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Introduction 

The need for food production, coupled with the expanding global 

population, underscores the essential role of LSIPs in ensuring a 

steady water supply for agricultural activities (1). The convergence of 

agricultural production, environmental sustainability and socio-

economic development is highly dependent on the efficient 

management of LSIPs (2). Sustainable water management is a 

foundational component of climate-resilient agricultural systems. 

Various geographical factors influence hydrological processes. These 

range from water availability for basic needs to advanced scientific 

innovations. Hence, diving deeper into their study the dimensions of 

LSIPs in influencing agronomic and environmental conditions of a 

geographical location is indispensable. Population surge and 

climate change have made it compulsory to use resources 

effectively. There are numerous ways to increase agricultural 

production and irrigation efficiency that yield more profit for farmers 

in a stable and sustainable manner. Smart farming practices fulfill 

the gap created by precision agriculture (3, 4). LSIPs are not a one-

person task to manage; they require a systemic approach involving 

government bodies, scientists, engineers and local people. They 

start with sources of water which include rivers, reservoirs, 

groundwater and even recycled wastewater in some modern 

projects, such as the South Gila Valley Irrigation Project of Arizona 

near the Colorado river (5, 6).   

 The major characteristics of hydrology (7) include 

precipitation (8), runoff, infiltration, evaporation and 

evapotranspiration (9, 10), water balance, streamflow and many 

more (11). Likewise, the important components of LSIPs are 

headworks, maincanals and secondary canals, distribution 

networks and drainage systems (12). They also comprise water use 

efficiency, which depends on conveyance and application efficiency 

from the source of irrigation to the targeted site (13). Irrigation 

scheduling indicates when and how much to irrigate, which helps 

estimate water requirement for various crops. Water conservation 

techniques should be followed for year-round crop cultivation (14). 

Soil, water and environmental quality assessments, along with socio

-economic parameters, determine the success of LSIPs (15). LSIPs 

aim to store, move and distribute water for domestic, industrial and 

agricultural practices effectively. LSIPs also elevate water to different 

topographic locations and generate income through water rights 
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Abstract  

Across the world, large-scale irrigation projects (LSIPs) have revolutionized agriculture by ensuring food security and effective water resource 
management. Climate change including an increase in extreme weather events and altered rainfall patterns, has become a major challenge 

for the sustainability of agriculture. Thus, this paper deals with the prospects and concerns that revolve around LSIPs and urges the 

development of climate-resilient strategies. Sustainable water management strategies, water pricing, participatory irrigation management, 
technological inclusions like AI-, remote sensing- and IoT-based irrigation ensure precise and efficient water use. Hydrological models such as 

hydrologic engineering center-hydrologic modeling system (HEC-HMS), soil and water assessment tool (SWAT) and others help in 

understanding water resource dynamics. Case studies on China’s Three Gorges Dam, Egypt’s Aswan High Dam, Australia’s Murrumbidgee 

Irrigation Area and the Colorado river basin projects in the USA and Mexico reflect towering engineering feats and remarkable socio-economic 
transformations. While these infrastructures have advanced flood control, irrigation and hydropower generation, they have also highlighted 

the need for balanced development approaches that prioritize environmental integrity and social well-being. Thus, drawing from past 

lessons, integrating various adaptive management, community engagement and modern technologies and hydrological models are essential 

factors for sustaining agricultural productivity, water security and rural development in this rapidly changing and growing world. 
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and hydropower for energy production (16). Periodical 

Environmental Impact Assessments (EIA) are necessary to identify 

the ecological effects of LSIPs (17). All such activities help cultivate 

crops profitably even in arid and rainfed regions, which not only 

increase agricultural production but also enhance the general 

standard of living of the beneficiaries (18). 

 Regular monitoring, desiltation, repairing structures, 
pumping station maintenance, efficient water and drainage 

management, user participation, capacity building and other 

modern technologies like remote sensing and automation ensure 

the success of LSIPs (19). Hence, when implementing a new 

irrigation project, dozens of prospects and concerns must be 

considered. This review elucidates in depth to assess the major 

factors, opportunities and challenges in planning, implementing and 

managing LSIPs, with a focus on modern technologies, sustainability 

and stakeholder involvement. 

