

RESEARCH ARTICLE

Nutritional, textural and sensory quality of cookies supplemented with *Moringa oleifera* Lam. and *Spinacia oleracea* L.

Mohammad Imdad Ulla¹, T H Anantha Krishna^{2,3}, Mahesh Anikisetty^{4,5} & Ullas Prasanna S^{1,6*}

¹Department of PG Studies and Research in Food Technology, Kuvempu University, Shankaraghatta 577 451, Shivamogga, Karnataka, India

²Department of Biochemistry, School of Basic & Applied Sciences, Dayananda Sagar University, Innovation Campus, Bengaluru 560 114, Karnataka, India

³Department of Biochemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India

⁴Department of Biochemistry, Central Food Technological Research Institute (CFTRI), Mysore 570 020, Karnataka, India

⁵Food Corporation of India, Mysore 572 000, Karnataka State, India

⁶Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Innovation Campus, Bengaluru 560 114, Karnataka, India

*Correspondence email - ullas.p-sbas@dsu.edu.in

Received: 07 July 2025; Accepted: 19 November 2025; Available online: Version 1.0: 31 January 2026; Version 2.0: 05 February 2026

Cite this article: Mohammad IU, Anantha KTH, Mahesh A, Ullas PS. Nutritional, textural and sensory quality of cookies supplemented with *Moringa oleifera* Lam. and *Spinacia oleracea* L.. Plant Science Today. 2026; 13(1): 1-7. <https://doi.org/10.14719/pst.10490>

Abstract

Deficiency of iron is a rampant nutritional dispute globally, particularly in developing and underdeveloped countries. Our investigation emphasizes evolving iron-rich cookies by adding *Spinacia oleracea* L. and *Moringa oleifera* Lam. leaf powders. They are abundant in vitamins, iron, magnesium and proteins, which are the nutrients essential to our body. These ingredients are dual delivered to cookies to improve nutritional content to address anaemia. The cookies prepared underwent physicochemical analyses. Here, colour, diameter, thickness, moisture and content were analysed. *S. oleracea* and *M. oleifera* leaf powder fortified cookies increased the nutrition in cookies when compared to conventional cookies. Sensory evaluation studies revealed the overall acceptability, appearance, flavour, taste and texture using a 9-point hedonic scale. The untutored members' panel revealed a favourable retort to the savoury and sweet selection of cookies. Using DPPH free radical scavenging activity antioxidant activity was investigated. 95.99 % of solid antioxidant potential was observed at a concentration of 10 µg/mL. These fortified cookies provide us with benefits to health, good sensory quality, which in turn makes them a quality food product with probable market value.

Keywords: cookies; iron; *Moringa oleifera*; nutrients; *Spinacia oleracea*

Introduction

Cookies rich in nutrients, with health remunerations, are of great interest to dietitians. Cookie preparation is a chief part of the baked food industry, before the production of diverse forms of nutrient-enriched cookies (1). The major objective is to prepare the cookies with enhanced organoleptic properties and health benefits. *Moringa oleifera* Lam. is a plant rich source of iron, as reported in earlier studies (2, 3). This is a very well-known vegetable plant which grows up to 10 feet in height and is an abundant source of proteins, vitamin C and β-carotene. When it comes to the comparison of the quality of proteins, it is equal to egg and milk (4, 5).

An abundant amount of iron, which is needed for humans to maintain a diet, is found in *M. oleifera*. Preparation of cookies by fortifying iron-rich moringa leaves is achieved because of making cookies rich in iron sources, which helps us to combat anaemia (6). *Spinacia oleracea* L. (Spinach) is a green leafy vegetable grown in almost all countries, mainly for its fresh consumption, because of

its high amount of iron content. Both *moringa* and spinach leaves are used as a main source in the canned food industry (7, 8). Consumption of *Spinacia oleracea* leaves is supported by the dietitians due to its abundant source of nutritional contents like iron, calcium, vitamin C and carotenes (9, 10).

