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Abstract

Across the world, large-scale irrigation projects (LSIPs) have revolutionized agriculture by ensuring food security and effective water resource
management. Climate change including an increase in extreme weather events and altered rainfall patterns, has become a major challenge
for the sustainability of agriculture. Thus, this paper deals with the prospects and concerns that revolve around LSIPs and urges the
development of climate-resilient strategies. Sustainable water management strategies, water pricing, participatory irrigation management,
technological inclusions like Al-, remote sensing- and loT-based irrigation ensure precise and efficient water use. Hydrological models such as
hydrologic engineering center-hydrologic modeling system (HEC-HMS), soil and water assessment tool (SWAT) and others help in
understanding water resource dynamics. Case studies on China’s Three Gorges Dam, Egypt’s Aswan High Dam, Australia’s Murrumbidgee
Irrigation Area and the Colorado river basin projects in the USA and Mexico reflect towering engineering feats and remarkable socio-economic
transformations. While these infrastructures have advanced flood control, irrigation and hydropower generation, they have also highlighted
the need for balanced development approaches that prioritize environmental integrity and social well-being. Thus, drawing from past
lessons, integrating various adaptive management, community engagement and modern technologies and hydrological models are essential
factors for sustaining agricultural productivity, water security and rural development in this rapidly changing and growing world.
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start with sources of water which include rivers, reservoirs,
groundwater and even recycled wastewater in some modern
projects, such as the South Gila Valley Irrigation Project of Arizona
near the Coloradoriver (5, 6).

Introduction

The need for food production, coupled with the expanding global
population, underscores the essential role of LSIPsin ensuring a
steady water supply for agricultural activities (1). The convergence of
agricultural production, environmental sustainability and socio-
economic development is highly dependent on the efficient
management of LSIPs (2). Sustainable water management is a
foundational component of climate-resilient agricultural systems.
Various geographical factors influence hydrological processes. These
range from water availability for basic needs to advanced scientific
innovations. Hence, diving deeper into their study the dimensions of
LSIPs in influencing agronomic and environmental conditions of a
geographical location is indispensable. Population surge and
climate change have made it compulsory to use resources
effectively. There are numerous ways to increase agricultural
production and irrigation efficiency that yield more profit for farmers
in a stable and sustainable manner. Smart farming practices fulfill
the gap created by precision agriculture (3, 4). LSIPs are not a one-

The major characteristics of hydrology (7) include
precipitation  (8), runoff, infiltration, evaporation and
evapotranspiration (9, 10), water balance, streamflow and many
more (11). Likewise, the important components of LSIPs are
headworks, maincanals and secondary canals, distribution
networks and drainage systems (12). They also comprise water use
efficiency, which depends on conveyance and application efficiency
from the source of irrigation to the targeted site (13). Irrigation
scheduling indicates when and how much to irrigate, which helps
estimate water requirement for various crops. Water conservation
techniques should be followed for year-round crop cultivation (14).
Soil, water and environmental quality assessments, along with socio
-economic parameters, determine the success of LSIPs (15). LSIPs
aim to store, move and distribute water for domestic, industrial and

person task to manage; they require a systemic approach involving
government bodies, scientists, engineers and local people. They

agricultural practices effectively. LSIPs also elevate water to different
topographic locations and generate income through water rights
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and hydropower for energy production (16). Periodical
Environmental Impact Assessments (EIA) are necessary to identify
the ecological effects of LSIPs (17). All such activities help cultivate
crops profitably even in arid and rainfed regions, which not only
increase agricultural production but also enhance the general
standard of living of the beneficiaries (18).

Regular monitoring, desiltation, repairing structures,
pumping station maintenance, efficient water and drainage
management, user participation, capacity building and other
modem technologies like remote sensing and automation ensure
the success of LSIPs (19). Hence, when implementing a new
irrigation project, dozens of prospects and concerns must be
considered. This review elucidates in depth to assess the major
factors, opportunities and challenges in planning, implementing and
managing LSIPs, with a focus on modern technologies, sustainability
and stakeholder involvement.