Methodology 

The data were sourced from a variety of platforms, including Google 

Scholar, ResearchGate, TNAU e-Library and Scopus. Access to 

leading e-journal platforms like MDPI, Elsevier, Springer, Taylor & 

Francis, John Wiley and specialized platforms such as CeRA, Indian 

Journals, DOAJ and Web of Science was facilitated through TNAU e-

Library. The keywords used in the search included hydrology, large-

scale irrigation projects and simulation models analyzing aspects 

like evapotranspiration, rainfall, drought, flood, water inflow and 

outflow, return flow and water storage on a global scale. A thorough 

screening process took approximately two and a half months to 

identify relevant articles and journals published by reputable 

publishers that were related to the review.  

 Nearly 645 academic resources, including research and 

review articles, thesis and reports were collected from various 

sources and 117 were selected based on the impact of the papers 

and reports, which provided the necessary information available for 

inclusion in this review, spanning the period from 1968-2025 (Fig. 1). 

This paper reviews the agronomic and environmental dimensions of 

LSIPs in reforming the regional developments, as well as associated 

concerns and possible solutions. It also focuses on different 

hydrological models, modern techniques and technologies used for 

the maintenance of such projects. Some of the notable case studies 

included are the Yangtze river valley irrigation system (China) (20), 

the Nile river irrigation projects (Egypt) (21), the Murrumbidgee 

irrigation area (Australia) (22) and the lower Colorado river basin 

irrigation projects (United States/Mexico) (23), which were selected 

by the authors and analysed based on their historical importance, 

project scale and remarkable impacts on agriculture and water 

management. 

 LSIPs interventions helps overcome climate risks, transforms 

poorly productive, low-income, water-scarce into a year-round multi

-cropped cultivation and also reduces migration. This 

transformation confirms assured irrigation, enhanced food security, 

improved income cum standard of living and boosts overall regional 

GDP. Ultimately, irrigation empowers agricultural sustainability and 

rural prosperity (Fig. 2). 

Climate resilience in irrigation systems 

Changing climate has made a significant impact on water resources 

and LSIPs. It has also altered rainfall patterns, increased 

temperatures and caused frequent extreme weather events. This 

necessitates the development of climate-resilient infrastructure, 

such as dams and canals, to ensure sustained water availability. 

Groundwater depletion, short-term water surpluses due to glacial 

melt and seawater intrusion into canal-fed lands in coastal regions 

are leading to climate-induced water scarcity. Meanwhile, projected 

changes in climate indicate a decreased agricultural yield by 2050 

and 2100. This creates the need for alternative irrigation strategies to 

overcome such yield losses (24). One such important practical way is 

the adoption of sustainable water management practices that 

include irrigation scheduling methods like regulated deficit 

irrigation, deficit irrigation and the conjunctive use of multi-quality 

water. Advanced technologies, remote sensing, IoT sensors, AI- and 

machine learning-mediated smart irrigation systems help ensure 

precise water use. Solar-powered irrigation systems also cut down 

costs and conserve energy (25, 26). Various agroforestry methods 

should be included in agricultural systems for long-term 

sustainability (27). 

Fig. 1. PRISMA flowchart of the literature selection process. 
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 Engaging local people i.e. through participatory irrigation 

management and water pricing, ensures equitable and efficient 

water distribution. On the other hand, substances like zeolites, 

nanoclay and antitranspirants help conserve water in areas with 

limited water resources (28). Adopting such practices will help 

increase water-use efficiency. 

Models for irrigation projects assessment  

The most commonly used models for assessing LSIPs are the HEC-

HMS (29) and SWAT (30) for simulating runoff, water flow and 

estimating water availability and storage. Trend analyses of rainfall 

patterns were conducted using the Mann-Kendall test and Sen’s 

slope estimator (31, 32). The drought indices calculator (DrinC) is 

useful for predicting and identifying possible drought severity and its 

duration (33). Estimation of reservoir evaporation can be performed 

using the Penman equation, based on databases like GRanD and 

GRSAD (34).  

