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Introduction 

The combination of growing population and declining nutrient 

levels in diets has driven the rising popularity of microgreens, 

valued for their quick growth and rich nutrient profile (1). 

Microgreens, also known as “vegetable confetti” can thus be 

described as young seedlings that have germinated, featuring fully 

developed and healthy cotyledons along with the initial formation 

of one or two true leaves (2). Typically, microgreens can be grown 

from the seeds of nearly any vegetable, herb or grain species, with 

the most commonly used being from the Amaranthaceae, 

Apiaceae, Asteraceae and Brassicaceae families (3) except those 

that are toxic at seedling stage, as in the case of Solanaceae (4). 

These functional microgreens range from 2 to 8 cm in height and 

are characterized by intense sensory qualities such as texture, 

flavor, appearance, aroma, exotic colors and high levels of various 

phytonutrients (5). Microgreens are typically cultivated in 

greenhouses using growing flats filled with potting mixes, peat-

based mixes, hydroponic media or even recycled textile fibers (6). 

Microgreens are phenologically between sprouts and baby greens 

and should be harvested without roots 10 to 14 days after seeding 

(7, 8). Since microgreens are packed with vitamins, minerals, 

antioxidants and have anti-inflammatory properties, they are 

termed “functional foods” or “superfoods” (9-11). 

 Microgreens can be grown at home using potting mix or 

capillary mats, as well as produced on a large scale utilizing 

advanced controlled environment agriculture (CEA) technologies 

using IoT (Internet of Things) (12-15). Microgreens can also be 

cultivated in soilless media such as hydroponics (16, 17), aeroponics 

(18) and space farming (19). Microgreens which are abundant in 

bioactive compounds can be grown in space to maintain the 

balanced diet of astronauts (20, 21). However, the limitations of 

microgreens in space farming include their inability to produce 
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Abstract  

The increasing global demand for nutrient-dense, functional foods has fuelled interest in microgreens, which are young, edible seedlings 
harvested at the cotyledon or first true leaf stage. These miniature greens are valued for their vibrant appearance, concentrated flavors 

and superior nutritional content, including high levels of vitamins, minerals, antioxidants and secondary metabolites. This review 

discusses recent developments in microgreen cultivation, including advances in soilless substrates, controlled environment agriculture, 

seed density optimization, seed treatments and fertilization strategies. Substrates such as cocopeat, peat moss and jute fiber, along with 
hydroponic and aeroponic systems, have been shown to enhance yield and nutrient concentration. Manipulating light quality, particularly 

with red and blue LED combinations, significantly improves plant growth and phytochemical content. Seed treatments, including nutrient 

biofortification and disinfection, further promoted germination, nutrient uptake and safety. Although microgreens generally contain lower 

levels of anti-nutritional factors like phytic acid compared to their mature counterparts, these compounds can still impact mineral 
bioavailability. However, research demonstrates that targeted biofortification can effectively reduce such limitations. This review provides 

a comprehensive overview of the production techniques, nutritional potential and safety considerations of microgreens, highlighting their 

relevance as a sustainable and health-promoting food source. 
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Abbreviation: POD- Guaiacol peroxidase, CAT- Catalase activity, GR- Glutathione reductase, SOD- Superoxide dismutase, DPPH- 2,2-
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NRAMP- Natural Resistance-Associated Macrophage Protein, YSL- Yellow stripe-like, CEA- Controlled environment agriculture, LED- Light 
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progeny, which leads to high seed consumption and their 

comparatively low biomass accumulation and oxygen generation 

when compared with larger plants (22, 23). Several techniques are 

involved in improving the yield and quality of microgreens such as 

presowing seed treatments, varying seed densities, fertilizer 

application, altering the combination and intensity of light, 

biofortification of several nutrients, preharvest treatments and post-

harvest practices to improve shelf life (24-32). Furthermore, 

microgreens have been shown to be an excellent educational tool 

for enhancing nutrition awareness and for promoting indoor 

farming practices within local communities (33, 34). 

 Despite their numerous benefits, microgreens present 

several challenges for growers and distributors due to their 

extreme fragility and short shelf life (35). The short shelf life is 

attributed to enhanced respiration, which likely triggered higher 

ROS production, resulting in the decline of bioactive compounds 

(36). Microgreens are challenging to store due to factors such as 

rapid postharvest transpiration decay, tissue damage, leakage of 

nutrient-rich exudates, a high respiration rate, a high surface area 

to volume ratio and their delicate leaves that wilt easily (37). 

