.09 0.18 0.34 -0.25 0.26
11 Lalioside 0.03 0.06 -0.14 0.07 -0.01 0.38
12 Luteolin -0.02 -0.07 0.26 0.39 -0.22 0.28
13 Lyoniresinol 0.07 0.00 -0.18 -0.05 -0.02 0.10
14 Quercetin-3-0-B-D-glucopyranoside 0.06 -0.04 0.13 0.20 -0.06 0.42
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Table 6. ADMET prediction of the phytochemicals

Toxicity

Excretion

Distribution

Absorption

LD50 HT SS MT

No

hERG hERG
No

AMES MTDD

Renal
0CT2

VDss FU BBB CNS TC

skin

HIA

MOLECULE
Caco;

SLLNO

No No 1.57

1.82

93.8 -3.04 0.01 0.01 -0.23 -2.79 0.15 No No 0.97

1.19

Lawsone

36.4 -2.74 0.58 0.66 -1.41 -3.86 0.30 No No -0.13 No No 1.97 No No 5.74

-0.84

Chlorogenic acid

2.24
171
7.67
3.72
2.88
5.94
6.34
2.43
6.88

No No

2.38
2.04
2.49
2.47
2.44
2.54
2.54
2.45
2.40

No No

1.14
0.68
0.45
0.49
0.53
0.58
0.58
0.32
0.24
0.49
0.41

NO

NO
No

0.50

-2.61
-2.74
-5.18
-3.06
-2.23
-3.91

-0.65
-0.28
-1.89
-1.09
-0.94
-1.63

0.53
0.43
0.18
0.20
0.17
1.35
0.22
0.15
0.71

-1.09
0.03
1.66
1.56
1.27
1.35
0.88
0.82
0.80

69.4 -2.72

0.63
121
-0.95
-0.23
0.03
0.28
0.24
1.00
-0.86

Caffeic acid

No

Yes

No

No

No
NO
NO

0.70
-0.37

-2.6
-2.74
-2.74
-2.74
-2.74

94.5

Umbelliferone

No

No

Yes
No

No

NO
NO
No

234

Rutin
Quercetin
Kaempferol

No

No

No

0.49
0.47
0.47
0.47
0.56
0.52
0.49
0.37

7.2

No

No

No

No

No

74.2

No

No

No

No

No

No

30.3

Luteolin-3-O-glucoside

No

No

No

No

No

No

-3.93
-2.06
-4.14
-2.25
-1.11

-1.56
-0.73
-1.49
-0.91
-1.11

-2.73
-2.73
-2.73

37.5

Luteolin-7-0-B-D glucopyranoside

No

No

No

No

No

No

93.2

Apigenin

10
11
12

No

No

No

No

No

No

24.2

Lalioside

3.16
2.46

No No
No No

2.45
2.08

No
Yes

No
No

No
No

No
No

0.17
0.05
0.23

1.15
0.19

-2.73
-2.73

81.1
72.2

0.09
-0.27

Luteolin
Lyoniresinol

o™
—

2.54 No No 8.06

No Yes

-4.04 0.39 No No 0.56

1.84 -1.68

-2.73

47.9

Quercetin-3-0-B-D-glucopyranoside 0.24

14.

12

consuming for the industry (52). We performed simulations for the
best ligand-protein complexes, as was evident by previous
screening analysis, (lawsone-Nsp3 and caffeic acid-Nsp3), for 100
ns, to finally select the best candidate.

Root Mean Square Deviation (RMSD)

We can say that Lawsone-Nsp3 and Caffeic acid-Nsp3 show very
low RMSD, within 0.1-0.15 nm, (expected and stable range is 0.1-
0.7nm with respect to size of the protein) till 100 ns. RMSD values
also show that the variation is insignificant in terms of its structure
which indicates a high stability (53) (Fig. 5). For the excellent
category, RMSD values need to be less than 0.05 nm (54). Hence,
lawsone and caffeic acid can serve as potential good hits based on
their very low RMSD values.

Root Mean Square Fluctuation (RMSF)

From the results, the RMSF observed range is less than 0.3 nm for
caffeic acid and lawsone complexes, indicating no significant
change in the structure of protein-ligand complexes, suggesting
strong and compact complexes (Fig. 6). Glycine and aspartic acid
residues show highest mobility, contributing to protein flexibility.

Radius of gyration radius of gyration (Rg)

The radius of gyration measures protein and ligand compactness,
throwing light on the folding properties of the protein (55,56). Small
values indicate a compact complex. High Rg values indicate
unstable protein folding and complexes (57). A stable value of the
radius of gyration indicates stable protein folding. Analysis shows
that the radius of gyration is relatively stable for both the Lawsone-
Nsp3 and Caffeic acid-Nsp3 complexes. The stable graph (black
colour) shows that the protein can maintain its compactness (Fig. 7).