 Artificial neural network (ANN) models were utilized for 

reservoir inflow forecasting, along with other methods such as 

principal component analysis (PCA) and adaptive-network-based 

fuzzy inference systems (ANFIS) to forecast streamflow (35, 36). 

Additionally, the co-active neuro-fuzzy inference system (CANFIS) to 

enhance the accuracy of inflow forecasting (37). This was achieved 

through a comparative evaluation of two AI-based models: ANN and 

ANFIS.  

 Bathymetric surveys, along with GIS tools, are used for 

reservoir sedimentation assessment (38). Downscaled and bias-

corrected climate projections using global climate models (GCMs) 

were generated by adopting the techniques such as hybrid multiple 

linear regression and statistical downscaling model (SDSM). Tools 

like SDSM and SWAT (30) are used to assess the impacts of projected 

climate on hydrology using observed climate and streamflow data 

respectively (39), while multivariate analysis techniques such as PCA 

and hierarchical clustering are applied for water quality assessment 

(40). The most accurate satellite and reanalysis products identified 

for the region, such as climate hazards group infrared precipitation 

with station data (CHIRPS) can be used (41). 

Geospatial and remote sensing technologies 

Sentinel-2 data and machine learning classifiers with object-based 

LULC classification have enhanced environmental monitoring, 

supporting sustainable development and natural resource 

management (42). Groundwater quality using geospatial and 

statistical approaches were assessed (43). Floods were mapped 

using the Sentinel-1A satellite's C-band SAR sensor, leveraging its 

capability to detect flood extent regardless of weather conditions or 

cloud cover (44). Sentinel-1A satellite data, processed with GIS tools, 

were used to map flood-affected areas. Ground truth data were used 

to identify dB values for the flood-pixel classication (45).  

 Land surface temperature (LST) and normalized difference 

water index (NDWI) of MODIS datasets were used for drought 

monitoring evaluation (46). A spatiotemporal analysis of the water-

spread areas in tanks was conducted using Sentinel-1A SAR imagery, 

while NDVI data from Sentinel-2 were used to categorize crop health 

(47). The water-spread area of tanks, vital for irrigation and 

groundwater recharge, was estimated using Sentinel-1A SAR data. 

Processed with SNAP software, these data were used to map the 

water-spread area was through a threshold-based approach (48, 49). 

Reference evapotranspiriation (ET) data from the FAO were analyzed 

using the AgERA5 dataset to assess the annual and seasonal 

dynamics of reference ET (50). Daily actual ET was computed using 

the surface energy balance algorithm for land (SEBAL) (51). 

Traditional drought indices like standardized precipitation index 

(SPI) rely only on precipitation, potentially missing key factors. 

Incorporating both temperature and precipitation, 

standardized precipitation evapotranspiration index (SPIE) 

improves assessment by offering a more complete view under 

changing climate conditions (52).  

Fig. 2. Graphical abstract of agronomic and environmental dimensions of large-scale irrigation interventions. 
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 Agricultural drought was analyzed using CHIRPS monthly 

precipitation data to evaluate duration, extent, severity and lag time. 

Enhanced vegetation index (EVI) data from MODIS and SPI at a one-

month scale supported accurate drought vulnerability assessments 

(53). Using CROPWAT 8.0, crop water demand and supply were 

analyzed to propose a net irrigation scheme, revealing that the 

paddy showed the highest water demand (872.1 mm/ha) in non-

system tanks, while sugarcane had the highest (1046.7 mm/ha) in 

system tanks (54). Sentinel-2 optical data and ground-truth 

information were used for crop diversification assessment in the 

major tank ayacut area. Crops were identified through pixel-based 

classification and further classified using Random Forest algorithms 

(55). Multi-temporal Sentinel-1A SAR data was used to estimate rice 

area. Temporal backscatter (dB) signatures were generated using 

fully automated MAPscape software to distinguish rice from other 

crops (56).  