Further, the production of indoor microgreens using soilless 

substrates, may also associated with pathogens known as 

produce-associated pathogens (38). To date, there are no 

commodity specific guidelines for microgreens (39). Since low 

shelf life was directly associated with pathogen attack, proper 

training regarding production of microgreens in soilless media, 

disinfection of seeds, testing of irrigation water, proper storage 

and packing of microgreens should reach the microgreen 

growers (40). Thus, this review focuses on recent studies and 

trends in microgreen production, different substrates, seed 

treatments, storage, health benefits and food safety measures.  

Growing media and growing conditions for microgreen 

production  

Microgreens are preferably grown in a soilless substrate. This 

soilless cultivation can alter the nutrient uptake of plants and 

improve the nutritional quality to some extent (41). Microgreens 

can be grown in natural substrates such as cocopeat (41), jute 

fiber (42), agave fiber (12), peat moss (43, 44) and the synthetic 

alternatives such as capillary mat (12) and cellulose sponge (45). 

Since cocopeat retains water efficiently and has a low bulk 

density, it is best suited for use as a substrate (46). Various 

microgreens such as flaxseed, radish sango, broccoli, cabbage, pak 

choi, beetroot and red amaranthus have been grown in two different 

substrates, soil and cocopeat and it was found that cocopeat 

outperformed soil (47). Similarly, cocopeat supplemented with 

coconut water provided the best growth and yield for 

hydroponically cultured microgreen broccoli, followed by planting 

media such as rockwool, husk charcoal and sand (48). Six different 

microgreens grown in cocopeat showed increased growth 

compared to soil and water (49). Apart from growth, the amount of 

sulforaphane in red cabbage microgreens increased twofold with 

the use of cocopeat and young coconut water (50). The combination 

of soil and cocopeat substrate, when paired with different types of 

LED lighting, led to an increase in both the yield and the flavonoid 

content of Ethiopian kale microgreens (51). The limitation of 

cocopeat is that it has high potassium levels, which can cause 

toxicity and negatively impact crop production (52).  

 Peat moss provided ideal physicochemical conditions, 

that promote growth rate and both the fresh and dry yield of 

microgreens (12). Peat moss often promotes nitrate accumulation 

in microgreens, particularly in brassicaceous varieties known as 

nitrate hyperaccumulators. To minimize consumer exposure to 

nitrates, nitrate deprivation practices should be implemented for 

microgreens grown on such substrates (12). The major 

disadvantage of growing microgreens in peat moss is that it is 

susceptible to microbial contamination (6).  

 Jute fiber, an inexpensive and renewable material, can 

also be used as the substrate for microgreen cultivation. When 

grown on jute fiber, rocket microgreens achieved the highest 

yield of 3201 g/m², surpassing those grown on coconut fiber and 

vermiculite substrates (53). Similarly, green mustard (Brassica 

nigra) grown on jute fiber exhibited slightly higher carotenoid 

levels, while the phenol and chlorophyll levels remained 

unchanged (42).  

 Recently, commercial microgreen production has 

transitioned to hydroponics, since it enhances plant growth, 

biomass production, yield and chemical composition, making it 

ideal for earlier harvesting (17). The cultivation of five different 

microgreens including four Brassica and one Raphanus in a 

hydroponic pad positively affected the fresh and dry weight of the 

shoots as well as their mineral nutrient content (54). Growing 

microgreens in vertical hydroponic system has been reported to 

enhance both the germination rate and harvest compared to 

other substrates (55). Besides all these advantages, it is crucial to 

consider the absence of a soil microbiome in hydroponic 

systems as the plants become susceptible to harmful spoilage by 

microorganisms (56, 57). 

 Aeroponic techniques have demonstrated commercial 

success in the production of microgreens (58). The modular 

automated aeroponic growing system was developed by Richter 

and although aeroponics is more expensive to set up when 

compared to traditional growing methods, its low operational 

costs can allow it to pay for itself within a year (59). 

 Controlled Environment Agriculture (CEA) is an 

increasingly popular production system that enhances food 

security, environmental stewardship and resource efficiency, 

with a recent report projecting the global CEA market to grow at 

an annual rate of 18.7 % and reach $172 billion by 2025 (60). 

Microgreens are particularly well-suited for CEA production due 

to their high yield, rapid growth, efficient use of space and their 

role in feeding growing urban populations (9, 61). 

