Das A, Burman S, Chandra G, Bandyopadhyay A. *In vitro* photoprotective, antioxidant and antibacterial activity of *Vernonia squarrosa* (D. Don) Less. Plant Science Today. 2021;8(1):331–339. https://doi.org/10.14719/pst.2021.8.2.1037

Supplementary Tables

Table S1. Table showing the Determination of SPF Value at 50 µg/ml extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) Χ Ι(λ) Χ Α Χ 10*
290	0.0150	1.042 ± 0.307	0.015635 ± 0.0046	
295	0.0817	1.081 ± 0.31	0.088372 ± 0.3912	
300	0.2874	1.093 ± 0.307	0.31432 ± 0.0884	_
305	0.3278	1.094 ± 0.299	0.358613 ± 0.0982	11.0482 ± 3.0496
310	0.1864	1.116 ± 0.3	0.208146 ± 0.0559	
315	0.0837	1.165 ± 0.315	0.097566 ± 0.0263	
320	0.0180	1.231 ± 0.339	0.02217 ± 0.0061	

Table S2. Table showing the Determination of SPF Value at 100 $\mu g/ml$ extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) Χ Ι(λ) Χ Α Χ 10*
290	0.0150	1.782 ± 0.31	0.02673 ± 0.0014	
295	0.0817	1.85 ± 0.08	0.15114 ± 0.0065	
300	0.2874	1.871 ± 0.077	0.53782 ± 0.0194	
305	0.3278	1.873 ± 0.127	0.61396 ± 0.0161	18.9056 ± 0.541
310	0.1864	1.911 ± 0.144	0.3562 ± 0.0058	
315	0.0837	1.993 ± 0.103	0.16681 ± 0.0038	
320	0.0180	2.104 ± 0.068	0.03787 ± 0.0011	

Table S3. Table showing the Determination of SPF Value at 200 μ g/ml extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) Χ Ι(λ) Χ Α Χ 10*
290	0.0150	3.712 ± 307	0.05569 ± 0.0041	
295	0.0817	3.836 ± 0.067	0.31345 ± 0.0063	
300	0.2874	3.845 ± 0.175	1.10524 ± 0.0503	
305	0.3278	3.821 ± 0.099	1.25263 ± 0.0856	38.082 ± 1.600
310	0.1864	3.755 ± 0.115	0.69993 ± 0.0345	
315	0.0837	3.803 ± 0.049	0.31831 ± 0.0025	
320	0.0180	3.500 ± 0.146	0.06300 ± 0.0051	

Table S4. Table showing the Determination of SPF Value at 400 $\mu g/ml$ extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) Χ Ι(λ) Χ Α Χ 10*
290	0.0150	3.783 ± 0.299	0.05675 ± 0.0001	
295	0.0817	3.861 ± 0.049	0.31547 ± 0.0104	_
300	0.2874	3.903 ± 0.261	1.12172 ± 0.0285	
305	0.3278	3.777 ± 0.06	1.23831 ± 0.0196	38.476 ± 0.6235
310	0.1864	3.898 ± 0.115	0.72664 ± 0.0171	_
315	0.0837	3.809 ± 0.134	0.31886 ± 0.0064	_
320	0.0180	3.882 ± 0.083	0.06988 ± 0.0010	

Table S5. Table showing the Determination of SPF Value at 600 μ g/ml extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) X I(λ) X A X 10*
290	0.0150	3.891 ± 0.3	0.05836 ± 0.0017	
295	0.0817	3.849 ± 0.031	0.31449 ± 0.0118	_
300	0.2874	3.916 ± 0.185	1.12488 ± 0.0227	_
305	0.3278	3.916 ± 0.092	1.28377 ± 0.0378	
310	0.1864	3.833 ± 0.076	0.71453 ± 0.0142	_
315	0.0837	3.877 ± 0.069	0.32456 ± 0.0046	_
320	0.0180	3.694 ± 0.106	0.06649 ± 0.0015	_

Table S6. Table showing the Determination of SPF Value at 800 μ g/ml extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance(A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) X I(λ) X A X 10*
290	0.0150	3.926 ± 0.315	0.0589 ± 0.0008	
295	0.0817	3.874 ± 0.046	0.31653 ± 0.0084	_
300	0.2874	3.943 ± 0.308	1.13331 ± 0.0141	
305	0.3278	3.842 ± 0.076	1.25962 ± 0.0439	38.804 ± 0.3909
310	0.1864	3.856 ± 0.055	0.71875 ± 0.0129	_
315	0.0837	3.912 ± 0.018	0.32749 ± 0.0015	
320	0.0180	3.658 ± 0.175	0.06584 ± 0.0005	—

Table S7. Table showing the Determination of SPF Value at 1000 $\mu\text{g}/\text{ml}$ extracts (HMLE) concentration

Wave length	EE (λ) X I (λ) employed	Absorbance (A)	$\mathbf{EE} \times \mathbf{I} \times \mathbf{A}$	SPF=ΣΕΕ(λ) Χ Ι(λ) Χ Α Χ 10*
290	0.0150	3.937 ± 0.339	0.05906 ± 0.0005	
295	0.0817	3.903 ± 0.065	0.31933 ± 0.0052	
300	0.2874	3.75 ± 0.285	1.07775 ± 0.0420	
305	0.3278	3.905 ± 0.055	1.28016 ± 0.0275	38.448 ± 0.7003
310	0.1864	3.91 ± 0.087	0.72888 ± 0.0198	_
315	0.0837	3.709 ± 0.031	0.31047 ± 0.0146	_
320	0.0180	3.845 ± 0.1	0.06922 ± 0.0018	_

Supplementary Figures

Fig. S1. The mass spectrum of Bicyclo [3,2,0] hepta-2,6-diene, RT 3.62.

Fig. S2. The mass spectrum of 2-Thio-2,4-oxazolidinedione, RT 5.77.

Fig. S4. The mass spectrum of Benzaldehyde, 3-(2,4,6-trichlorophenoxy methyl-4-methoxy, RT 16.56.

m/z

m/z

Fig. S5. The mass spectrum of Benzaldehyde, 3-(2,4,6-trichlorophenoxy methyl-4-methoxy, RT 17.94.

Fig. S6. The mass spectrum of 2-(4-phenyl-piperidine-1-yl)-ethylamine, RT 22.46.

Fig. S7. The mass spectrum of 9,11-Dimethyletracyclo [7,3,1,0(2,7),1(7,11)] tetradecane, RT 50.30.

Fig. S8. The mass spectrum of Lupeol, RT 50.70.