In our present investigation, cookies fortified with *S. oleracea* and *M. oleifera* were prepared to develop iron-rich cookies. Sweetening agents like the organically prepared powder of jaggery were added. The main purpose of preparing cookies fortified (base flour) with moringa and spinach leaves was to develop iron and vitamin C-rich cookies (11). Cookies prepared. These cookies have a nutraceutical property. These cookies can boost haemoglobin levels in patients suffering from anaemia due to their iron-rich content. The present investigation was conducted to prepare the iron-rich cookies with some value-added products, which may be helpful for persons suffering from anaemia to consume as a dietary source to improve the haemoglobin content in the body.

Materials and Methods

Materials like turmeric powder, organic jiggery, red chilli powder, orange peel powder, cardamom, salted butter, cumin seeds, salt, baking soda, chocolate, cashews, brown sugar, curry leaves, banana, baking powder, *M. oleifera* and *S. oleracea* were bought to the laboratory from the local market of Bhadravathi, Karnataka, India (12). To fortify the cookies with *moringa* and spinach leaf powder, the plant materials were collected and dried in the shade. Using a blender, they were then finely powdered.

Processing of *Moringa oleifera* leaves powder

Fresh moringa leaves were shade-dried until they were completely dried. Using a pestle and mortar to reduce the particle size, the plant material was ground very well (13). The plant material powder was sieved through a 50-mesh sieve to eliminate larger particles and the resultant fine powder was deposited in a sealed container for future use at room temperature (Fig. 1).

Processing of *Spinacia oleracea* leaves powder

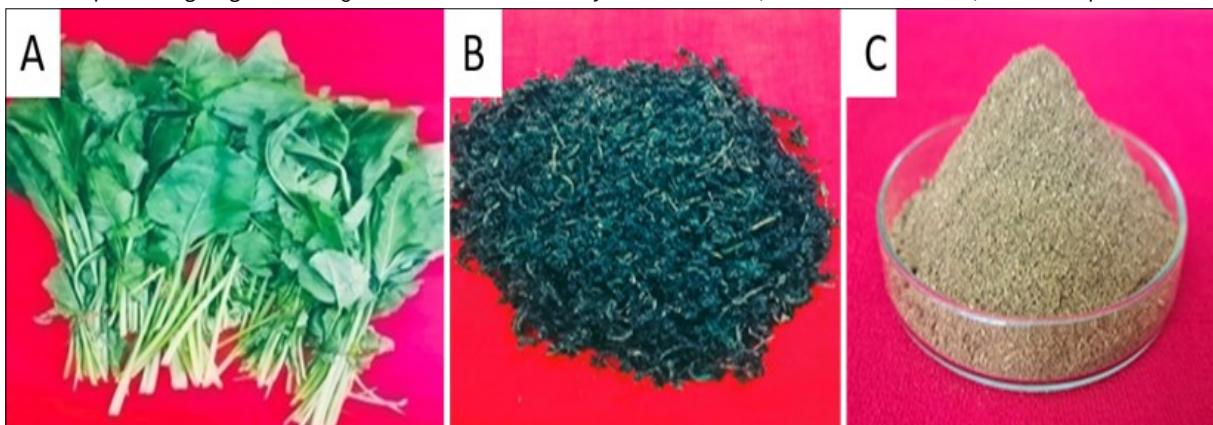
Mature spinach leaves were procured. Using running water, the soil debris was removed, using distilled water and minute debris of dust was removed. By using a muslin cloth moisture on the surface was removed (14). The leaves of spinach were shade-dried to make a fine powder. To get a fine, small powder same procedure that we have used for moringa leaves, as mentioned above, was achieved and was stored (Fig. 2).