 One of the most crucial interventions in CEA is illumination 

treatment (62), as light duration and intensity significantly influence 

nutrient accumulation in microgreens (63). The mechanism by 

which LEDs influence plant growth and quality involve the emission 

of photons that activate specific photoreceptors, such as 

phytochrome and cryptochrome, resulting in changes in leaf area, 

thickness, stem length and metabolite production (64). A mixed red-

blue light, particularly with a 5:1 red-to-blue ratio, proved 

advantageous for broccoli microgreens, enhancing their 

hypocotyl length, fresh weight and edible rate (65). Brassicaceae 

microgreens grown under blue LED lighting exhibited the highest 

ascorbic acid content (112.70 mg·100 g fw-1), total phenolics 

(412.39 mg GAE·100 g fw-1) and antioxidant capacity (2443.62 

µmol TE·L-1) compared to those grown under red and 50:50 blue-

red LED spectra (66). This is attributed to the effective absorption 

of red and blue light by photosynthetic pigments, which 

generally outperforms other regions of the spectrum in 
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promoting plant growth (64). However, the effect of red and blue 

LED light on microgreens is species-dependent, as mustard 

microgreens showed decreased nutritional value with varying 

blue-red light ratios, while kale microgreens were unaffected 

(62). A similar result was observed when a 30 % blue light supply 

led to maximal anthocyanin accumulation in arugula, kale and 

red cabbage, but not in mustard (67). Furthermore, the addition 

of green light at an irradiance of 340 µmol m-2 s-1 within the red 

and blue light environment enhanced growth (measured by dry 

weight biomass) and boosted the accumulation of bioactive 

phytochemicals in some of the microgreen species (68). 

Optimum seed density for microgreen growth 

Seed density is a key factor for achieving optimal growth 

outcomes from both an economic and commercial perspective 

(69). In addition to the substrate, seed density also significantly 

affects the morphological, nutritional and phytochemical 

properties of microgreens (70). Although seeding density is 

essential, considering the landrace and harvest date is equally 

important in microgreen production planning due to their 

significant influence on both yield and quality (25). In kale, rapini 

and cress microgreens, varying seed densities (3.5, 4 and 4.5 

seeds·cm-2) showed that the highest density (4.5 seeds·cm-2) 

produced a 19 % higher yield compared to the lowest density 

(3.5 seeds·cm-2), with kale achieving the highest yield, surpassing 

rapini by 0.44 kg·m-2 and cress by 0.97 kg·m-2 (25). Similarly, 

microgreens such as basil, carrot and blends of mild and radish 

exhibited increased fresh weight with higher seed density (71). 

Seed density is directly influenced by the seed size of different 

microgreen species, with the optimal seed density being three 

seeds/cm² for C. intybus and L. sativa, while B. oleracea 

genotypes requires four seeds/cm² for optimal growth (72). The 

optimum seed density for microgreen production also depends 

on the spectrum of artificial light provided. The optimal seed 

density for red beet microgreens, tested at 50, 150, 300 and 450 

g/m² under white and purple spectrum, was 300 g/m² in the 

white spectrum, while fresh weight continued to increase at 450 

g/m² under the purple spectrum (73). However, microgreen yield 

increases with higher seeding densities, exceeding the optimum 

density can reduce marketable quality and increase the risk of 

fungal infections, negatively affecting both quality and 

productivity (72, 74). Higher seeding density leads to an excessive 

number of plants, causing undesirable elongated shoots due to 

increased congestion and competition (72). This also hinders air 

circulation, creating conditions favorable for fungal growth (75). 

Brassicaceae microgreens sown at high seed densities are 

susceptible to pythium root rot, a disease caused by fungal 

species such as Pythium aphanidermatum and Pythium 

dissotocum (76). In addition, the economics of seed density raise 

concerns due to the high cost of seeds, making it a significant 

consideration for those involved in cultivation (71). 

Seed treatments for enhanced growth of microgreens 

Fast and uniform germination is essential for the successful 

growth and production of microgreens (77). This uniform and 

optimal germination can be attained through seed pre-sowing 

treatments, which enhance germination rate, speed and seed 

vigour (78). Additionally, the nutritional composition of 

microgreens is influenced by seed treatment (77). Dill, carrot, 

parsley and celery microgreen seeds treated with four fertilizers 

Bioforce, Humustim, Biotor and Algreen, showed the best 

performance with Bioforce, which enhanced germination, 

increased dry matter content, elevated total sugar levels and 

influenced plastid pigment concentration (79). Apart from plant 

biometric traits, the chlorophyll and carotenoid content indices 

were significantly higher in pea microgreens whose seeds were 

soaked in a 10 % solution of Chlorella vulgaris algae before sowing 

and sprayed with the same solution during growth (80). 