Methodology

The data were sourced from a variety of platforms, including Google
Scholar, ResearchGate, TNAU e-Library and Scopus. Access to
leading e-journal platforms like MDPI, Elsevier, Springer, Taylor &
Francis, John Wiley and specialized platforms such as CeRA, Indian
Journals, DOAJ and Web of Science was facilitated through TNAU e-
Library. The keywords used in the search included hydrology, large-
scale irrigation projects and simulation models analyzing aspects
like evapotranspiration, rainfall, drought, flood, water inflow and
outflow, return flow and water storage on a global scale. A thorough
screening process took approximately two and a half months to
identify relevant articles and journals published by reputable
publishers that were related to the review.

Nearly 645 academic resources, including research and
review articles, thesis and reports were collected from various
sources and 117 were selected based on the impact of the papers
and reports, which provided the necessary information available for
inclusion in this review, spanning the period from 1968-2025 (Fig. 1).
This paper reviews the agronomic and environmental dimensions of
LSIPs in reforming the regional developments, as well as associated
concerns and possible solutions. It also focuses on different
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hydrological models, modern techniques and technologies used for
the maintenance of such projects. Some of the notable case studies
included are the Yangtze river valley irrigation system (China) (20),
the Nile river irrigation projects (Egypt) (21), the Murrumbidgee
irrigation area (Australia) (22) and the lower Colorado river basin
irrigation projects (United States/Mexico) (23), which were selected
by the authors and analysed based on their historical importance,
project scale and remarkable impacts on agriculture and water
management.

LSIPsinterventions helps overcome climate risks, transforms
poorly productive, low-income, water-scarce into a year-round multi
-cropped cultivation and also reduces migration. This
transformation confirms assured irrigation, enhanced food security,
improved income cum standard of living and boosts overall regional
GDP. Ultimately, irrigation empowers agricultural sustainability and
rural prosperity (Fig. 2).

Climate resiliencein irrigation systems

Changing climate has made a significant impact on water resources
and LSIPs. It has also altered rainfall patterns, increased
temperatures and caused frequent extreme weather events. This
necessitates the development of climate-resilient infrastructure,
such as dams and canals, to ensure sustained water availability.
Groundwater depletion, short-term water surpluses due to glacial
melt and seawater intrusion into canal-fed lands in coastal regions
are leading to climate-induced water scarcity. Meanwhile, projected
changes in climate indicate a decreased agricultural yield by 2050
and 2100. This creates the need for alternative irrigation strategies to
overcome such yield losses (24). One such important practical way is
the adoption of sustainable water management practices that
include irrigation scheduling methods like regulated deficit
irrigation, deficit irrigation and the conjunctive use of multi-quality
water. Advanced technologies, remote sensing, loT sensors, Al- and
machine learning-mediated smart irrigation systems help ensure
precise water use. Solar-powered irrigation systems also cut down
costs and conserve energy (25, 26). Various agroforestry methods
should be included in agricultural systems for long-term
sustainability (27).

Identification:

Included:

- Records identified through database searching: 645
- Additional records identified through other sources: 0

- Records afier duplicates removed: 612

- Studies included in the final review: 117

- Records screened: 612
- Records excluded: 425

Fig. 1. PRISMA flowchart of the literature selection process.
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Fig. 2. Graphical abstract of agronomic and environmental dimensions of large-scale irrigation interventions.

Engaging local people i.e. through participatory irrigation
management and water pricing, ensures equitable and efficient
water distribution. On the other hand, substances like zeolites,
nanoclay and antitranspirants help conserve water in areas with
limited water resources (28). Adopting such practices will help
increase water-use efficiency.

Models for irrigation projects assessment

The most commonly used models for assessing LSIPs are the HEC-
HMS (29) and SWAT (30) for simulating runoff, water flow and
estimating water availability and storage. Trend analyses of rainfall
patterns were conducted using the Mann-Kendall test and Sen’s
slope estimator (31, 32). The drought indices calculator (DrinC) is
useful for predicting and identifying possible drought severity and its
duration (33). Estimation of reservoir evaporation can be performed
using the Penman equation, based on databases like GRanD and
GRSAD (34).