Processing of orange peel powder

Using stainless knives fresh orange fruits were peeled. Peeled orange fruits were amended into small pieces and placed inside a hot air oven at 40 °C to remove the moisture. After drying, the

Table 1. Formulation of cookie variety

Sl. No	Ingredient composition of formulations (C1 and C2)	C1	C2
1	<i>M. oleifera</i> powder	3 g	3 g
2	<i>S. oleracea</i> powder	2 g	2 g
3	Refined wheat flour	100 g	100 g
4	Flax seeds	5 g	5 g
5	Orange peel powder	1 g	1 g
6	Salted Butter	40 g	40 g
7	Organic jaggery	50 g	40 g
8	Brown sugar	40 g	40 g
9	Salt	Pinch	Pinch
10	Banana	½	½
11	Baking powder	1spoon	1spoon
12	Baking soda	Pinch	Pinch
13	Cashew	5 g	5 g
14	Chocolates	15 g	15 g
15	Peanut	5 g	5 g
16	Cardamom	1	1
17	Chilli powder	-	4 g
18	Green chilli	-	3 g
19	Turmeric powder	-	2 g
20	Cumin	-	2 g
21	Curry leaves	-	2 g


procedure was followed which was followed to moringa and spinach leaves and stored at room temperature (15).

Preparation of cookies

In the initial stage salted butter was creamed using a mixer bowl, beater helps in mixing and until it turns fluffy and smooth continue the process. At the second stage, organically prepared jaggery and brown sugar was added to butter mixture, again it was mixed well to incorporate air to add texture to cookies prepared. Ingredients mentioned in Table 1 were incorporated carefully into the mixture which included additional flavourings, baking powder and soda (16). To create a homogeneous mixture

Fig. 1. Different processing stages of *Moringa oleifera* leaves. A- freshly collected leaves; B- shade-dried leaves; C- fine leaf powder.

Fig. 2. Processing stages of spinach (*Spinacia oleracea*) leaves. A- freshly collected leaves; B- shade-dried leaves; C- finely powdered leaves.

of all the dry ingredients and butter, they were again mixed well. By ensuring the distribution, baking powder, salt and baking soda were mixed.

A cohesive dough was formed after mixing all of them thoroughly and mixing gently on a floured surface till it became pliable and smooth. Dough was rolled out into our desired thickness and cookies were cut into small pieces by using a cookie cutter into our desired size. Cut cookies were placed on parchment paper and a one-inch space between the cookies was left to blowout through baking (17). The oven was preheated to 130 °C, the cookies were baked for 15–20 min or check the cookies every 10 min until the cookies will turn a light golden colour. After the cookies were baked, they were removed from the oven and allowed to cool for 5–10 min on a baking sheet. Using a moisture analyser, moisture content in the baked cookies was analysed. Using a vernier calliper, diameter of the cookies was measured and a muffle furnace was used to analyse the ash content (Table 1 & Fig. 3) (18).

Proximate analysis

Using some standardized methods to get the nutritional analysis, like the Lowery method, was followed to analyse protein (19). Using Soxhlet extraction, total fat was assessed and by using colourimetric techniques, total carbohydrates were analysed. The dinitrosalicylic acid (DNS) method gave a clear estimation of reducing sugars and total sugar estimation was achieved using the anthrone method (20). Antioxidants were quantified, vitamins, iron and magnesium were all analysed using instrumental methods.

Sensory evaluation studies

Using untrained panellists, sensory evaluation studies were carried out on two different cookies. For the evaluation of cookies, here appearance, flavour, taste, smell, crunchiness and texture were calculated. The panellists assessed the chewiness, flavour and appearance of both cookies and assigned the scores

