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Introduction 

India with its rich diversity of medicinal plants stands tall among 

the countries which have a long history of plant-based 

medicines (1-4). Ayurveda which originated around 5000 years 

ago is gradually witnessing an era of commercialization, with a 

rise in demand for alternatives to diseases, with less harmful 

side-effects (5,6). The market of medicinal plants in India, is 

expected to value at around 8 billion US dollars by 2022. A 

knowledge and practise which originated in India, is slowly 

spreading globally, providing potential cure and treatment to 

many (7). Dravyaguna, a part of Ayurveda dealing with the 

properties and uses of medicinal plants, has mention of 

Madyantika, or Lawsonia inermis, being useful in the commercial 

and medicinal sectors (8). Some of the important medicinal 

properties of Lawsonia inermis, include, anti-carcinogenic, 

immune-stimulatory, antidiabetic, antiproliferative and many 

more (9-11).  This can be attributed to the bioactive compounds 

present in the plant, especially which are rich in phenols and 

flavonoids (12,13). 

 Herbal medicines use a strong combination of bioactive 

compounds, which have less toxic side effects, providing 

therapeutic benefits with reduced toxicity (14,15). Although, 

vaccines serve to be effective, there have been reports of many 

side effects and they are comparatively costly (16,17). Natural 

bioactive compounds (phenols and flavonoids) serve as 

effective antiviral agents by hindering viral replication, 

translation, transcription, viral packaging and assembly (18,19). 

Quercetin, apigenin, naringenin, curcumin, chebulagic acid and 

punicalagin have shown effective action against viruses like HIV, 

DENV, Influenza and others (20,21). The antiproliferative 

potential of polyphenols is of utmost importance, as they have 

been reported to inhibit a wide range of viruses like, influenza 

virus, coronavirus, rhinovirus, syncytial virus, rotavirus, hepatitis 

virus, herpes virus, dengue virus and many more (22,23). Hence, 

in this study, we aim to find plant-based alternatives, from 

Lawsonia inermis L., whose mention has been found in the 

Ayurvedic texts (9,24). The phytochemicals identified were 

analysed against Nsp3, an important protein needed for the 

maintenance of the viral life cycle of SARS-CoV-2 (25). 
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Abstract  

Lawsonia inermis L., a plant of immense significance as the natural source of dye “Mehendi” is rich in secondary metabolites that impart 
important medicinal properties. These phytochemicals offer plant-based alternatives to synthetic drugs, which are often associated with 

harmful side effects, reinforcing the need to explore such natural compounds. The main objective of this study is to find plant-based lead from 

among the phytochemicals present in Lawsonia inermis L., against Nsp3 protein. Methanolic extracts from the plant was used and a group of 

phytochemicals were verified and identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass 
spectrometry, which were then subjected to phytochemical screening. The shortlisted best ligands (caffeic acid and lawsone) were subjected 

to molecular dynamic simulations for 100 ns, where RMSD, Rg and RMSF were analysed along with the binding affinities to the protein. 

Lawsone and caffeic acid emerged as good candidates. Molecular dynamic simulations indicated that lawsone, a naphthoquinone, formed 

stable complexes with Nsp3, exhibiting favourable RMSD, RMSF and Rg values, as well as a strong binding affinity of -20.72 kcal/mol. Our 
analysis shows the prospective possibility of lawsone, as a potential antiviral compound. This also highlights the interactions of a 

naphthoquinone, against Nsp3 protein, increasing the medicinal importance of the plant. Previous studies usually reveal phenols and 

flavonoids to be effective antiviral agents. This study, for the very first time, reveals the potential of lawsone (naphthoquinone and the main 

pigment of the plant), against Nsp3 protein. 
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http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.10092&domain=horizonepublishing.com
https://doi.org/10.14719/pst.10092
mailto:debleena.roy@ladybrabourne.com
https:/doi.org/10.14719/pst.10092