Artificial neural network (ANN) models were utilized for
reservoir inflow forecasting, along with other methods such as
principal component analysis (PCA) and adaptive-network-based
fuzzy inference systems (ANFIS) to forecast streamflow (35, 36).
Additionally, the co-active neuro-fuzzy inference system (CANFIS) to
enhance the accuracy of inflow forecasting (37). This was achieved
through a comparative evaluation of two Al-based models: ANN and
ANFIS.

Bathymetric surveys, along with GIS tools, are used for
reservoir sedimentation assessment (38). Downscaled and bias-
corrected climate projections using global climate models (GCMs)
were generated by adopting the techniques such as hybrid multiple
linear regression and statistical downscaling model (SDSM). Tools
like SDSM and SWAT (30) are used to assess the impacts of projected
climate on hydrology using observed climate and streamflow data
respectively (39), while multivariate analysis techniques such as PCA
and hierarchical clustering are applied for water quality assessment

(40). The most accurate satellite and reanalysis products identified
for the region, such as climate hazards group infrared precipitation
with station data (CHIRPS) can be used (41).

Geospatial and remote sensing technologies

Sentinel-2 data and machine learning classifiers with object-based
LULC classification have enhanced environmental monitoring,
supporting sustainable development and natural resource
management (42). Groundwater quality using geospatial and
statistical approaches were assessed (43). Floods were mapped
using the Sentinel-1A satellite's C-band SAR sensor, leveraging its
capability to detect flood extent regardless of weather conditions or
cloud cover (44). Sentinel-1A satellite data, processed with GIS tools,
were used to map flood-affected areas. Ground truth data were used
toidentify dB values for the flood-pixel classication (45).

Land surface temperature (LST) and normalized difference
water index (NDWI) of MODIS datasets were used for drought
monitoring evaluation (46). A spatiotemporal analysis of the water-
spread areas in tanks was conducted using Sentinel-1A SAR imagery,
while NDVI data from Sentinel-2 were used to categorize crop health
(47). The water-spread area of tanks, vital for irrigation and
groundwater recharge, was estimated using Sentinel-1A SAR data.
Processed with SNAP software, these data were used to map the
water-spread area was through a threshold-based approach (48, 49).
Reference evapotranspiriation (ET) data from the FAO were analyzed
using the AgERAS dataset to assess the annual and seasonal
dynamics of reference ET (50). Daily actual ET was computed using
the surface energy balance algorithm for land (SEBAL) (51).
Traditional drought indices like standardized precipitation index
(SPI) rely only on precipitation, potentially missing key factors.
Incorporating  both ~ temperature  and  precipitation,
standardized precipitation evapotranspiration index (SPIE)
improves assessment by offering a more complete view under
changing climate conditions (52).
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Agricultural drought was analyzed using CHIRPS monthly
precipitation data to evaluate duration, extent, severity and lag time.
Enhanced vegetation index (EVI) data from MODIS and SPI at a one-
month scale supported accurate drought vulnerability assessments
(53). Using CROPWAT 8.0, crop water demand and supply were
analyzed to propose a net irrigation scheme, revealing that the
paddy showed the highest water demand (872.1 mm/ha) in non-
system tanks, while sugarcane had the highest (1046.7 mm/ha) in
system tanks (54). Sentinel-2 optical data and ground-truth
information were used for crop diversification assessment in the
major tank ayacut area. Crops were identified through pixel-based
classification and further classified using Random Forest algorithms
(55). Multi-temporal Sentinel-1A SAR data was used to estimate rice
area. Temporal backscatter (dB) signatures were generated using
fully automated MAPscape software to distinguish rice from other
crops (56).