 When considering LSIPs, spatial monitoring is indispensable 

in mapping rivers, canals, distributaries, delineation of catchments 

areas, command areas and even drainage networks. Satellite 

imageries and GIS tools enables continuous tracking of water 

availability, irrigated areas, crop water requirement and stress 

analysis using ET and NDVI estimation. Apart from that, disaster risk 

mapping, yield monitoring and the integration of socio-economic 

and natural resource data geospatial data are also possible (25, 57, 

58). 

Prominent global case studies 

The example LSIPs cover a diverse geographical range, including 
projects in China, Egypt, the United States and Australia, reflecting 

the global significance of irrigation projects across different regions, 

as they are representing some of the largest and most influential 

ones in terms of scale and impact on water management and 

agriculture (Fig. 3). 

 

 

Three Gorges Dam of Yangtze river valley irrigation system 

(China) 

Three Gorges Dam (TGD), the largest engineering project in China 

and the largest dam structure in the world since 2006, reached its full 

hydroelectric power generating capacity in 2012 (59). The main aim 

of the TGD was to prevent flooding in the Yangtze basin and it caused 

a significant reduction in annual average emissions of CO2, CH4 and 

N2O over a 4300 km stretch of the Yangtze River (59). Using the CASA 

model, the terrestrial net primary productivity (NPP) of the TGD area 

was found to be increasing during 2000–2015 and climate change 

and land-use patterns may have contributed to carbon 

sequestration (60). Green infrastructure provides support for 

ecological restoration (61). Hydroelectric power production 

achieved its full capacity with all 32 turbine generator units 

operational. With the addition of two extra generators, the dam 

reached a total capacity of 22500 megawatts, solidifying its status as 

the world’s most productive hydroelectric dam. The hydroelectric 

plant shattered records by producing 111.88 terawatt-hr of electricity 

in a single year, marking an unprecedented milestone in annual 

power generation volume (62). 

 The construction of the TGD was fraught with controversy, 

as it caused the displacement of at least 1.3 million people and the 

destruction of natural features and approximately 1200 rare 

historical, architectural and archaeological sites (63). The reservoir 

has also been blamed for an increased risk of landslides and 

earthquakes, while waste from nearby cities pollutes the reservoir 

(20). Advocates for the construction of numerous smaller and more 

cost-effective dams argued that this approach would allow the 

government to fulfill its primary objectives without exposing itself to 

significant risks (64). Lowland terraces are primarily used for paddy 

rice cultivation, while upland areas support cereals and rapeseed. 

The region also cultivates tea and other cash crops, along with mixed 

vegetables, fruit orchards and aquaculture in ponds and small 

reservoirs. Table 1 provides brief insights on different models and 

their usage in the TGD. 

Fig. 3. Case studies of the prominent global large-scale irrigation projects. 
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The Aswan High Dam of nile river project (Egypt)   

Constructed in 1861, as the delta barrage scheme and underwent 
subsequent extensions and enhancements, marking a pivotal 

moment in modern Nile valley irrigation. The aim was to elevate the 

water level upstream to facilitate irrigation canals and regulate 

navigation. The Aswan high dam (AHD) aimed to regulate the Nile's 

flow for agriculture, hydroelectric power and flood protection (21). 

Feature four locks to aid navigation, housing a hydroelectric power 

plant (HEP) generates over 345 MW of power (69, 70). With a HEP 

capacity of 2100 megawatts, it stores water in lake Nasser to control 

levels, with Egypt receiving the majority share of allocated water 

resources (71). Navigation in Sudan is challenged by cataracts, 

particularly between the Egyptian border and lake Nasser and from 

Khartoum to Juba in South Sudan where the dam facilitates it (72). 

The critics argue that the dam caused downstream erosion, coastal 

erosion in the delta, saltwater intrusion, waterlogging and reduced 

fish populations (73). Despite controversy, proponents emphasize 

the dam's importance for water and power supply security. 

Supporting up to two cropping cycles each year, the region 

cultivates major crops such as cotton, sugarcane, rice, wheat, maize 

and sorghum, along with extensive areas of vegetables, fruit 

orchards (including date palm, citrus, mango and guava) and 

various fodder crops. Table 2 below offers succinct insights into 

various models and their applications in the AHD. 