DEBAPRIYA ET AL  2     

https://plantsciencetoday.online 

Among the many important roles played by Nsp3 protein, it aids 

in polyprotein processing by binding to viral proteins (26). Nsp3 

protein, along with Nsp4 and Nsp6 are involved in formation of 

Double-Membrane Vesicles (DMV) in coronavirus-infected cells, 

playing a key role in virus survival (27,28). Apart from this, the 

protein also helps in virus replication, by interacting with 3CLpro 

and PLpro (27,29). Methanolic extracts of Lawsonia inermis L., 

were seen as potential sanitizers, exhibiting strong antimicrobial 

activity, suggesting their role in bacterial and viral growth 

inhibition (30). The target protein Nsp3 holds immense 

importance in the virus survival. Hence, targeting this protein 

can substantially lower the pathogenicity of the virus, providing 

a plant-based alternative (31). Based on previous analyses, this 

work, for the very first time investigates the interaction of 

identified bioactive compounds from Lawsonia inermis L., 

against the Nsp3 protein.  

 

Materials and Methods 

Preparation of protein 

Nsp3, the largest multidomain protein encoded by the virus has 

an average molecular weight of 200kDa (32). The structure was 

obtained from RCS PDB database (Fig. 1). For processing the 

PDB protein file, MGL tools were used, where, polar hydrogens 

were added, ligand and water molecules were removed before 

docking. 

Ligand preparation 

Seeds of Lawsonia inermis L. were obtained from the National 

Bureau of Plant Genetic Resources (NBPGR), New Delhi (IC 

627437). Leaves of four-month-old Lawsonia inermis L. were 

dried, weighed, crushed and kept in 80 % methanol overnight for 

optimum extraction of phytochemicals (33). The leaf extract was 

subjected to Ultra-High-Performance Liquid Chromatography 

Quadrupole Time-of-Flight Mass Spectrometry (UHPLC–QTOF-

MS) (Agilent UHPLC–QTOF-MS model 6500 series). For the 

process, 10 µL sample was injected, using Acquity UPLC BEH C18 

column (100 mm x 2.1 mm, 1.7 µm) (34), with gradient mobile 

phases, A: ultrapure water (0.5 % acetic acid) and B: acetonitrile: 

methanol (50:50). A group of 14 phytochemicals (Fig. 2) were 

reported among which some were validated from the list 

provided in a previous work (35), along with which, some more 

compounds were also identified. Table 1 summarises the data 

from the PubChem Database. 

Docking analysis of ligand with the protein  

Docking was done by AutoDock Vina (15), against the Nsp3 protein. 

Following which, the complexes were further processed for 

molecular dynamic simulations for 100 ns, with the CHARMM ffT92 

force field (15). The log file obtained gave 9 poses for the ligand-

protein complexes, along with RMSD values and binding affinity. 

Poses with the highest binding affinity and low RMSD values (less 

than 2Å) were considered (36). The interactions were recorded 

using the Discovery Studio (https://www.3ds.com/products/biovia/

discovery-studio) and the interacting residues were noted, along 

with the number of hydrogen bonds.  

Lipinski’s rule of five  

Ligands were analysed using Lipinski’s rule of five, which highlights 

the drug “potential” of a ligand (http://www.scfbio-iitd.res.in/

software/drugdesign/lipinski.jsp) (37). 

In silico ADME analysis 

Swiss ADME was used to study the behaviour of the ligands in the 
human body by, analysing characteristics such as metabolism, 

absorption, excretion and distribution (http://www.swissadme.ch/

index.php) (38,39).  

Bioactivity score 

This parameter helps us to know about the interaction of the 

prospective drug candidates with the drug receptors present in the 

body, done by Molinspiration software (https://

www.molinspiration.com/). A bioactivity score of 0 and more, 

shows good bioactivity, whereas lower scores indicate poor activity 

(40,41).  

ADMET analysis 

This analysis can help predict the performance of a drug in the body 

(42,43), which is done by ADMET analysis.  

Molecular dynamic simulations 

AutoDock Vina and Discovery Studio give a very stringent overview 

of the proteins-ligand interactions (44). This limitation can be 

overcome by molecular dynamic simulations between complexes, 

in a solvation box, for a specific time-period (45,46). From the 

previous analysis, lawsone and caffeic acids were shortlisted which 

were further analysed (47). GROMACS is a versatile program and 

can be easily customized. For charge neutralization, 2 sodium 

atoms were added to each of the systems, which further aided in 

the smooth running of the simulations (48).  