When considering LSIPs, spatial monitoring is indispensable
in mapping rivers, canals, distributaries, delineation of catchments
areas, command areas and even drainage networks. Satellite
imageries and GIS tools enables continuous tracking of water
availability, irrigated areas, crop water requirement and stress
analysis using ET and NDVI estimation. Apart from that, disaster risk
mapping, yield monitoring and the integration of socio-economic
and natural resource data geospatial data are also possible (25, 57,
58).

Prominent global case studies

The example LSIPs cover a diverse geographical range, including
projects in China, Egypt, the United States and Australia, reflecting
the global significance of irrigation projects across different regions,
as they are representing some of the largest and most influential
ones in terms of scale and impact on water management and
agriculture (Fig. 3).

4

Three Gorges Dam of Yangtze river valley irrigation system
(China)

Three Gorges Dam (TGD), the largest engineering project in China
and the largest dam structure in the world since 2006, reached its full
hydroelectric power generating capacity in 2012 (59). The main aim
of the TGD was to prevent flooding in the Yangtze basin and it caused
a significant reduction in annual average emissions of CO,, CH, and
N20 over a 4300 km stretch of the Yangtze River (59). Using the CASA
model, the terrestrial net primary productivity (NPP) of the TGD area
was found to be increasing during 2000-2015 and climate change
and land-use pattems may have contributed to carbon
sequestration (60). Green infrastructure provides support for
ecological restoration (61). Hydroelectric power production
achieved its full capacity with all 32 turbine generator units
operational. With the addition of two extra generators, the dam
reached a total capacity of 22500 megawatts, solidifying its status as
the world’s most productive hydroelectric dam. The hydroelectric
plant shattered records by producing 111.88 terawatt-hr of electricity
in a single year, marking an unprecedented milestone in annual
power generation volume (62).

The construction of the TGD was fraught with controversy,
as it caused the displacement of at least 1.3 million people and the
destruction of natural features and approximately 1200 rare
historical, architectural and archaeological sites (63). The reservoir
has also been blamed for an increased risk of landslides and
earthquakes, while waste from nearby cities pollutes the reservoir
(20). Advocates for the construction of numerous smaller and more
cost-effective dams argued that this approach would allow the
government to fulfill its primary objectives without exposing itself to
significant risks (64). Lowland terraces are primarily used for paddy
rice cultivation, while upland areas support cereals and rapeseed.
The region also cultivates tea and other cash crops, along with mixed
vegetables, fruit orchards and aquaculture in ponds and small
reservoirs. Table 1 provides brief insights on different models and
their usage inthe TGD.

Murrumbidgee hrrigation Area "

Colorado River Basin
Irrigation Projects

PROMINENT GLOBAL LARGE IRRIGATION PROJECTS

*-.“
£ d =
)

Fig. 3. Case studies of the prominent global large-scale irrigation projects.
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Table 1. Models employed in analysing the hydrology of TGD

Key findings Methodology References

To gauge stream flow and sediment uncertainty. Merged generalized likelihood uncertainty
Sediment forecasts more uncertain, especially when wet compared to estimation (GLUE) with soil and water (65)
streamflow. assessment tool (SWAT) model
Generated monthly discharges at Yichang station for 2003-2011. Hydrological
droughts downstream slightly aggravated by TGR's initial operation (2003- )
2011). Hydrological drought index series calculated using standardized Two-parameter monthly water balance model (66)
streamflow index method.
Created coupled model of hydrodynamics operation on streamflow and
distributed time variable gain model between 1970 and 2018. Annual average Large-scale coupled model of hydrological and (67)
relative deviation of TGD flow compared to natural state: ~24 %. Dam's hydrodynamic processes
operation intercepted high flood peaks during flood season.
Created model to assess hydrological consequences. Dam operation - - -

. . N Large-scale linked hydrological-hydrodynamic
decreased maximum daily flood peak by up to 26.2 %. Generated ~94.27 TWh and hydropower simulations-dam operation (68)

of electricity annually. Increased downstream water supply by up to 22 %

during dry season.

model

The Aswan High Dam of nile river project (Egypt)