 

Murrumbidgee irrigation area (Australia)  

Established in 1912, the Murrumbidgee catchment, nestled within 
the Murray–Darling basin covering an extensive area of 32440 square 

miles including 1000 square miles of fertile farmland supporting a 

diverse agricultural landscape, including livestock pastures, 

vineyards, citrus orchards, wheat fields and cotton plantations (79). 

The Water Management Act (2000) made marked shift in water 

management and regulations that helps access water by the 

farmers. 

 The Water Act (1912) regulated water use as farmers were 

competed to access flowing water which often caused conflicts and 

inequitable distribution. It also introduced licensing system that the 

farmers need official permission from the government as it gave 

power to the government to monitor, allocate, protect water 

resources and plan the activities (80). Though some hesitations were 

there to the tail end farmers, activities of floodplain restoration 

projects pulled farmers to collaborate with the authorities. 

 The recent trends showed a significant increase in water 

usage by irrigated cotton in the Murrumbidgee catchment of New 

South Wales than other crops like vegetables, rice, grapevines and 

dairy (22). The overall reductions in return flows were to be less than 

20 % of the total proposed irrigation efficiency savings (81). Irrigation 

efficiency projects reduce seepage to groundwater (with off-farm 

and on-farm seepage reduction by 19 % and 53 %) but not all 

Table 1. Models employed in analysing the hydrology of TGD  

Key findings Methodology References 

To gauge stream flow and sediment uncertainty. 
Sediment forecasts more uncertain, especially when wet compared to 
streamflow. 

Merged generalized likelihood uncertainty 
estimation (GLUE) with soil and water 
assessment tool (SWAT) model 

(65) 

Generated monthly discharges at Yichang station for 2003–2011. Hydrological 
droughts downstream slightly aggravated by TGR's initial operation (2003–
2011). Hydrological drought index series calculated using standardized 
streamflow index method. 

Two-parameter monthly water balance model (66) 

Created coupled model of hydrodynamics operation on streamflow and 
distributed time variable gain model between 1970 and 2018. Annual average 
relative deviation of TGD flow compared to natural state: ~24 %. Dam's 
operation intercepted high flood peaks during flood season. 

Large-scale coupled model of hydrological and 
hydrodynamic processes 

(67) 

Created model to assess hydrological consequences. Dam operation 
decreased maximum daily flood peak by up to 26.2 %. Generated ~94.27 TWh 
of electricity annually. Increased downstream water supply by up to 22 % 
during dry season. 

Large-scale linked hydrological-hydrodynamic 
and hydropower simulations-dam operation 
model 

(68) 

Study description Methodology References 

Estimate evaporation and recorded 5.70 mm day-1 to 7.05 mm day-1 of 
evaporation. 

Water-balance, energy budget, bulk aerodynamic 
(Dalton), combination (Penman), complementary 

(74) 

Used ANFIS model trained on historical data to forecast Nile River inflow at 
Aswan High Dam. Compared with an artificial neural network (ANN) model, 
demonstrated higher accuracy, especially for extreme inflows. 

Adaptive neuro-fuzzy inference system (ANFIS) 
model 

(75) 

Assessed irrigation demands in Egypt and Sudan along the Nile. Revealed 
substantial water consumption and projected demands surpassing 
available resources. Urged holistic water management strategies. 

SPARE: WATER model (76) 

Analyzed terrain models for extracting watersheds using WMS and ARC-GIS. 
Showed ARC-GIS as more accurate. Calculated dam water volume using 
DEM from Shuttle Topographic Radar Mission (STRM) and HEC l 
hydrological model. 

Watershed modeling system (WMS), ARC-GIS, digital 
elevation model (DEM), HEC l hydrological model 

(77) 

Developed a 1D hydraulic model using HEC-RAS program to study dam 
break scenarios, estimate output hydrograph and route flood wave from 
Aswan Dam to Esna barrage. Highlighted concerns of catastrophic 
outcomes with high flow releases. 

1D hydraulic model using HEC-RAS program (78) 

Studied a revised water balance model for the Aswan High Dam Reservoir. 
Verified using remote sensing data, bias-corrected reanalyzed data and in 
situ gauge data. Recorded temperature trends and developed machine 
learning models for inflow/outflow data adjustments. 