Presoaking and growing barley and wheat microgreens in organic 

soil resulted in the highest levels of bioactive compounds, 

including carotenoids, phenolics, flavonoids, vitamin C and 

anthocyanin, while also enhancing antioxidant enzymes (POD, 

CAT, GR) and antioxidant activities (DPPH, ABTS, NSA and SOD-like 

activity) in microgreen (81). Radish microgreens seeds treated with 

a 100 ppm salicylic acid solution showed an increase in protein 

content, total antioxidants, phenols and flavonoids, while also 

displaying a notable reduction in oxalic acid content, even under 

salt stress (82). Seed treatments can also be intentionally used 

for micronutrient enhancement through seed biofortification, as 

this approach is simple, practical, low-cost and economically 

viable, improving seed and crop quality in resource-limited areas 

(83). Soaking seeds in a 200 ppm ZnSO4 solution led to 

significantly higher Zn biofortification in both pea (126.1 %) and 

sunflower microgreens (229.8 %), but it caused an antagonistic 

effect on the accumulation of other micronutrients (Fe, Mn and 

Cu) only in pea microgreens (84). This antagonistic effect for peas 

was due to the competition for common transporters (ZIP, 

NRAMP, YSL), though the extent of such antagonism depends on 

crop tolerance to excess Zn (85-87). The five microgreen (mizuna, 

arugula, cress, green basil and radish) seeds when soaked with 2 

mg Se/L sodium selenate resulted in the highest selenium 

content (17.507 µg/g fresh weight) in mizuna microgreens, along 

with increased chlorophyll a content and nutrient levels (88). 

Certain seed treatment techniques such as seed sanitization, can 

play a crucial role in minimizing the microbial load on seeds used 

for growing microgreens (89). For example, 60 °C heat treatment 

for 20 hr, combined with a 10 min soak of amaranth, carrot seeds 

in 3 % H2O2, significantly reduced Enterobacteriaceae, coliforms, 

molds and yeasts, without adversely affecting germination rates 

(90). Moreover, Brassicaceae seeds contaminated with E. coli 

O157:H7 were sanitized through a seed treatment process using 

55 °C warm water combined with ultrasound for 5 min (91). 

Some of the recent seed treatment techniques, including high-

pressure processing, ultrasound, UV light, non-thermal plasma 

and microwave radiation, are also being used to enhance the 

quality of microgreens paving the way for future research (92). 

Fertilization impact on yield and growth of 

microgreens 

Fertilization management plays a pivotal role as a pre-harvest 

factor, significantly influencing the overall quality of the produce 

by ensuring the optimal nutrient supply (45) for fast growth and 

high yield of microgreens (77). Although chemical fertilizers are 

unnecessary for microgreens, as the seeds supply sufficient 

nutrients for the developing embryo, a small amount of fertilizers 

can be applied to support the growth of microgreens with longer 

growing periods such as carrot, dill and celery (93). Fertilization 

with a general-purpose soluble fertilizer (20-20-20 with 

micronutrients) at 100 mg L-1 nitrogen increased fresh shoot 

weight and enhanced nutrient concentrations in ten microgreens. 

However, calcium, magnesium and manganese levels decreased, 

likely due to the dilution of elements absent in the fertilizer (77). 
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Nanofertilizer based on superparamagnetic iron oxide 

nanoparticles (SPIONs) at the rate of 667 µg L-1 has been shown to 

boost biomass, promote root growth and enhance iron absorption 

in onion microgreens compared to traditional ionic iron 

treatments (94). Calcium fertilization at 5 mM and 10 mM in radish 

microgreens led to the highest percentage of shoots (48.7 %), with 

increased average hypocotyl length (3.331 cm) and cotyledon 

surface area (1.294 cm²) per plant, but exceeding 20 mM Ca 

resulted in toxic effects such as yellowing of cotyledons, 

accumulation of calcium in shoots and reduced microgreen 

growth (95). In contrast, the absence of nutrient supplementation 

imposed abiotic stress, which led to a significant increase in lutein, 

β-carotene, total ascorbic acid and total anthocyanins in rocket 

(Diplotaxis tenuifolia) microgreens, while it had no effect on 

secondary metabolites in Brussels sprout (Brassica oleracea var. 