Constructed in 1861, as the delta barrage scheme and underwent
subsequent extensions and enhancements, marking a pivotal
moment in modern Nile valley irrigation. The aim was to elevate the
water level upstream to facilitate irrigation canals and regulate
navigation. The Aswan high dam (AHD) aimed to regulate the Nile's
flow for agriculture, hydroelectric power and flood protection (21).
Feature four locks to aid navigation, housing a hydroelectric power
plant (HEP) generates over 345 MW of power (69, 70). With a HEP
capacity of 2100 megawatts, it stores water in lake Nasser to control
levels, with Egypt receiving the majority share of allocated water
resources (71). Navigation in Sudan is challenged by cataracts,
particularly between the Egyptian border and lake Nasser and from
Khartoum to Juba in South Sudan where the dam facilitates it (72).
The critics argue that the dam caused downstream erosion, coastal
erosion in the delta, saltwater intrusion, waterlogging and reduced
fish populations (73). Despite controversy, proponents emphasize
the dam's importance for water and power supply security.
Supporting up to two cropping cycles each year, the region
cultivates major crops such as cotton, sugarcane, rice, wheat, maize
and sorghum, along with extensive areas of vegetables, fruit
orchards (including date palm, citrus, mango and guava) and
various fodder crops. Table 2 below offers succinct insights into
various models and their applications in the AHD.

Table 2. Models employed in analysing the hydrology of AHD

Murrumbidgee irrigation area (Australia)

Established in 1912, the Murrumbidgee catchment, nestled within
the Murray-Darling basin covering an extensive area of 32440 square
miles including 1000 square miles of fertile farmland supporting a
diverse agricultural landscape, including livestock pastures,
vineyards, citrus orchards, wheat fields and cotton plantations (79).
The Water Management Act (2000) made marked shift in water
management and regulations that helps access water by the
farmers.

The Water Act (1912) regulated water use as farmers were
competed to access flowing water which often caused conflicts and
inequitable distribution. It also introduced licensing system that the
farmers need official permission from the government as it gave
power to the government to monitor, allocate, protect water
resources and plan the activities (80). Though some hesitations were
there to the tail end farmers, activities of floodplain restoration
projects pulled farmers to collaborate with the authorities.

The recent trends showed a significant increase in water
usage by irrigated cotton in the Murrumbidgee catchment of New
South Wales than other crops like vegetables, rice, grapevines and
dairy (22). The overall reductions in return flows were to be less than
20 % of the total proposed irrigation efficiency savings (81). Irrigation
efficiency projects reduce seepage to groundwater (with off-farm
and on-farm seepage reduction by 19 % and 53 %) but not all

Study description

Estimate evaporation and recorded 5.70 mm day to 7.05 mm day* of
evaporation.

Used ANFIS model trained on historical data to forecast Nile River inflow at
Aswan High Dam. Compared with an artificial neural network (ANN) model,

demonstrated higher accuracy, especially for extreme inflows.

Assessed irrigation demands in Egypt and Sudan along the Nile. Revealed

substantial water consumption and projected demands surpassing
available resources. Urged holistic water management strategies.

Analyzed terrain models for extracting watersheds using WMS and ARC-GIS.

Showed ARC-GIS as more accurate. Calculated dam water volume using

DEM from Shuttle Topographic Radar Mission (STRM) and HEC |
hydrological model.

Developed a 1D hydraulic model using HEC-RAS program to study dam

break scenarios, estimate output hydrograph and route flood wave from

Aswan Dam to Esna barrage. Highlighted concerns of catastrophic
outcomes with high flow releases.

Studied a revised water balance model for the Aswan High Dam Reservoir.

Verified using remote sensing data, bias-corrected reanalyzed data and in

situ gauge data. Recorded temperature trends and developed machine
learning models for inflow/outflow data adjustments.