Combination of heterogeneous information 
sources, machine learning models 

(69) 

Table 2. Models employed in analysing the hydrology of AHD 
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seepage reductions will translate in reduction and charge ground 

water.  

 The conjunctive use of water option faces challenges in 

stakeholder processes, cost minimization, social benefits and equity 

and suggested financial incentives or greater stakeholder 

involvement could enhance acceptance (82). Nearly 300000 ha of 

area was degraded by dams, diversions and floodplain 

development. Water diverted from the Murrumbidgee river for 

irrigation and various other reasons highly changed the natural flows 

which impacted the wetlands and their associated waterbirds and 

aquatic biota. Yanga nature reserve faces a considerable loss of 

floodplain vegetation due to water scarcity. On the other hand, it 

also caused catastrophic death of fishes in the Murray-Darling basin 

(83). Hence, the naturally location specific biome should be 

conserved (84). 

 Similarly, environmental changes due to irrigation like 

salinization, waterlogging affects groundwater quality (82). Thus, 

conservation policies are needed without interfering the natural 

flows for preventing further ecological degradation (85). One such 

initiative is the Commonwealth Water Act (2007) which facilitated 

yearly water allocation for compulsory use of water for 

environmental reclamation. Since 2012, it is regulated by the Murray-

Darling basin authority by the basin plan (81). The basin plan 

replaced the initial cap with the establishment of a sustainable 

diversion limit (SDL) on the volume allocated for consumptive uses 

(80, 86). The water market expansions facilitated by water reform 

packages in 1994 and 2004 enabled users to trade water across 

connected valleys and state borders, contributing to sustainable 

water use in the Murray–Darling basin (81). Major irrigated crops 

include rice (medium and long grain), cotton, wheat, barley, canola, 

soybeans, corn and various vegetables and fodder crops. The region 

also hosts extensive orchards and vineyards producing citrus, stone 

fruits, nuts (walnuts, almonds) and about 20 % of Australia’s wine 

grapes and 90 % of New South Wales’ citrus output. Table 3 offers 

concise overviews of different models and their utilization in the 

Murrumbidgee irrigation area (MIA). 

Colorado river basin irrigation projects (United States/Mexico)  

The Colorado river basin lies between USA and Mexico occupies an 
area of approximately 250000 square miles (93). Colorado river basin 

irrigation (CRBI) project is a critical resource for agriculture, domestic 

purposes, hydropower production, recreation, fish and wildlife 

habitat and other benefits (23). Of the total volume, 70 % of Colorado  

river water was used for agriculture and around 35 and 40 million 

people rely on the same water resource (94). With the complex set of 

compacts, federal laws, court decisions, decrees, contracts and 

regulatory guidelines, the “Law of the River” provide a regional water 

plan, for the satisfaction of the requirements of the Mexican Water 

Treaty (95, 96). Due to climate change, streamflows are anticipated 

to decrease, leading to proposed water-use reductions, mainly 

targeting agriculture, which currently consumes over 60 % of the 

basin's water (97). Major crops of CRBI include alfalfa (dominant and 

key for beef and dairy feed), grass hay, corn (mainly for livestock 

feed), cotton, winter vegetables, leafy greens, orchards (citrus, 

Study description Methodology References 

Assess flood frequency and duration. Found significant impacts from 
major irrigation off-takes, altering upstream and downstream flow 
characteristics. 

Analysis of natural daily flow data (87) 

Demonstrated the effectiveness of the SFI in managing hydrologic 
drought. 
Used (GPDF) and (GAM) to analyze river flow data. 

Standardised flow index (SFI), Gamma probability 
distribution function (GPDF), generalized additive 
models (GAM) 

(88) 

Investigated the impact of flow alteration by dams on the Lowbidgee 
wetland fed by the Murrumbidgee River. 

Integrated flow and flood modeling (IFFM), structural 
change analysis 

(89) 

Developed a coupled socio-hydrologic system model to simulate the 
pendulum swing between agricultural development and 
environmental restoration in the Murrumbidgee River Basin. 