gemmifera) microgreens (43). The application of NPK controlled-

release fertilizer to basil microgreens positively influenced plant 

growth by significantly enhancing various parameters, including 

height, total fresh mass, total dry mass, leaf area index and specific 

leaf area index, compared to the control (96). A single application 

of 120 mL of water-soluble 20 N-8.7 P-16.6 K fertilizer increased 

fresh shoot height and macronutrient concentrations in four 

Brassica microgreens and one Raphanus microgreen (77). 

However, crop-specific fertilizer requirements for microgreen 

production remain unclear (77). 

Suitable harvest and postharvest practices for maintaining 

the microgreen quality 

 Harvesting and postharvest handling conditions play a 

significant role in determining the overall quality of microgreens 

(97). The time required to harvest microgreens after planting 

varies based on the type of seed and species chosen, typically 

ranging from 2 to 3 weeks (98). Microgreens are ready to harvest 

when their cotyledonary leaf is fully extended, with the ideal 

harvest time determined by a combination of their height and 

leaf area (99). It should be harvested without roots and seed 

coats, by cutting the base of the seedling, just above the lower 

hypocotyl, close to the substrate surface (2, 74). The timing of 

harvest also influenced the dry matter content, which can 

positively affect post-harvest outcomes, as higher dry weight has 

been shown to prolong the shelf life of microgreens (25). 

Harvested microgreens are extremely perishable and need to be 

washed and cooled promptly to maintain their freshness (100). 

During post-harvest storage, microgreens exhibit signs of 

browning, physiological breakdown, weight loss, microbial 

growth, biochemical changes and overall quality decline (101). 

The limited marketing potential of microgreens is due to their 

short lifespan and rapid senescence makes it crucial to improve 

production and storage conditions to enhance their post-harvest 

quality, shelf life and safety (32). The post-harvest practice of dipping 

broccoli microgreens in a 50 mmol·L-1 calcium lactate solution 

proved effective in extending their shelf life and minimizing tissue 

electrolyte leakage (102). Sunflower microgreens sprayed with citric 

acid and ascorbic acid (2.5 g/L each) exhibited an extended shelf life 

of up to 16 days. They retained the highest levels of total chlorophyll 

and ascorbic acid while maintaining the lowest microbial load by the 

end of storage (103). Some preharvest treatments can also influence 

the post-harvest quality of microgreens (104). The reduction in 

glucosinolates in broccoli microgreens during postharvest storage, 

primarily caused by myrosinase-catalyzed glucosinolate 

breakdown, may be delayed by pre-harvest treatments with UVB 

(0.27 Wh/m²) and 10 mM CaCl2 spray, which reduce myrosinase 

gene expression (105). Red:blue LED illumination during 

microgreen growth coupled with post-harvest UV-C irradiation for 

10 min reduces weight loss in radish microgreens after 12 days of 

storage by potentially forming a thin dried layer on the surface, 

which slows water loss (106). Similarly, 8 hr of red light (35 μM m-2 s-1) 

improves the postharvest quality of pak-choi microgreens by 

suppressing the expression of genes linked to chlorophyll 

degradation and senescence, while enhancing the expression of 

genes involved in vitamin C biosynthesis (107). A study reported 

that when chlorinated water was sprayed during the growth of 

radish microgreens, it reduced Salmonella populations by 1.1 log 

CFU/g and E. coli O 157: H 7 populations by 0.9 log CFU/g (108). In a 

comparison of pre-harvest spray treatment and post-harvest dip 

coating using Aloe vera gel for storing radish microgreens at 5 °C, 

the Aloe vera spray coating created an initial edible layer that 

helped reduce physiological weight loss, lower microbial counts 

and preserve higher ascorbic acid levels (109). 

Packing and Storage conditions for prolonged shelf life 

of microgreens 

The shelf life of microgreens after harvest is influenced by several 

factors, including storage temperature, humidity levels, the type of 

packaging film used and the initial amount of microbial load (110). In 

several developing and underdeveloped regions, packaging 

microgreens remains a major challenge, as maintaining sufficiently 

low temperatures from harvest until consumption is difficult (111). 

