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Abstract

The increasing global demand for nutrient-dense, functional foods has fuelled interest in microgreens, which are young, edible seedlings
harvested at the cotyledon or first true leaf stage. These miniature greens are valued for their vibrant appearance, concentrated flavors
and superior nutritional content, including high levels of vitamins, minerals, antioxidants and secondary metabolites. This review
discusses recent developments in microgreen cultivation, including advances in soilless substrates, controlled environment agriculture,
seed density optimization, seed treatments and fertilization strategies. Substrates such as cocopeat, peat moss and jute fiber, along with
hydroponic and aeroponic systems, have been shown to enhance yield and nutrient concentration. Manipulating light quality, particularly
with red and blue LED combinations, significantly improves plant growth and phytochemical content. Seed treatments, including nutrient
biofortification and disinfection, further promoted germination, nutrient uptake and safety. Although microgreens generally contain lower
levels of anti-nutritional factors like phytic acid compared to their mature counterparts, these compounds can still impact mineral
bioavailability. However, research demonstrates that targeted biofortification can effectively reduce such limitations. This review provides
a comprehensive overview of the production techniques, nutritional potential and safety considerations of microgreens, highlighting their
relevance as a sustainable and health-promoting food source.

Keywords: harvest; microgreens; postharvest; production; storage
Abbreviation: POD- Guaiacol peroxidase, CAT- Catalase activity, GR- Glutathione reductase, SOD- Superoxide dismutase, DPPH- 2,2-
diphenyl-1- picrylhydrazyl, ABTS- 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ZnSOs- Zinc sulphate, ZIP- ZRT IRT- like protein,

NRAMP- Natural Resistance-Associated Macrophage Protein, YSL- Yellow stripe-like, CEA- Controlled environment agriculture, LED- Light
emitting diode

Introduction greenhouses using growing flats filled with potting mixes, peat-
based mixes, hydroponic media or even recycled textile fibers (6).
Microgreens are phenologically between sprouts and baby greens
and should be harvested without roots 10 to 14 days after seeding
(7, 8). Since microgreens are packed with vitamins, minerals,
antioxidants and have anti-inflammatory properties, they are
termed “functional foods” or “superfoods” (9-11).

The combination of growing population and declining nutrient
levels in diets has driven the rising popularity of microgreens,
valued for their quick growth and rich nutrient profile (1).
Microgreens, also known as “vegetable confetti” can thus be
described as young seedlings that have germinated, featuring fully
developed and healthy cotyledons along with the initial formation
of one or two true leaves (2). Typically, microgreens can be grown Microgreens can be grown at home using potting mix or
from the seeds of nearly any vegetable, herb or grain species, with ~ capillary mats, as well as produced on a large scale utilizing
the most commonly used being from the Amaranthaceae, advanced controlled environment agriculture (CEA) technologies
Apiaceae, Asteraceae and Brassicaceae families (3) except those ~ USing loT (Internet of Things) (12-15). Microgreens can also be
that are toxic at seedling stage, as in the case of Solanaceae (4). cultivated in soilless media such as hydroponics (16, 17), aeroponics
These functional microgreens range from 2 to 8 cm in heightand ~ (18) and space farming (19). Microgreens which are abundant in
are characterized by intense sensory qualities such as texture, ~Pioactive compounds can be grown in space to maintain the
flavor, appearance, aroma, exotic colors and high levels of various balanced diet of astronauts (20, 21). However, the limitations of
phytonutrients (5). Microgreens are typically cultivated in microgreens in space farming include their inability to produce
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progeny, which leads to high seed consumption and their
comparatively low biomass accumulation and oxygen generation
when compared with larger plants (22, 23). Several techniques are
involved in improving the yield and quality of microgreens such as
presowing seed treatments, varying seed densities, fertilizer
application, altering the combination and intensity of light,
biofortification of several nutrients, preharvest treatments and post-
harvest practices to improve shelf life (24-32). Furthermore,
microgreens have been shown to be an excellent educational tool
for enhancing nutrition awareness and for promoting indoor
farming practices within local communities (33, 34).

Despite their numerous benefits, microgreens present
several challenges for growers and distributors due to their
extreme fragility and short shelf life (35). The short shelf life is
attributed to enhanced respiration, which likely triggered higher
ROS production, resulting in the decline of bioactive compounds
(36). Microgreens are challenging to store due to factors such as
rapid postharvest transpiration decay, tissue damage, leakage of
nutrient-rich exudates, a high respiration rate, a high surface area
to volume ratio and their delicate leaves that wilt easily (37).
Further, the production of indoor microgreens using soilless
substrates, may also associated with pathogens known as
produce-associated pathogens (38). To date, there are no
commodity specific guidelines for microgreens (39). Since low
shelf life was directly associated with pathogen attack, proper
training regarding production of microgreens in soilless media,
disinfection of seeds, testing of irrigation water, proper storage
and packing of microgreens should reach the microgreen
growers (40). Thus, this review focuses on recent studies and
trends in microgreen production, different substrates, seed
treatments, storage, health benefits and food safety measures.