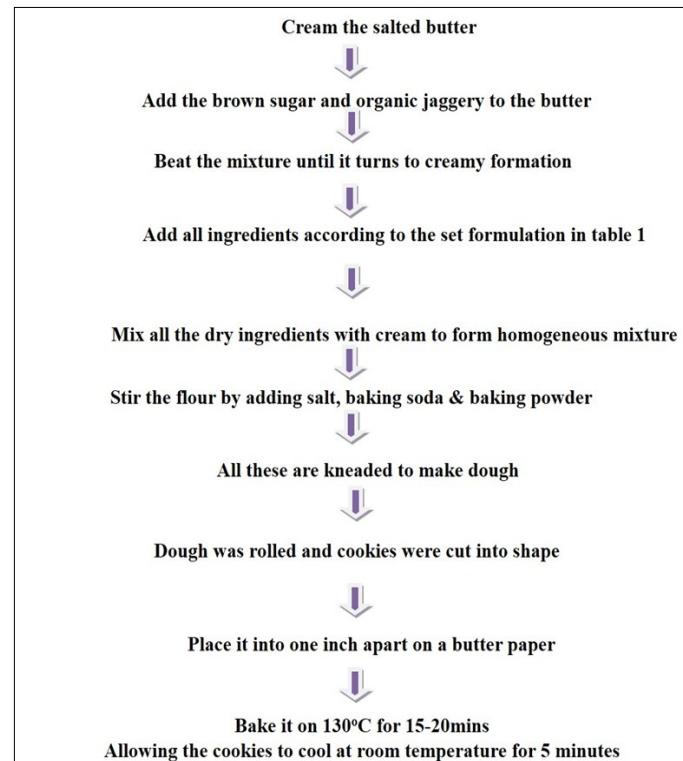
range from very low intensity-1 to very high intensity-9 for each indicator on 9-point hedonic scale (21).

Overall antioxidant capability

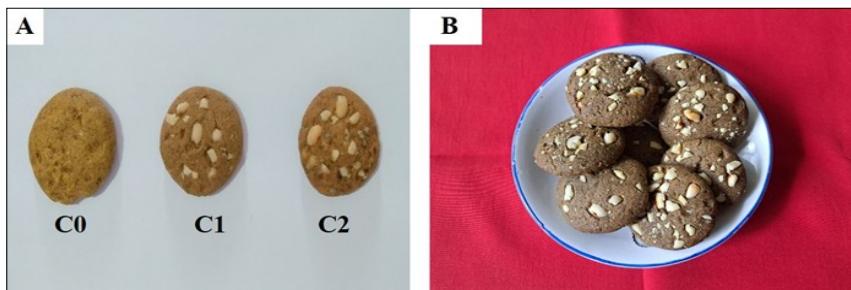
This was estimated by the spectrophotometric approach followed by previous researchers, which is a measure to evaluate the complete antioxidant constituents of samples. The phosphomolybdenum process of determination of overall antioxidant capability is centred on the principle that decline of Mo (VI) to Mo (V) by the sample combination, which successively forms green phosphate/Mo (V) complex at acidic pH (22).

Evaluation of antioxidant activity by DPPH radicals

As per the earlier method, total antioxidant activity was evaluated by DPPH radical scavenging activity (23). The cookies were creased and liquefied in water. Diverse concentrations of cookies dissolved in water were evaluated from 2, 4, 6, 8 and 10 mL to evaluate free radical scavenging activity. The concentration of colour was noted at 517 nm and half maximal inhibitory concentration (IC_{50}) values were determined (23).


Results and Discussion

Physicochemical analysis


To assess the diameter, thickness, spread ratio and weight was carried out physical analysis. Using vernier calipers, the diameter of the cookies prepared from spinach and moringa leaves and their thickness were measured, which were 2 cm in radius and 0.8 cm respectively. 0.91 % of ash content was analysed in cookies by muffle furnace. Using a moisture analyzer, moisture was identified, i.e. 4.6 % (Fig. 4).

Proximate analysis

In this analysis, comparative studies were carried out between samples C1, sweet cookies and sample C2, spicy cookies, with cookies made with organic jaggery and wheat flour as control C0

Fig. 3. Production flow chart for cookies.

Fig. 4. External appearance of developed cookies. A & B represent the developed cookies with the incorporation of *moringa* and spinach powder. Control (C0), sample (C1), Sweet cookies and sample (C2) Spicy cookies supplemented with spinach and moringa leaf powder.

one to assess the nutrient contents. Samples C1 and C2 had protein content of 7.2 and 7.3 g respectively, which was less when compared to Control C0, i.e. 9.2 g. The cookies prepared were organic and they were free from additives and emulsifiers.