Washing microgreens before packaging lowers the initial bacterial 

count, but it also creates a humid environment that fosters microbial 

growth, making it essential to remove excess moisture to prevent 

this (37). One of the most effective ways to extend the shelf life of 

microgreens is by modifying the atmosphere inside the packaging 

(109). In this method, oxygen is substituted with nitrogen or carbon 

dioxide, thereby reducing oxidative reactions and slowing down 

metabolic processes (112). Additionally, storing microgreens in a low 

temperature environment slows down the majority of metabolic 

reactions, effectively maintaining higher levels of antioxidant activity 

and extending freshness (36). Tartary buckwheat microgreens, when 

stored at 5 °C with low-density polyethylene (LDPE) packaging and 

treated with a chlorine dioxide ClO₂ + citric acid wash, inhibit quality 

deterioration and extend the shelf life of microgreens (113). Similarly, 

chlorophyll (42.12 

mg/100 g FW), along with improved antioxidant activity (44.78 % 

inhibition) (32). Microgreens packaging should vary based on 

transportation needs. While macro-perforated PET clamshell (PET-

CS) packaging has proven superior to LDPE self-seal bag (LDPE-SSB) 

for storing radish and roselle microgreens, PET-CS is more suitable 

as rigid packaging for long-distance transport. However, LDPE-SSB 

serves as a cost-effective option for shorter-distance markets and 

sturdier microgreens (109). 

Economic viability of microgreens 

 Microgreens are economically viable because they can be 

produced year-round, unlike traditional crops (114). Their 

cultivation is often carried out by small-scale enterprises, as 

production does not require sophisticated or high-tech equipment 
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(115). In addition, microgreens are frequently marketed close to 

the site of production, supporting sustainable short supply chains. 

Such localized distribution reduces transportation distances, 

minimizes quality losses during handling and ensures proximity to 

the target market (116). Furthermore, due to their relatively short 

growth cycle, microgreens typically do not require pesticide 

application. The economic feasibility of microgreen production 

has been further demonstrated in diverse systems, including 

vertical farming, aquaponics and urban rooftop farming (117-119). 

Nutrient profile of microgreens 

Microgreens are primarily associated with rich sources of both 
micronutrients and macronutrients (4, 5) (Table 1). Their rich 

concentrations of essential nutrients make them ideal for health-

supporting diets, as consuming even small amounts can help 

prevent nutrient deficiencies and chronic diseases that are 

prevalent in today's world (129). The nutrient composition and yield 

of microgreens can be impacted by cultural practices, including pre-

sowing seed treatments, seeding rates and fertilization, as well as by 

microenvironmental factors like temperature, light and growth 

media (77) (Fig. 1). Purple mint microgreens, when exposed to short-

term red LED light of 638 nm, showed enhanced anthocyanin and 

ascorbic acid levels while reducing nitrate content (130). The mineral 

concentration in spinach microgreens increased when a nutrient 

solution was supplied for 10 days (129). Under high-temperature 

conditions, broccoli microgreens exhibited greater accumulation of 

Hg, As, Co, Cr, Na, K, Ni, Se, Pb and Sn, while showing decreases in P, 

Mg, Ca, Mn, Cu and Cd (131). 

Secondary metabolites of microgreens  

Secondary metabolites are not essential for immediate survival 

but play a crucial role in long-term health, disease prevention 

and overall well-being (132). In general, microgreens are rich in 

secondary metabolites (1) (Table 2). Enhancing the production of 

secondary metabolites can lead to improved nutritional value 

and better sensory qualities. This can be achieved by modifying 

agronomic practices such as seed selection, growing media, light 

quality and nutrient biofortification, ultimately resulting in 

nutrient-enriched produce (97). 

Anti-nutritional factors of microgreens  

Anti-nutritional factors are compounds commonly present in 

various food sources that hinder the body's ability to absorb and 

utilize nutrients effectively, thereby reducing the overall 

nutritional value of the food (140). The major anti-nutritional 

factors are oxalates, tannins and phytic acid. 