 The force field used in the dynamic studies were 

CHARMM36 (charmm36-jul2022) and the SPC water model. The 

energy minimization was done, which ensures structural stability. 

Once the system was energy minimized and evaluated as positive 

for potential energy (Fig. 3), we achieved equilibration for the same. 

The equilibration was done for temperature and pressure both (The 

system was equilibrated within 1 ns). This was achieved at 

temperature equilibration in 1000 ps [1 ns, maintaining an average 

temperature of 300.022 K]. Temperature equilibration was done to 

increase system stability before simulation (49). In addition, the 

system got pressure equilibrated within 1000 ps, maintaining an 

average pressure of -0.258134 bar. The above process of energy 

minimization and equilibration (temperature & pressure) ensures 

structural stability, needed for further processing of molecular 

dynamic simulation by GROMACS. The system was simulated for 

100 ns and the trajectory was recorded every 10 ps. 
Fig. 1. Protein Nsp3 (PDB ID: 8AZC) downloaded from the RCSB PDB. 

https://plantsciencetoday.online
https://www.3ds.com/products/biovia/discovery-studio
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https://www.molinspiration.com/
https://www.molinspiration.com/
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 Molecular Mechanics Poisson-Boltzmann Surface Area 

(MMPBSA) was employed to calculate the free energy of binding 

(△G) of complexes using g_mmpbsa tool of GROMACS (50). This 

can be calculated as: 

△Gbind = Gcomplex- (Gprotein) + Gligand 

 

Results and Discussion  

Docking analysis of phytochemicals 

 For a good drug candidate, strong interactions with the protein 
are required (Fig. 4, Table 2) Negative energy values define a 

spontaneous interaction. More negative values indicate a strong 

binding affinity between protein-ligand complexes (40,51). The 

highest number of hydrogen bonds was shown by Luteolin-3-O-

glucoside. Lawsone, was also seen to exhibit a high binding 

affinity of -7.4 kcal/mol. 

Phytochemical screening 

The drug candidacy can be very easily comprehended by 

Lipinski’s rule of 5, where lipophilicity (logP) of less than 5, less 

than 10 hydrogen bond acceptors, less than 5 hydrogen bond 

donors and a molecular mass of less than 500 Dalton, will 

increase the drug candidacy (Table 3). All the phytochemicals 

showed good performance, except chlorogenic acid, luteolin-3-

O-glucoside, luteolin-7-O-β-D-glucopyranoside, quercetin-3-O-β

-D-glucopyranoside and lalioside. 

In silico ADME analysis 

Gastrointestinal absorption was good for all the phytochemicals 

except, rutin, luteolin-3-O-glucoside, chlorogenic acid and 

luteolin-7-O-β-D-glucopyranoside (Table 4). A score of >0.55 is 

considered good. Lawsone shows the highest bioactivity score, 

of 0.85, which is an indicator of the extent and rate at which the 

 
n 

Fig. 2. MS spectrum of phytochemicals. 

a) Lawsone; b) Chlorogenic acid; c) Caffeic acid; d) Umbelliferone; e) Rutin; f) Quercetin; g) Kaempferol; h) Luteolin-3-O-glucoside; i) Luteolin-7-
O-β-D-glucopyranoside; j) Apigenin; k) Lalioside; l) Luteolin; m) Lyoniresinol; n) Quercetin-3-O-β-D-glucopyranoside 

Sl. No Name PubChem ID Chemical formula 
 1 Lawsone 6755 C10H6O3 
 2 Chlorogenic acid 1794427 C16H18O9 
 3 Caffeic acid 689043 C9H8O4 
 4 Umbelliferone 5281426 C9H6O3 
 5 Rutin 5280805 C27H30O16 
 6 Quercetin 5280343 C15H10O7 
 7 Kaempferol 5280863 C15H10O6 
 8 Luteolin-3-O-glucoside 12309350 C21H20O11 
 9 Luteolin-7-O-β-D-glucopyranoside 5280637 C₂₁H₂₀O₁₁ 