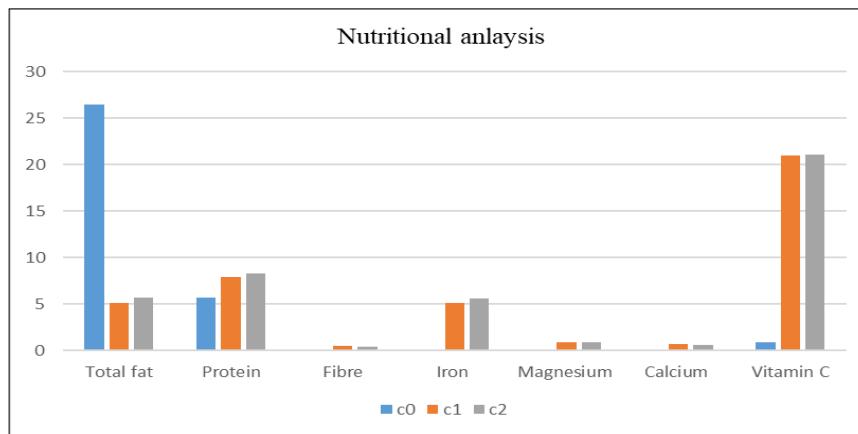
Samples C1 and C2 contained 5.7 and 5.4 g of fat respectively, but this was much less when compared to sample C0, i.e. 21.8 g. Incorporating ripe bananas instead of butter results in improving the tenderness and structure of cookies, also enhancing the binding properties. Compared to control cookies, our samples C1 and C2 provide lower fat content, which contributes to reducing saturated fat consumption.

The iron content in C0, C1 and C2 cookie samples was noted. Cookies exhilarated with curry leaves to C3 sample recorded the highest iron content, i.e. 5.6 mg, followed by the least recorded was the control C0 sample with 3.1 mg and C2 sample showed 5.1 mg. With the addition of orange peel powder, an increase in vitamin was noted in samples C1 and C2, i.e. 21.1 mg, which was higher than the Control sample C0, i.e. 0.9 mg.

The samples C1 and C2 cookies contained 0.46/100 g of fibres, which enhances metabolism and promotes digestive health. Magnesium was 0.9 mg/100 g endorsed from flax seeds and samples C1 and C2 contained 0.64 mg of calcium. All the samples underwent sensory evaluation and the results were calculated using the hedonic scale and are presented using a bar graph (Table 2 & Fig. 5).

Table 2. Nutritional analysis of cookie varieties

Sl no	Nutrition	Sweet cookies	Spicy cookies
1)	Total fat	5.4 g	5.7 g
2)	Protein	7.2 g	7.3 g
3)	Ash	0.91 %	0.91 %
4)	Fiber	0.46 g	0.4 g
5)	Iron	5.1 mg	5.6 mg
6)	Magnesium	0.9 mg	0.9 mg
7)	Calcium	0.64 mg	0.64 g
9)	Vitamin C	21.1 mg	21.1 mg
10)	Carbohydrates	130.0 g	130.1 g
11)	Moisture	4.6	4.6


Table 3. Sensory attributes for cookies sample

Sl. No.	Appearance/Colour		Taste/Flavour		Smell/Odour		Overall acceptability	
	Mean \pm SD		Mean \pm SD		Mean \pm SD		Mean \pm SD	
C0	7.51 \pm 0.97		7.0 \pm 1.4		7.14 \pm 1.34		7.42 \pm 0.97	
C1	6.87 \pm 1.0		7.14 \pm 1.34		6.57 \pm 0.98		6.85 \pm 0.9	
C2	7.0 \pm 1.1		7.57 \pm 0.79		7.0 \pm 0.82		7.28 \pm 0.95	