Growing media and growing conditions for microgreen
production

Microgreens are preferably grown in a soilless substrate. This
soilless cultivation can alter the nutrient uptake of plants and
improve the nutritional quality to some extent (41). Microgreens
can be grown in natural substrates such as cocopeat (41), jute
fiber (42), agave fiber (12), peat moss (43, 44) and the synthetic
alternatives such as capillary mat (12) and cellulose sponge (45).
Since cocopeat retains water efficiently and has a low bulk
density, it is best suited for use as a substrate (46). Various
microgreens such as flaxseed, radish sango, broccoli, cabbage, pak
choi, beetroot and red amaranthus have been grown in two different
substrates, soil and cocopeat and it was found that cocopeat
outperformed soil (47). Similarly, cocopeat supplemented with
coconut water provided the best growth and vyield for
hydroponically cultured microgreen broccoli, followed by planting
media such as rockwool, husk charcoal and sand (48). Six different
microgreens grown in cocopeat showed increased growth
compared to soil and water (49). Apart from growth, the amount of
sulforaphane in red cabbage microgreens increased twofold with
the use of cocopeat and young coconut water (50). The combination
of soil and cocopeat substrate, when paired with different types of
LED lighting, led to an increase in both the yield and the flavonoid
content of Ethiopian kale microgreens (51). The limitation of
cocopeat is that it has high potassium levels, which can cause
toxicity and negatively impact crop production (52).

Peat moss provided ideal physicochemical conditions,
that promote growth rate and both the fresh and dry yield of
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microgreens (12). Peat moss often promotes nitrate accumulation
in microgreens, particularly in brassicaceous varieties known as
nitrate hyperaccumulators. To minimize consumer exposure to
nitrates, nitrate deprivation practices should be implemented for
microgreens grown on such substrates (12). The major
disadvantage of growing microgreens in peat moss is that it is
susceptible to microbial contamination (6).

Jute fiber, an inexpensive and renewable material, can
also be used as the substrate for microgreen cultivation. When
grown on jute fiber, rocket microgreens achieved the highest
yield of 3201 g/m?, surpassing those grown on coconut fiber and
vermiculite substrates (53). Similarly, green mustard (Brassica
nigra) grown on jute fiber exhibited slightly higher carotenoid
levels, while the phenol and chlorophyll levels remained
unchanged (42).

Recently, commercial microgreen production has
transitioned to hydroponics, since it enhances plant growth,
biomass production, yield and chemical composition, making it
ideal for earlier harvesting (17). The cultivation of five different
microgreens including four Brassica and one Raphanus in a
hydroponic pad positively affected the fresh and dry weight of the
shoots as well as their mineral nutrient content (54). Growing
microgreens in vertical hydroponic system has been reported to
enhance both the germination rate and harvest compared to
other substrates (55). Besides all these advantages, it is crucial to
consider the absence of a soil microbiome in hydroponic
systems as the plants become susceptible to harmful spoilage by
microorganisms (56, 57).

Aeroponic techniques have demonstrated commercial
success in the production of microgreens (58). The modular
automated aeroponic growing system was developed by Richter
and although aeroponics is more expensive to set up when
compared to traditional growing methods, its low operational
costs can allow it to pay for itself within a year (59).

Controlled Environment Agriculture (CEA) is an
increasingly popular production system that enhances food
security, environmental stewardship and resource efficiency,
with a recent report projecting the global CEA market to grow at
an annual rate of 18.7 % and reach $172 billion by 2025 (60).
Microgreens are particularly well-suited for CEA production due
to their high yield, rapid growth, efficient use of space and their
role in feeding growing urban populations (9, 61).

One of the most crucial interventions in CEA is illumination
treatment (62), as light duration and intensity significantly influence
nutrient accumulation in microgreens (63). The mechanism by
which LEDs influence plant growth and quality involve the emission
of photons that activate specific photoreceptors, such as
phytochrome and cryptochrome, resulting in changes in leaf area,
thickness, stem length and metabolite production (64). A mixed red-
blue light, particularly with a 5:1 red-to-blue ratio, proved
advantageous for broccoli microgreens, enhancing their
hypocotyl length, fresh weight and edible rate (65). Brassicaceae
microgreens grown under blue LED lighting exhibited the highest
ascorbic acid content (112.70 mg-100 g fw?), total phenolics
(412.39 mg GAE-100 g fw?) and antioxidant capacity (2443.62
umol TE-L?) compared to those grown under red and 50:50 blue-
red LED spectra (66). This is attributed to the effective absorption
of red and blue light by photosynthetic pigments, which
generally outperforms other regions of the spectrum in
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promoting plant growth (64). However, the effect of red and blue
LED light on microgreens is species-dependent, as mustard
microgreens showed decreased nutritional value with varying
blue-red light ratios, while kale microgreens were unaffected
(62). A similar result was observed when a 30 % blue light supply
led to maximal anthocyanin accumulation in arugula, kale and
red cabbage, but not in mustard (67). Furthermore, the addition
of green light at an irradiance of 340 pmol m? s within the red
and blue light environment enhanced growth (measured by dry
weight biomass) and boosted the accumulation of bioactive
phytochemicals in some of the microgreen species (68).