 10 Apigenin 5280443 C₁₅H₁₀O₅ 
 11 Lalioside 189452 C14H18O10 
 12 Luteolin 5280445 C₁₅H₁₀O₆ 
 13 Lyoniresinol 11711453 C22H28O8 
 14 Quercetin-3-O-β-D-glucopyranoside 12304324 C₂₁H₂₀O₁₂ 

Table 1. Identified phytochemicals with their PubChem ID and formula 

a 

Fig. 3. Potential energy plots. 

 a) Lawsone; b) Caffeic acid complex with Nsp3 protein 

b 

https://pubchem.ncbi.nlm.nih.gov/#query=C16H18O9
https://pubchem.ncbi.nlm.nih.gov/#query=C9H8O4
https://pubchem.ncbi.nlm.nih.gov/#query=C9H6O3
https://pubchem.ncbi.nlm.nih.gov/#query=C27H30O16
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O7
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O6
https://pubchem.ncbi.nlm.nih.gov/#query=C21H20O11
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Fig. 4. Binding residues of protein Nsp3 with phytochemicals. 

a) Lawsone; b) Chlorogenic acid; c) Caffeic acid; d) Umbelliferone; e) Rutin; f) Quercetin; g) Kaempferol; h) Luteolin-3-O-glucoside; i) Luteolin-7-
O-β-D-glucopyranoside; j) Apigenin; k) Lalioside; l) Luteolin; m) Lyoniresinol; n) Quercetin-3-O-β-D-glucopyranoside 

Sr. No Name Binding affinity 
(kcal/mol) 

H bonds Binding residues 

1. Lawsone -7.4 4 Ala 129 (A), Ser 128 (A), Val 49 (A) 

2. Chlorogenic acid -8.2 5 Val 49 (A), Ala 50 (A), Ala 38 (A), Gly 46 (A), Lys 44 (A) 

3. Caffeic acid -7.0 3 Ala 129 (A), Asn 40 (A), Leu 126 (A) 

4. Umbelliferone -6.7 1 Asn 40 (A) 

5. Rutin -9.0 3 Leu 126 (A), Ala 129 (A), Ser 128 (A) 

6. Quercetin -8.4 6 Ser 128 (A), Leu 126 (A), Lys 44 (A), Gly 47 (A) 

7. Kaempferol -8.2 3 Gly 46 (A), Gly 47 (A), Ala 38 (A) 

8. Luteolin-3-O-glucoside -10.0 8 Ser 128 (A), Ala 129 (A), Ala 154 (A), Phe 156 (A), Gly 47 
(A), Lys 44 (A), Asn 40 (A) 

9. Luteolin-7-O-β-D-glucopyranoside -10.0 6 Leu 126 (A), Ser 128 (A), Ala 154 (A), Gly 47 (A), Asn 40 
(A) 

10. Apigenin -8.7 4 Leu 126 (A), Ala 129 (A), Ser 128 (A), Lys 44 (A), 

11. Lalioside -7.5 5 Ala 38 (A), Ala 50 (A), Ser 128 (A), Leu 126 (A), Val 49 
(A), 

12. Luteolin -8.9 5 Leu 126 (A), Gly 47 (A), Ser 128 (A), Lys 44 (A), 

13. Lyoniresinol -6.5 2 Ala 154 (A), Leu 126 (A) 

14. Quercetin-3-O-β-D-glucopyranoside -7.9 - - 

Table 2. Binding residues of phytochemicals with protein Nsp3 

https://plantsciencetoday.online
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ligand enters the system, accessing the site of action. Ligands 

that are p-glycoprotein substrates, can substantially reduce 

drug metabolism, hence are not acceptable. CYP enzymes are 

very important for drug absorption and metabolism, inhibitors 

of which, are discouraged. Quercetin, kaempferol, apigenin and 

luteolin don’t satisfy the criteria, whereas lawsone and caffeic 

acid, can serve as prospective drug candidates that qualify the 

screening parameters successfully.   