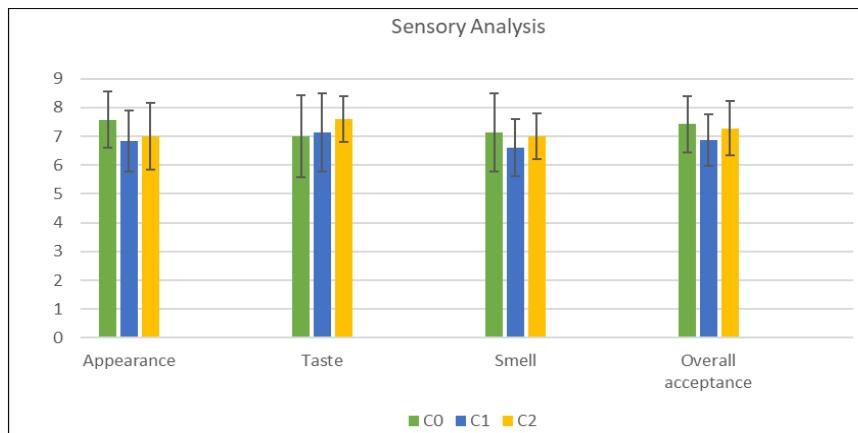
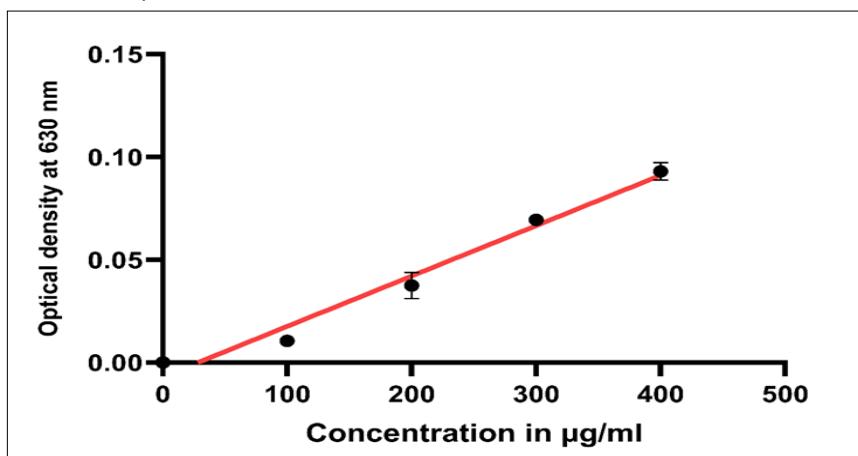

C0=Control, C1= Sweet Cookies, C2= Spicy Cookies and SD= Standard Deviation

Table 4. Antioxidant value of cookies


Sl. No.	Concentration of cookie sample in μ g/mL	% Radical Scavenging activity
1	2	22.417
2	4	44.615
3	6	65.494
4	8	74.945
5	10	95.995

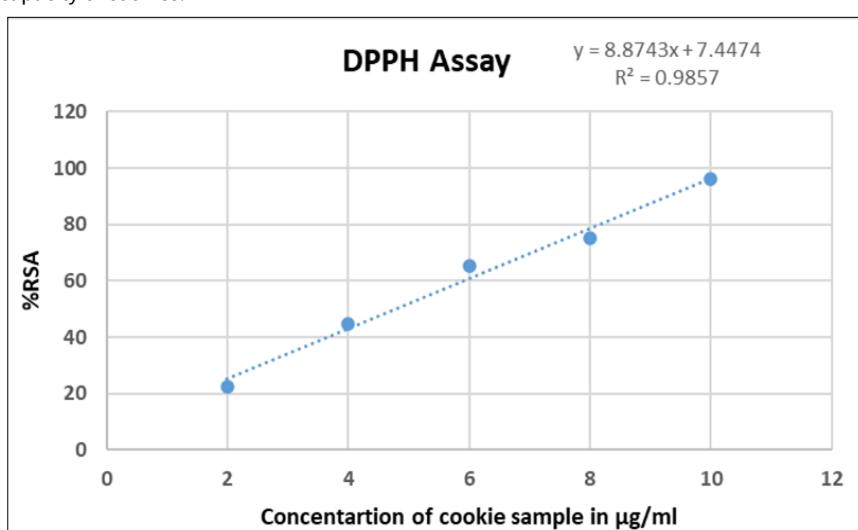

Fig. 5. Nutritional analysis for cookies samples (C0, C1, C2).