Methodology References

Water-balance, energy budget, bulk aerodynamic (74)
(Dalton), combination (Penman), complementary

Adaptive neuro-fuzzy inference system (ANFIS) (75)
model

SPARE: WATER model (76)
Watershed modeling system (WMS), ARC-GIS, digital (77)
elevation model (DEM), HEC | hydrological model

1D hydraulic model using HEC-RAS program (78)
Combination of heterogeneous information (69)

sources, machine learning models
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seepage reductions will translate in reduction and charge ground
water.

The conjunctive use of water option faces challenges in
stakeholder processes, cost minimization, social benefits and equity
and suggested financial incentives or greater stakeholder
involvement could enhance acceptance (82). Nearly 300000 ha of
area was degraded by dams, diversions and floodplain
development. Water diverted from the Murrumbidgee river for
irrigation and various other reasons highly changed the natural flows
which impacted the wetlands and their associated waterbirds and
aquatic biota. Yanga nature reserve faces a considerable loss of
floodplain vegetation due to water scarcity. On the other hand, it
also caused catastrophic death of fishes in the Murray-Darling basin
(83). Hence, the naturally location specific biome should be
conserved (84).

Similarly, environmental changes due to irrigation like
salinization, waterlogging affects groundwater quality (82). Thus,
conservation policies are needed without interfering the natural
flows for preventing further ecological degradation (85). One such
initiative is the Commonwealth Water Act (2007) which facilitated
yearly water allocation for compulsory use of water for
environmental reclamation. Since 2012, it is regulated by the Murray-
Darling basin authority by the basin plan (81). The basin plan
replaced the initial cap with the establishment of a sustainable
diversion limit (SDL) on the volume allocated for consumptive uses
(80, 86). The water market expansions facilitated by water reform
packages in 1994 and 2004 enabled users to trade water across

Table 3. Models employed in analysing the hydrology of MIA

connected valleys and state borders, contributing to sustainable
water use in the Murray-Darling basin (81). Major irrigated crops
include rice (medium and long grain), cotton, wheat, barley, canola,
soybeans, corn and various vegetables and fodder crops. The region
also hosts extensive orchards and vineyards producing citrus, stone
fruits, nuts (walnuts, almonds) and about 20 % of Australia’s wine
grapes and 90 % of New South Wales’ citrus output. Table 3 offers
concise overviews of different models and their utilization in the
Murrumbidgee irrigation area (MIA).

Colorado river basin irrigation projects (United States/Mexico)

The Colorado river basin lies between USA and Mexico occupies an
area of approximately 250000 square miles (93). Colorado river basin
irrigation (CRBI) project is a critical resource for agriculture, domestic
purposes, hydropower production, recreation, fish and wildlife
habitat and other benefits (23). Of the total volume, 70 % of Colorado

river water was used for agriculture and around 35 and 40 million
people rely on the same water resource (94). With the complex set of
compacts, federal laws, court decisions, decrees, contracts and
regulatory guidelines, the “Law of the River” provide a regional water
plan, for the satisfaction of the requirements of the Mexican Water
Treaty (95, 96). Due to climate change, streamflows are anticipated
to decrease, leading to proposed water-use reductions, mainly
targeting agriculture, which currently consumes over 60 % of the
basin's water (97). Major crops of CRBI include alfalfa (dominant and
key for beef and dairy feed), grass hay, corn (mainly for livestock
feed), cotton, winter vegetables, leafy greens, orchards (citrus,

Study description Methodology References
Assess flood frequency and duration. Found significant impacts from
major irrigation off-takes, altering upstream and downstream flow  Analysis of natural daily flow data (87)
characteristics.
Demonstrated the effectiveness of the SFI in managing hydrologic  Standardised flow index (SFI), Gamma probability
drought. distribution function (GPDF), generalized additive (88)
Used (GPDF) and (GAM) to analyze river flow data. models (GAM)
Investigated the impact of flow alteration by dams on the Lowbidgee Integrated flow and flood modeling (IFFM), structural (89)
wetland fed by the Murrumbidgee River. change analysis
Developed a coupled socio-hydrologic system model to simulate the - N - - -~
pendulum swing between agricultural development and ﬁtﬁ'ﬁg’ ﬂcusass'tgr';t;'q%lét;d’ parsimonious coupled socio (90)
environmental restoration in the Murrumbidgee River Basin. y gIcsy
Examined combined impacts of climate change and land use on sub- SWAT model (91)

catchments of the Murray-Darling Basin.