Bioactivity score 

The phytochemicals showed a high to moderate bioactivity 

score, apart from umbelliferone, which showed lowest score in 

kinase Inhibition of -1.30. For G protein-coupled receptor 

(GPCR), Ion channel modulator (ICM), Enzyme inhibitor (EI), 

Protease inhibitor (PI) and Nuclear receptor ligand (NRL), high 

bioactivity score was shown by chlorogenic acid (Table 5). 

 

AMDET analysis 

All 14 phytochemicals were tested for ADME and toxicity to 
further screen the compound’s candidature as effective drugs 

(Table 6). Regarding the absorption parameters, all 

phytochemicals showed optimal values. The distribution result 

showed that the compounds are well distributed in tissue. All 

compounds also showed a good renal elimination by not being 

renal organic cation transporter 2 (OCT2) substrates. AMES 

toxicity was not shown for the selected compound list. Only 

umbelliferone showed hepatotoxicity. Comparing all the 

parameters, lawsone and caffeic acid showed best results 

among the ligands.  

Molecular Dynamic (MD) simulations 

A dynamic interaction between the complexes can be understood 

by MD simulations. Docking methods give a stringent view, which 

can be easily overcome by simulation studies (45). These simulation 

studies also help in making the process of drug discovery less time 

SL. NO Compound Name Molecular Mass 
(g/mol) 

H bond acceptors H bond 
donors 

LOG P Molar refractivity Violations 

1 Lawsone 174.15 3 1 0.83 46.39 0 
2 Chlorogenic acid 354.31 9 6 0.96 83.50 1 
3 Caffeic acid 180.16 4 3 0.97 47.16 0 
4 Umbelliferone 162.14 3 1 1.44 44.51 0 
5 Rutin 610.52 16 10 1.58 141.38 3 
6 Quercetin 302.24 7 5 1.63 78.03 0 
7 Kaempferol 286.24 6 4 1.70 76.01 0 
8 Luteolin-3-O-glucoside 448.38 11 7 0.72 108.13 2 

9 Luteolin-7-O-β-D-
glucopyranoside 

448.38 11 7 1.83 108.13 2 

10 Apigenin 270.24 5 3 1.89 73.99 0 
11 Lalioside 346.29 10 7 0.75 76.85 1 
12 Luteolin 286.24 6 4 1.85 76.01 0 
13 Lyoniresinol 420.45 8 4 2.92 110.31 0 

14 Quercetin-3-O-β-D-
glucopyranoside 

464.38 12 8 2.11 110.16 2 

Table 3. Summary of ligands and their characters and violations to Lipinski’s rule of 5  

 Name LOG S GIA BBB P-gp CYP3A4 inhibitor CYP1A2 inhibitor Bioavailability score 

Lawsone -1.80 High Yes No No No 0.85 
Chlorogenic acid -1.62 Low No No No No 0.11 
Caffeic acid -1.89 High No No No No 0.56 
Umbelliferone -2.46 High Yes No No Yes 0.55 
Rutin -3.30 Low No Yes No No 0.17 
Quercetin -3.16 High No No Yes Yes 0.55 
Kaempferol -3.31 High No No Yes Yes 0.55 
Luteolin-3-O-glucoside -3.65 Low No No No No 0.17 
Luteolin-7-O-β-D-glucopyranoside -3.65 Low No Yes No No 0.17 
Apigenin -3.94 High No No Yes Yes 0.55 
Lalioside -1.23 Low No No No No 0.55 
Luteolin -3.71 High No No Yes Yes 0.55 
Lyoniresinol -3.53 High No Yes No No 0.55 
Quercetin-3-O-β-D-glucopyranoside -3.04 Low No No No No 0.17 