Stylized, quasi-distributed, parsimonious coupled socio-
hydrologic system model 

(90) 

Examined combined impacts of climate change and land use on sub-
catchments of the Murray-Darling Basin. 

 SWAT model (91) 

Used SIMHYD model with data from GCMs to predict future runoff in 
the Murrumbidgee River catchment. Analyzed impacts of climate 
change and emissions scenarios on runoff. 

Simplified hydrolog (SIMHYD) model, general circulation 
models (GCMs), representative concentration pathway 
(RCP) scenarios 

(92) 

Table 3. Models employed in analysing the hydrology of MIA 

Table 4. Models employed in analysing the hydrology of CRBI  

Study description Methodology References 

Assessed climate change impact on hydrology and water resources of the Colorado River 
Basin using an ensemble approach with downscaled output from 11 GCMs. Studied 
temperature and precipitation changes. 

Ensemble approach with 
downscaled output from 11 GCMs 

(98) 

Examined the impact of climate variability and change on the Colorado River flow using a 
system dynamics model with inputs from 16 GCMs and 3 emission scenarios. Evaluated 
implications on Lake Mead levels and probabilities of supply curtailments. 

System dynamics model, analysis of 
global climate models (GCMs) 

(99) 

Investigated climate change effects on water resources in the Upper Colorado River Basin 
(UCRB) using the SWAT model and 16 GCMs under the A2 emission scenario. Projected 
declines in spring and summer streamflow with implications for water resources and 
ecosystems. 

SWAT model, analysis of global 
climate models (GCMs) 

(100) 

Predicted drought severity using general circulation models (GCMs) and compared results 
with those derived from natural flow estimates calculated by reclamation. 

General circulation models (GCMs) (101) 

Evaluated three generations of global climate models (GCMs) in simulating temperature, 
precipitation and drought variability in the Upper Colorado River Basin. Analyzed 
persistent biases and the impact of bias correction on CMIP6 model performance. 

Analysis of global climate models 
(GCMs), bias correction 

(102) 

Provided detailed information on streamflow, water table depth, snow water equivalent 
(SWE) and evapotranspiration (ET) using an integrated hydrological model, ParFlow-CLM. 
Validated dataset useful for studying water dynamics in the Colorado River basin. 

Integrated hydrological model 
(ParFlow-CLM) (103) 
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grapes, dates) and vineyards. Presented herein is a Table 4 

delineating various models and their roles in CRBI. 

 

Discussion 

LSIPs that include various rivers, reservoirs, dams play a marvelous 

role in transforming the agriculture landscape and promote rural 

development by ensuring food security all over the world by 

allocating water resources for different sectors. But currently 

undergoing climate change have made it difficult for their 

management, long term sustainability. Case Studies including the 

TGD in China (20), the AHD in Egypt (21), the MIA in Australia (79) and 

the CRBI in the USA and Mexico (93) exemplify large-scale 

interventions in water management. While these projects have 

significantly contributed to flood control, power generation and 

agricultural development, they have also raised concerns about their 

environmental impacts. The TGD (20), despite its impressive 

capacity for electricity generation (62) and flood prevention (20), has 

been criticized for its adverse effects on local ecosystems and 

cultural heritage sites due to forced displacement and ecological 

disruption (63). The AHD caused severe downstream soil and coastal 

erosions and decreased fish populations (21, 73). Meanwhile in MIA, 

at the cost of habitat loss of local beings, ecological degradations like 

salinization and waterlogging changed agriculture’s landscape (82). 

Similarly, CRBI observed projected decrease in streamflows 

threatening availability of water for all sectors including agriculture 

(97). 

  

 Advanced modelling and modern remote sensing 

techniques and appropriate policy decisions helps overcome the 

complex of hydrological and socio-economic concerns (104, 105). 

Deploying machine learning algorithms into hydrological-

hydrodynamic models to operate LSIPs for water resource 

management increase water use efficiency (WUE) and reduce 

environmental degradation (106). The international treaties inked 

pave way for the regulation of water allocation among USA and 

Mexico (107, 108). United hands stakeholder engagement and 

participatory approaches are very important to sustainably and 

successfully manage LSIPs (109). Though inherent controversies are 

there in the MIA, collaboration among the authorities and local 

communities achieved the goals by joining hands (110). But still 

concerns like migration, equitable water distribution persists (111). 