Used SIMHYD model with data from GCMs to predict future runoff in
the Murrumbidgee River catchment. Analyzed impacts of climate
change and emissions scenarios on runoff.

Simplified hydrolog (SIMHYD) model, general circulation
models (GCMs), representative concentration pathway (92)
(RCP) scenarios

Table 4. Models employed in analysing the hydrology of CRBI

Study description Methodology References
Assessed climate change impact on hydrology and water resources of the Colorado River .
Basin using an ensemble approach with downscaled output from 11 GCMs. Studied Egs\ler?;?ﬁengl:?as,?f\pgm 11 GCMs (98)
temperature and precipitation changes. P
Examined the impact of climate variability and change on the Colorado River flow using a - .
system dynamics model with inputs from 16 GCMs and 3 emission scenarios. Evaluated S?loséi?lﬁzqnaat?ﬁicr];cl)gi?é,cws)lyms of (99)
implications on Lake Mead levels and probabilities of supply curtailments. g
Investigated climate change effects on water resources in the Upper Colorado River Basin
(UCRB) using the SWAT model and 16 GCMs under the A2 emission scenario. Projected SWAT model, analysis of global (100)
declines in spring and summer streamflow with implications for water resources and climate models (GCMs)
ecosystems.
Predicted drought severity using general circulation models (GCMs) and compared results : :
with those derived from natural flow estimates calculated by reclamation. General circulation models (GCMs) (101)
Evaluated three generations of global climate models (GCMs) in simulating temperature, - -
precipitation and drought variability in the Upper Colorado River Basin. Analyzed ?gga:;sggglggﬁgilt'{:ste models (102)
persistent biases and the impact of bias correction on CMIP6 model performance. ’
Provided detailed information on streamflow, water table depth, snow water equivalent -
(SWE) and evapotranspiration (ET) using an integrated hydrological model, ParFlow-CLM. Integrated hydrological model (103)

Validated dataset useful for studying water dynamics in the Colorado River basin.

(ParFlow-CLM)

https://plantsciencetoday.online


https://plantsciencetoday.online

grapes, dates) and vineyards. Presented herein is a Table 4
delineating various models and their roles in CRBI.

Discussion

LSIPs that include various rivers, reservoirs, dams play a marvelous
role in transforming the agriculture landscape and promote rural
development by ensuring food security all over the world by
allocating water resources for different sectors. But currently
undergoing climate change have made it difficult for their
management, long term sustainability. Case Studies including the
TGD in China (20), the AHD in Egypt (21), the MIA in Australia (79) and
the CRBI in the USA and Mexico (93) exemplify large-scale
interventions in water management. While these projects have
significantly contributed to flood control, power generation and
agricultural development, they have also raised concerns about their
environmental impacts. The TGD (20), despite its impressive
capacity for electricity generation (62) and flood prevention (20), has
been criticized for its adverse effects on local ecosystems and
cultural heritage sites due to forced displacement and ecological
disruption (63). The AHD caused severe downstream soil and coastal
erosions and decreased fish populations (21, 73). Meanwhile in MIA,
at the cost of habitat loss of local beings, ecological degradations like
salinization and waterlogging changed agriculture’s landscape (82).
Similarly, CRBI observed projected decrease in streamflows
threatening availability of water for all sectors including agriculture
97).