Table 4. Analysis of phytochemicals using Swiss ADME analysis 

SL. NO Name GPCR ICM KI NRL PI EI 
1 Lawsone -0.76 -0.13 -0.41 -0.86 -0.74 0.20 
2 Chlorogenic acid 0.29 0.14 -0.00 0.74 0.27 0.62 
3 Caffeic acid -0.48 -0.23 -0.81 -0.10 -0.79 -0.09 
4 Umbelliferone -1.22 -0.72 -1.30 -0.92 -1.30 -0.35 
5 Rutin -0.05 -0.52   -0.14 -0.23 -0.07 0.12 
6 Quercetin 0.06 -0.19 0.28 0.36 -0.25 0.28 
7 Kaempferol -0.10 -0.21 0.21 0.32 -0.27 0.26 
8 Luteolin-3-O-glucoside 0.10 -0.01 0.18 0.28 -0.02 0.43 
9 Luteolin-7-O-β-D-glucopyranoside 0.09 -0.02 0.15 0.27 -0.01 0.42 

10 Apigenin -0.07 -0.09 0.18 0.34 -0.25 0.26 
11 Lalioside 0.03 0.06 -0.14 0.07 -0.01 0.38 
12 Luteolin -0.02 -0.07 0.26 0.39 -0.22 0.28 
13 Lyoniresinol 0.07 0.00 -0.18 -0.05 -0.02 0.10 

14 Quercetin-3-O-β-D-glucopyranoside 0.06 -0.04 0.13 0.20 -0.06 0.42 

Table 5. Bioactivity score of the phytochemicals with the Molinspiration software 
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consuming for the industry (52). We performed simulations for the 

best ligand-protein complexes, as was evident by previous 

screening analysis, (lawsone-Nsp3 and caffeic acid-Nsp3), for 100 

ns, to finally select the best candidate.  

Root Mean Square Deviation (RMSD) 

We can say that Lawsone-Nsp3 and Caffeic acid-Nsp3 show very 

low RMSD, within 0.1-0.15 nm, (expected and stable range is 0.1-

0.7nm with respect to size of the protein) till 100 ns. RMSD values 

also show that the variation is insignificant in terms of its structure 

which indicates a high stability (53) (Fig. 5). For the excellent 

category, RMSD values need to be less than 0.05 nm (54). Hence, 

lawsone and caffeic acid can serve as potential good hits based on 

their very low RMSD values. 

Root Mean Square Fluctuation (RMSF)  

From the results, the RMSF observed range is less than 0.3 nm for 

caffeic acid and lawsone complexes, indicating no significant 

change in the structure of protein-ligand complexes, suggesting 

strong and compact complexes (Fig. 6). Glycine and aspartic acid 

residues show highest mobility, contributing to protein flexibility.  

Radius of gyration radius of gyration (Rg) 

The radius of gyration measures protein and ligand compactness, 
throwing light on the folding properties of the protein (55,56). Small 

values indicate a compact complex. High Rg values indicate 

unstable protein folding and complexes (57). A stable value of the 

radius of gyration indicates stable protein folding. Analysis shows 

that the radius of gyration is relatively stable for both the Lawsone-

Nsp3 and Caffeic acid-Nsp3 complexes. The stable graph (black 

colour) shows that the protein can maintain its compactness (Fig. 7). 

Thermodynamic properties of the system  

To calculate the free energy of binding (△G) of complexes, MMPBSA 

was employed (Table 7). MMPBSA calculated the various forces 

(Table 7) for both complexes. Both complexes remain stable for 100 

ns. It was found that the binding energy for ‘caffeic acid’ is -16.32 

kcal/mol, while -20.72 kcal/mol for the ‘lawsone’. These energies 

represent stronger binding for lawsone. In addition, energy less than 

-7 kcal/mol shows stronger binding. The complex ‘Lawsone’ is more 

stable than the ‘Caffeic acid’ based on lower free energy. 