Holistic approaches that considers social equity, economic 

development and environmental conservation enables the 

achievement of LSIPs goal (64, 112). Climate-resilient cropping 

patterns and adoption of water-saving technologies such as drip and 

sprinkler irrigation also need to be encouraged in LSIPs command 

areas. Switching from water-intensive crops like paddy and 

sugarcane to less water-demanding crops such as millets, pulses 

and oilseeds in regions facing water scarcity can ensure better water 

sustainability. To reduce the pressure on water resources, it is 

advisable to go with the diversified farming as it increases farmers 

income and food system resilience.  

 Hydrological and climate models like SWAT (65), HEC-HMS 

(29), ANN (35) based models enable accurate prediction of 

watershed responses at various climate scenarios. Likewise, 

stochastic weather generators and climate downsclaing models like 

SDSM enables policy makers to create frameworks by integrating 

future climate variability into their irrigation strategies (30). In 

addition, the use of soil amendments and innovative materials like 

zeolites, biochar, antitranspirants and nanoclays increase efficiency 

in water  usage in agriculture especially in arid and semi-arid regions 

and can aid in moisture retention and reduce irrigation 

requirements. In addition to the above discussed ways, integrating 

information and communication technologies (ICTs) like real-time 

monitoring through IoT devices, remote sensing-based irrigation 

scheduling and decision support systems enable reduced water 

waste and optimized alloction (28, 25). 

 Decentralized water management strategies such as 

participatory irrigation management (PIM) and water user 

associations (WUAs), which represent bottom-up approaches—

when effectively integrated with government agencies, technical 

guidance and capacity building in canal distribution, maintenance 

and crop planning, can ensure efficient water use, reduce conflicts 

and improve the operational efficiency of LSIPs. Thus, the 

sustainability of future LSIPs will highly be depend on the above 

discussed integrated approaches that balance and harmonize 

economic growth and social-economic betterment of a region.  

 

Conclusion  

LSIPs are inevitable for the transformation of agriculture, ensuring 

food security and effective water resource management. The case 

studies on the Three Gorges Dam, Aswan High Dam, Murrumbidgee 

Irrigation Area and the Colorado River Basin Projects highlight the 

project scale, historical importance and technological 

advancements that have reformed agriculture, water management, 

thereby improving socio-economy of these regions. In addition, the 

paper also discusses the different hydrological models used to 

manage the LSIPs, along with their prospects and concerns.  

 Changing climate severely impacts LSIPs, with rising 

temperatures and an increased occurrence of extreme weather 

events, which worsen the conditions. It destabilizes the availability of 

water, agricultural production and rural livelihoods. This creates a 

need for the climate-resilient and sustainable irrigation strategies. 

Advanced technologies like AI, remote sensing, IoT, ML and solar-

powered systems make it easier to cope. Substances like zeolites, 

nanoclay and anti-transpirants enable water conservation in the 

water-scarce areas. Likewise, the spatial and temporal monitoring of 

LSIPs using remote sensing and hydrological models is essential for 

creating site-specific policy frameworks.  

 Hydrological models include HEC-HMS, SWAT, ANN and 

CANFIS, along with trend analyses like Mann-Kendall tests and 

drought severity evaluations using DrinC, which help understand 

water resource behaviour and dynamics. Better prediction of 

climate impacts on LSIPs is possible by integrating GCM with 

downscaling methods like SDSM. Remote sensing and GIS 

techniques using Sentinel-1A SAR, Sentinel-2 optical data, MODIS 

datasets and tools like SEBAL have strengthened the continous 

monitoring of land, water spread, crop health and disaster risks. 

Hence the paper reviewing on the agronomic and environmental 

dimensions of LSIPs elucidates the need for such projects wherever 

possible to improve water conservation, management, agricultural 

productivity, regional development and general standard of living 

rural economies.  
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