Fig. 6. Sensory analysis for cookies sample (C0, C1, C2).

Fig. 7. Total antioxidant capacity of cookies.

Fig. 8. Antioxidant concentration for cookies.

Free radical scavenging activity by DPPH assay

At various concentrations, the cookie samples were evaluated for their antioxidant capacity against different concentrations. Maximum permitted radical scavenging activity was noted at 10 μg , reaching to 95.99 %. The lowest activity noted was 22.41 % at 2 μg (Table 4 & Fig. 8). Free radical scavenging activity increased with an increase in sample addition. Half maximal inhibitory concentration, i.e. IC_{50} value, was noted at 5.5 $\mu\text{g}/\text{mL}$. The above results gave a clear-cut idea about the significant antioxidant properties and the cookie samples C1 and C2 can be considered as a better dietary source of antioxidants.

Conclusion

We can conclude that cookies were fortified and developed with *S. oleracea*, *M. oleifera* leaf powder and other ingredients. Both leaf powders can be openly chosen and can be added as a value-adding ingredient and the main source to enhance the nutrients (vitamins & minerals) in sample food preparation. These leaf powders acquired substantial site concerning cost effectiveness, health attributes and quality production technology. Sample cookies prepared using these powders retain natural flavour and colour. In addition to the above results, these leaf powders can also cast off in supplementary baked products in diverse ratios to enhance the nutritional values like proteins, minerals and dietary fibres, which are beneficial to health.

Acknowledgements

The authors are thankful to the Administrative authority and Chairman of Department of PG Studies and Research in Food Technology, Kuvempu University, Shankaraghata, Karnataka; College of Agriculture, Navile, Shivamogga and Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Innovation Campus for providing the facilities to carry out the research work and for supporting the writing and communication of the original research article.

Authors' contributions

MIU carried out the laboratory research work. THAK analyzed the statistical data. MA assisted during the research work. UPS designed the study, critically evaluated the generated data, wrote the manuscript and handled communication. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest: Authors do not have any conflict of interest to declare.