 The medicinal importance of Lawsonia inermis is well 

established, given the rich secondary metabolites (9). When it 

comes to plant-based phytochemicals, we usually see flavonoids as 

effective antiviral agents, like diosmin (58–60). This analysis, 

however, show that, between caffeic acid and lawsone, a 

naphthoquinone, which is also the main pigment, emerging as a 

potential antiviral candidate (61,62). Naphthoquinones are 

derivatives of the shikimic acid pathway and have well established 

medicinal benefits (63,64). Earlier studies reveal the effective role of 

liposome-encapsulated derivatives of naphthoquinones in 

inhibiting HSV infection (65). Even novel derivatives of 1,4-

naphthoquinones have shown effective antimicrobial functions 

(66). 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-

naphthanthene-1,4-dione, a naphthoquinone produced by a 

fungus was reported to reduce inflammation and inhibit 

transcription (hindering the virus pathogenicity) in SARS-CoV-2 

infected cells (67). From our study, it was interesting to see that, for 

the very first time, between caffeic acid and lawsone, lawsone 

yielded the best results, against Nsp3 protein. Naphthoquinones 

achieve the antiviral property mainly by inhibiting the Na+, K+-
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Fig. 6. RMSF plots. 

a) Lawsone; b) caffeic acid complex with protein Nsp3   

a 

b 

a 

b 

Fig. 5. RMSD plots. 

a) Lawsone; b) caffeic acid complex with protein Nsp3 
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ATPase and by interfering with the steps of attachment and 

penetration of the virus (65,68,69).    

 The importance of the Nsp3 protein lies in its many 

functions to ensure the survival of the virus, by promoting of 

replication, transcription and translation (26,27,29,32,70). A 

triterpene glycoside, suavissimoside, was reported to hinder the 

activity SARS-CoV MPro, having a binding energy of -8.19 kcal/mol 

(71). Sulfuretin, was also reported to show good binding results with 

Nsp3 (72). Chlorogenic acid from Lawsonia inermis also showed 

effective binding and interaction with NS1 of Dengue virus (15), with 

a binding energy of -43.39 kJ/mol. In this study, we see the main 

pigment of the plant, lawsone, to be effective against Nsp3. No 

previous studies were found, that explored the interactions of 

lawsone against Nsp3, proving the uniqueness of the analysis. 

Lawsone and caffeic acid satisfied most of the screening tests, 

which were further simulated for a time of 100 ns, by MD 

simulations. Analysis of RMSD, RMSF and Rg showed the ligand-

protein complexes, analysing which, concluded strong and 

compact complexes. Binding free energy for the complex lawsone 

was -20.72 kcal/mol, suggesting favourable energy parameters as 

compared to caffeic acid complex. From the results it is clear that 

the Lawsone-Nsp3 complex is more stable. This analysis shows 

better binding affinity as compared to suavissimoside to SARS-CoV 

Mpro, with an affinity of -8.19 kcal/mol (71). This was similar to the 

energy of a few best docked ligands against Nsp3, showing an 

affinity of more than -8.5 kcal/mol (73). When comparing with 

previous works (74,75) ligand binding affinity was seen to be higher 

for our analysis, where the ligands interacted with the inhibitory 

binding residues of Nsp3 protein.  

 Our analysis yielded better results, showing the possibility 

of a natural dying agent, as a potential antiviral compound. This 

analysis also highlights the interactions of lawsone, a 

naphthoquinone, against Nsp3 protein. In hindsight, this work can 

successfully establish the plant in the medicinal sector.  

 

a 

b 

Fig. 7. Radius of gyration (Rg) plots. 

 a) Lawsone; b) caffeic acid complex with protein Nsp3 

S.No Complex Vanderwaal energy 
(kcal/mol) 

Electrostatic energy 
(kcal/mol) 

Polar and Non Polar 
solvation energy 

(kcal/mol) 

SASA energy 
(kcal/mol) 

Free Binding energy 
(kcal/mol) 

1 Lawsone-Nsp3 -1155.92 -11392.83 -1904.39 65.02 -20.72 

2 Caffeic Acid-Nsp3 -1149.59 -11394.57 -1917.29 66.26 -16.32 

Table 7. Energies of the complexes 
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Conclusion  

We can conclude from the analysis that a naphthoquinone, 

lawsone, which is the main pigment of the plant, can serve as a 

potential candidate against Nsp3 protein of SARS-CoV2, providing a 

plant-based alternative that can successfully bind and inhibit the 

protein, needed for protein processing by the virus. Further 

isolation of lawsone and application in in vitro methods, can 

strengthen the candidature of the ligand against the protein’s 

functions.  
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