Thermodynamic properties of the system

To calculate the free energy of binding (AG) of complexes, MMPBSA
was employed (Table 7). MMPBSA calculated the various forces
(Table 7) for both complexes. Both complexes remain stable for 100
ns. It was found that the binding energy for ‘caffeic acid’ is -16.32
kcal/mol, while -20.72 kcal/mol for the ‘lawsone’. These energies
represent stronger binding for lawsone. In addition, energy less than
-7 kcal/mol shows stronger binding. The complex ‘Lawsone’ is more
stable than the ‘Caffeic acid’ based on lower free energy.

The medicinal importance of Lawsonia inermis is well
established, given the rich secondary metabolites (9). When it
comes to plant-based phytochemicals, we usually see flavonoids as
effective antiviral agents, like diosmin (58-60). This analysis,
however, show that, between caffeic acid and lawsone, a
naphthoquinone, which is also the main pigment, emerging as a
potential antiviral candidate (61,62). Naphthoquinones are
derivatives of the shikimic acid pathway and have well established
medicinal benefits (63,64). Earlier studies reveal the effective role of
liposome-encapsulated derivatives of naphthoquinones in
inhibiting HSV infection (65). Even novel derivatives of 14
naphthoquinones have shown effective antimicrobial functions
(66). 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-
naphthanthene-1,4-dione, a naphthoquinone produced by a
fungus was reported to reduce inflammation and inhibit
transcription (hindering the virus pathogenicity) in SARS-CoV-2
infected cells (67). From our study, it was interesting to see that, for
the very first time, between caffeic acid and lawsone, lawsone
yielded the best results, against Nsp3 protein. Naphthoquinones
achieve the antiviral property mainly by inhibiting the Na’, K*-
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a) Lawsone; b) caffeic acid complex with protein Nsp3

Table 7. Energies of the complexes

Polar and Non Polar

Vanderwaal energy Electrostatic energy . SASA energy Free Binding energy
S-No Complex (kcal/mol) (kcal/mol) solvation energy " 1mol) (kcal/mol)
(kcal/mol)
1 Lawsone-Nsp3 -1155.92 -11392.83 -1904.39 65.02 -20.72
2 Caffeic Acid-Nsp3 -1149.59 -11394.57 -1917.29 66.26 -16.32

ATPase and by interfering with the steps of attachment and
penetration of the virus (65,68,69).

The importance of the Nsp3 protein lies in its many
functions to ensure the survival of the virus, by promoting of
replication, transcription and translation (26,27,29,32,70). A
triterpene glycoside, suavissimoside, was reported to hinder the
activity SARS-CoV M™, having a binding energy of -8.19 kcal/mol
(71). Sulfuretin, was also reported to show good binding results with
Nsp3 (72). Chlorogenic acid from Lawsonia inermis also showed
effective binding and interaction with NS1 of Dengue virus (15), with
a binding energy of -43.39 kJ/mol. In this study, we see the main
pigment of the plant, lawsone, to be effective against Nsp3. No
previous studies were found, that explored the interactions of
lawsone against Nsp3, proving the uniqueness of the analysis.
Lawsone and caffeic acid satisfied most of the screening tests,
which were further simulated for a time of 100 ns, by MD
simulations. Analysis of RMSD, RMSF and Rg showed the ligand-

protein complexes, analysing which, concluded strong and
compact complexes. Binding free energy for the complex lawsone
was -20.72 kcal/mol, suggesting favourable energy parameters as
compared to caffeic acid complex. From the results it is clear that
the Lawsone-Nsp3 complex is more stable. This analysis shows
better binding affinity as compared to suavissimoside to SARS-CoV
MPe, with an affinity of -8.19 kcal/mol (71). This was similar to the
energy of a few best docked ligands against Nsp3, showing an
affinity of more than -85 kcal/mol (73). When comparing with
previous works (74,75) ligand binding affinity was seen to be higher
for our analysis, where the ligands interacted with the inhibitory
binding residues of Nsp3 protein.

Our analysis yielded better results, showing the possibility
of a natural dying agent, as a potential antiviral compound. This
analysis also highlights the interactions of lawsone, a
naphthoquinone, against Nsp3 protein. In hindsight, this work can
successfully establish the plantin the medicinal sector.
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Conclusion

We can conclude from the analysis that a naphthoquinone,
lawsone, which is the main pigment of the plant, can serve as a
potential candidate against Nsp3 protein of SARS-CoV2, providing a
plant-based alternative that can successfully bind and inhibit the
protein, needed for protein processing by the virus. Further
isolation of lawsone and application in invitro methods, can
strengthen the candidature of the ligand against the protein’s
functions.
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