Ethical issues: None

References

1. Akram S, Ahmed A, Afzaal M, Saeed F, Ikram A, Asghar A, et al. Supplementation of chickpea flour and spinach leaves powder in Nutri bars to overcome iron deficiency in young females. *Int J Food Prop.* 2023;26(2):3390–406. <https://doi.org/10.1080/10942912.2023.2283382>
2. Thapa K, Poudel M, Adhikari P. *Moringa oleifera*: A review on nutritional properties and prospects in the context of Nepal. *Acta Sci Agric.* 2019;3(11):47–54. <https://doi.org/10.31080/ASAG.2019.03.0683>
3. El Feky WZ, Galal W, Mohamed E. Preparation and evaluation of high nutrition value crackers enriched with leafy vegetables. *Food Technol Res J.* 2023;2(3):111–22. <https://doi.org/10.21608/ptrj.2023.334169>
4. Emelike NJT, Uwa FO, Ebere CO, Kiin-Kabari DB. Effect of drying methods on physicochemical and sensory properties of cookies fortified with *Moringa oleifera* leaves. *Asian J Agric Food Sci.* 2015;3 (4):361–7.
5. Kilickan A, Ücer N, Yalçın I. Physical properties of *Spinacia oleracea* seed. *Afr J Biotechnol.* 2010;9(5):648–55. <https://doi.org/10.5897/AJBO9.1616>
6. Dachana KB, Rajiv J, Indrani D, Prakash J. Effect of dried *Moringa oleifera* leaves on rheological, microstructural, nutritional, textural and organoleptic characteristics of cookies. *J Food Qual.* 2010;33 (5):660–77. <https://doi.org/10.1111/j.1745-4557.2010.00346.x>
7. Morelock TE, Correll JC. Spinach. In: *Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae and Cucurbitaceae*. New York: Springer; 2008. p. 189–218.
8. Lee HJ, Joo NM. Optimization of germinated brown rice cookie with added spinach powder. *Korean J Food Cook Sci.* 2010;26(6):707–16.
9. Sheetal KR, Singh S, Prasad S, Mina U, Datta SP, Anand A. Physiological and biochemical responses of vegetables to chromium. *Biochem Cell Arch.* 2015;15:421–5.
10. Galla NR, Pamidighantam PR, Karakala B, Gurusiddaiah MR, Akula S. Nutritional, textural and sensory quality of biscuits supplemented with *Spinacia oleracea*. *Int J Gastronomy Food Sci.* 2017;7:20–6. <https://doi.org/10.1016/j.ijgfs.2016.12.003>
11. Sjamsuddin IN, Alfianita D, Surtimanah T. Supplementary food for anemia and chronic energy deficiency in pregnant women: A literature review. *J Publ Kesehat Masy Indones.* 2022;9(1):21. <https://doi.org/10.20527/jpkmi.v9i1.12892>
12. Aggarwal R, Bains K. Spices in culinary art. In: *Handbook of Spices in India: 75 Years of Research and Development*. Singapore: Springer Nature; 2023. p. 917–54. https://doi.org/10.1007/978-981-19-3728-6_16
13. Yabo S. Effects of drying methods on nutrient contents of *Moringa oleifera* leaves. 2015.
14. Oni RA. The role of organic matrices in the contamination and survival of *Salmonella* spp. on baby spinach leaves. College Park: University of Maryland; 2012.
15. Snart JE. Oranges: Safe methods to store, preserve and enjoy. UCANR Publ. 2006. <https://doi.org/10.3733/ucanr.8199>
16. Garvey E. Understanding aroma and flavour formation in baked confectionery products as influenced by sugar and fat. 2020.
17. Sember B. *Cookie: A love story*. Sember Resources; 2012.
18. Agba TD, Yahaya-Akor NO, Kaur A, Ledbetter M, Templeman J, Wilkin JD, et al. Flour functionality, nutritional composition and in vitro protein digestibility of wheat cookies enriched with decoloured *Moringa oleifera* leaf powder. *Foods.* 2024;13(11):1654. <https://doi.org/10.3390/foods13111654>
19. Otter DE. Standardised methods for amino acid analysis of food. *Br J Nutr.* 2012;108(S2):S230–7. <https://doi.org/10.1017/S0007114512002486>
20. Sarkar M, Sah A, Agarwal P, Joshi S, Hait S. Quantification tests for carbohydrate detection. In: *Practical Biochemistry*. Bentham Science; 2024. p. 32–54. <https://doi.org/10.2174/9789815165852124010006>
21. Katunzi-Kilewela A, Fortunatus RM. Sensory profile, acceptability and preference mapping of cassava-chia composite porridges. *Appl Food Res.* 2022;2(1):100038. <https://doi.org/10.1016/j.afres.2021.100038>

22. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity via phosphomolybdenum complex formation. *Anal Biochem.* 1999;269(2):337–41. <https://doi.org/10.1006/abio.1999.4019>
23. Sumczynski D, Bubelova Z, Sneyd J, Erb-Weber S, Mlcek J. Total phenolics, flavonoids, antioxidant activity, fibre and digestibility in non-traditional wheat flakes and muesli. *Food Chem.* 2015;174:319–25. <https://doi.org/10.1016/j.foodchem.2014.11.065>

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonpublishing.com/journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, NAAS, UGC Care, etc
See https://horizonpublishing.com/journals/index.php/PST/indexing_abstracting

Copyright: © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (<https://creativecommons.org/licenses/by/4.0/>)

Publisher information: Plant Science Today is published by HORIZON e-Publishing Group with support from Empirion Publishers Private Limited, Thiruvananthapuram, India.