 Oxalates interfere with calcium and magnesium metabolism 

and bind with proteins to form complexes that hinder peptic 

digestion (141). Microgreens generally contain lower oxalate levels, 

as shown in the previous studies which reported 14.3 mg/100 g FW in 

radish microgreens and 68.2 mg/100 g FW in fennel microgreens, both 

lower compared to their mature counterparts (109). Similarly, roselle 

and spinach microgreens contained approximately six-fold and 

Table 1. Nutrient composition of microgreens  

Category Component Range / Content Microgreen Examples References 
Macronutrients Potassium (K) 176-416 mg/100 g FW Brassicaceae, Sunflower, Pea, Bean, Red beet (120, 121) 

  Magnesium (Mg) 45.96-86.83 mg/100 g FW Black radish, Broccoli, Pea, Bean, Red beet, 
Sunflower 

(121) 

  Calcium (Ca) 8.76 mg/g DW Romaine lettuce (122) 

  Phosphorus (P) 16.7-39.8 μg/g DW Red amaranth, Pea, Broccoli, Red beet (123) 

Micronutrients Iron (Fe) 14 mg/kg FW Lettuce (124) 

  Zinc (Zn) 31.92-129.78 µg/100 g FW Black radish, Broccoli, Pea, Bean, Red beet, 
Sunflower 

(121) 

  Copper (Cu) 2.69-2.72 mg/kg FW Water spinach, Bottle gourd (125) 
  Manganese (Mn) 4.84-14.22 mg/100 g DW Nigella, Safflower, Camelina (126) 

Vitamins Ascorbic Acid (Vitamin C) 51.10 mg/100 g FW Beet (127) 

  Vitamin E (α/γ-tocopherol) α: 34.5-47.7, γ: 8.3-19.7 mg/100 g FW  Red beet, Pea, peppercress, radish (128) 

  Phylloquinone (Vitamin K1) 2.8-3.3 μg/g FW Red cabbage, Pea, Red sorrel (128) 

 

Fig. 1. Production and quality traits of microgreens. 
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sixteen-fold less oxalate respectively, than their mature leaves (142). 

 Tannin is a bitter, astringent plant-derived polyphenol that 

can bind to or precipitate proteins, as well as other organic 

compounds such as amino acids and alkaloids (141). However, 

tannin content is lower in microgreens since it is higher in raw 

seeds and decreases once the seeds start germinating (143, 144).  

 Phytic acid carries negative charge, allowing it to bind 

with positively charged metal ions such as zinc, iron, magnesium 

and calcium. This interaction forms complexes that reduce the 

bioavailability of these minerals by limiting their absorption in the 

body (145). Phytic acid levels in microgreens are generally low and 

within permissible limits, though they vary among species. The 

phytic acid content of six microgreens such as mung bean, lentil, red 

radish, pearl millet, mustard and red cabbage was studied, with 

pearl millet microgreens showing the highest content (0.304 g/100 g 

fresh weight) and red radish microgreens the lowest (0.156 g/100 g 

FW) (99). Similarly, the phytic acid content in beetroot, red 

amaranthus, radish sango, cabbage, broccoli, flaxseed and pak choi 

microgreens was found to range from 145.32 to 507.46 mg/100 g FW, 

with the highest concentration in red amaranthus and the lowest in 

radish sango microgreens (146). 

 However, the phytic acid content of microgreens was 

lower compared to their mature counterpart as reported in earlier 

studies, showing that fenugreek and broccoli microgreens had 

lower phytic acid content compared to their mature forms, which 

contributed to enhanced iron absorption (147). Biofortification 

strategies have been shown to mitigate the negative effects of 

phytic acid. Soaking pea and sunflower seeds in high 

concentrations of ZnSO₄ and ZnO solutions significantly reduced 

the phytic acid-to-zinc molar ratio, suggesting improved zinc 

bioaccessibility in the resulting microgreens (84). 

 

Conclusion 

Microgreens offered an effective and sustainable approach to 

improving human nutrition, particularly in the context of rising 

population pressures and limited agricultural space. Their fast 

growth cycle, high nutrient density and compatibility with urban 

and controlled-environment farming systems made them a 

valuable addition to modern food production. Advances in 

growing substrates, lighting conditions, seed treatments and 

fertilization contributed significantly to improving both the yield 

and nutritional quality of microgreens. In addition, biofortification 

and sanitation practices enhanced their safety and nutrient 

bioavailability. Despite these advantages, challenges remained in 

standardizing cultivation protocols, developing cost-effective 

biodegradable substrates, reducing anti-nutritional factors while 

enhancing biofortification of key micronutrients and improving 

postharvest technologies including edible coatings and modified 

atmosphere packaging, to extend shelf life without nutrient loss. 

Ongoing research and technological advancements were essential 

to fully harness the potential of microgreens for improving public 

health and supporting global food security. 
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