Advanced modelling and modern remote sensing
techniques and appropriate policy decisions helps overcome the
complex of hydrological and socio-economic concerns (104, 105).
Deploying machine learning algorithms into hydrological-
hydrodynamic models to operate LSIPs for water resource
management increase water use efficiency (WUE) and reduce
environmental degradation (106). The international treaties inked
pave way for the regulation of water allocation among USA and
Mexico (107, 108). United hands stakeholder engagement and
participatory approaches are very important to sustainably and
successfully manage LSIPs (109). Though inherent controversies are
there in the MIA, collaboration among the authorities and local
communities achieved the goals by joining hands (110). But still
concerns like migration, equitable water distribution persists (111).
Holistic approaches that considers social equity, economic
development and environmental conservation enables the
achievement of LSIPs goal (64, 112). Climate-resilient cropping
patterns and adoption of water-saving technologies such as drip and
sprinkler irrigation also need to be encouraged in LSIPs command
areas. Switching from water-intensive crops like paddy and
sugarcane to less water-demanding crops such as millets, pulses
and oilseeds in regions facing water scarcity can ensure better water
sustainability. To reduce the pressure on water resources, it is
advisable to go with the diversified farming as it increases farmers
income and food system resilience.

Hydrological and climate models like SWAT (65), HEC-HMS
(29), ANN (35) based models enable accurate prediction of
watershed responses at various climate scenarios. Likewise,
stochastic weather generators and climate downsclaing models like
SDSM enables policy makers to create frameworks by integrating
future climate variability into their irrigation strategies (30). In

addition, the use of soil amendments and innovative materials like
zeolites, biochar, antitranspirants and nanoclays increase efficiency
in water usage in agriculture especially in arid and semi-arid regions
and can aid in moisture retention and reduce irrigation
requirements. In addition to the above discussed ways, integrating
information and communication technologies (ICTs) like real-time
monitoring through IoT devices, remote sensing-based irrigation
scheduling and decision support systems enable reduced water
waste and optimized alloction (28, 25).

Decentralized water management strategies such as
participatory irrigation management (PIM) and water user
associations (WUAs), which represent bottom-up approaches—
when effectively integrated with government agencies, technical
guidance and capacity building in canal distribution, maintenance
and crop planning, can ensure efficient water use, reduce conflicts
and improve the operational efficiency of LSIPs. Thus, the
sustainability of future LSIPs will highly be depend on the above
discussed integrated approaches that balance and harmonize
economic growth and social-economic betterment of a regjon.

Conclusion

LSIPs are inevitable for the transformation of agriculture, ensuring
food security and effective water resource management. The case
studies on the Three Gorges Dam, Aswan High Dam, Murrumbidgee
Irrigation Area and the Colorado River Basin Projects highlight the
project scale, historical importance and technological
advancements that have reformed agriculture, water management,
thereby improving socio-economy of these regions. In addition, the
paper also discusses the different hydrological models used to
manage the LSIPs, along with their prospects and concerns.

Changing climate severely impacts LSIPs, with rising
temperatures and an increased occurrence of extreme weather
events, which worsen the conditions. It destabilizes the availability of
water, agricultural production and rural livelihoods. This creates a
need for the climate-resilient and sustainable irrigation strategies.
Advanced technologies like Al, remote sensing, loT, ML and solar-
powered systems make it easier to cope. Substances like zeolites,
nanoclay and anti-transpirants enable water conservation in the
water-scarce areas. Likewise, the spatial and temporal monitoring of
LSIPs using remote sensing and hydrological models is essential for
creating site-specific policy frameworks.

Hydrological models include HEC-HMS, SWAT, ANN and
CANFIS, along with trend analyses like Mann-Kendall tests and
drought severity evaluations using DrinC, which help understand
water resource behaviour and dynamics. Better prediction of
climate impacts on LSIPs is possible by integrating GCM with
downscaling methods like SDSM. Remote sensing and GIS
techniques using Sentinel-1A SAR, Sentinel-2 optical data, MODIS
datasets and tools like SEBAL have strengthened the continous
monitoring of land, water spread, crop health and disaster risks.
Hence the paper reviewing on the agronomic and environmental
dimensions of LSIPs elucidates the need for such projects wherever
possible to improve water conservation, management, agricultural
productivity, regional development and general standard of living
rural economies.
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