Optimum seed density for microgreen growth

Seed density is a key factor for achieving optimal growth
outcomes from both an economic and commercial perspective
(69). In addition to the substrate, seed density also significantly
affects the morphological, nutritional and phytochemical
properties of microgreens (70). Although seeding density is
essential, considering the landrace and harvest date is equally
important in microgreen production planning due to their
significant influence on both yield and quality (25). In kale, rapini
and cress microgreens, varying seed densities (3.5, 4 and 4.5
seeds-cm?) showed that the highest density (4.5 seeds.cm?)
produced a 19 % higher yield compared to the lowest density
(3.5 seeds-cm™?), with kale achieving the highest yield, surpassing
rapini by 0.44 kg-m? and cress by 0.97 kg:-m? (25). Similarly,
microgreens such as basil, carrot and blends of mild and radish
exhibited increased fresh weight with higher seed density (71).
Seed density is directly influenced by the seed size of different
microgreen species, with the optimal seed density being three
seeds/cm? for C. intybus and L. sativa, while B. oleracea
genotypes requires four seeds/cm? for optimal growth (72). The
optimum seed density for microgreen production also depends
on the spectrum of artificial light provided. The optimal seed
density for red beet microgreens, tested at 50, 150, 300 and 450
g/m? under white and purple spectrum, was 300 g/m? in the
white spectrum, while fresh weight continued to increase at 450
g/m? under the purple spectrum (73). However, microgreen yield
increases with higher seeding densities, exceeding the optimum
density can reduce marketable quality and increase the risk of
fungal infections, negatively affecting both quality and
productivity (72, 74). Higher seeding density leads to an excessive
number of plants, causing undesirable elongated shoots due to
increased congestion and competition (72). This also hinders air
circulation, creating conditions favorable for fungal growth (75).
Brassicaceae microgreens sown at high seed densities are
susceptible to pythium root rot, a disease caused by fungal
species such as Pythium aphanidermatum and Pythium
dissotocum (76). In addition, the economics of seed density raise
concerns due to the high cost of seeds, making it a significant
consideration for those involved in cultivation (71).

Seed treatments for enhanced growth of microgreens

Fast and uniform germination is essential for the successful
growth and production of microgreens (77). This uniform and
optimal germination can be attained through seed pre-sowing
treatments, which enhance germination rate, speed and seed
vigour (78). Additionally, the nutritional composition of
microgreens is influenced by seed treatment (77). Dill, carrot,
parsley and celery microgreen seeds treated with four fertilizers
Bioforce, Humustim, Biotor and Algreen, showed the best
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performance with Bioforce, which enhanced germination,
increased dry matter content, elevated total sugar levels and
influenced plastid pigment concentration (79). Apart from plant
biometric traits, the chlorophyll and carotenoid content indices
were significantly higher in pea microgreens whose seeds were
soaked in a 10 % solution of Chlorella vulgaris algae before sowing
and sprayed with the same solution during growth (80).
Presoaking and growing barley and wheat microgreens in organic
soil resulted in the highest levels of bioactive compounds,
including carotenoids, phenolics, flavonoids, vitamin C and
anthocyanin, while also enhancing antioxidant enzymes (POD,
CAT, GR) and antioxidant activities (DPPH, ABTS, NSA and SOD-like
activity) in microgreen (81). Radish microgreens seeds treated with
a 100 ppm salicylic acid solution showed an increase in protein
content, total antioxidants, phenols and flavonoids, while also
displaying a notable reduction in oxalic acid content, even under
salt stress (82). Seed treatments can also be intentionally used
for micronutrient enhancement through seed biofortification, as
this approach is simple, practical, low-cost and economically
viable, improving seed and crop quality in resource-limited areas
(83). Soaking seeds in a 200 ppm ZnSOs solution led to
significantly higher Zn biofortification in both pea (126.1 %) and
sunflower microgreens (229.8 %), but it caused an antagonistic
effect on the accumulation of other micronutrients (Fe, Mn and
Cu) only in pea microgreens (84). This antagonistic effect for peas
was due to the competition for common transporters (ZIP,
NRAMP, YSL), though the extent of such antagonism depends on
crop tolerance to excess Zn (85-87). The five microgreen (mizuna,
arugula, cress, green basil and radish) seeds when soaked with 2
mg Se/L sodium selenate resulted in the highest selenium
content (17.507 pg/g fresh weight) in mizuna microgreens, along
with increased chlorophyll a content and nutrient levels (88).
Certain seed treatment techniques such as seed sanitization, can
play a crucial role in minimizing the microbial load on seeds used
for growing microgreens (89). For example, 60 °C heat treatment
for 20 hr, combined with a 10 min soak of amaranth, carrot seeds
in 3 % H.0,, significantly reduced Enterobacteriaceag, coliforms,
molds and yeasts, without adversely affecting germination rates
(90). Moreover, Brassicaceae seeds contaminated with E. coli
0157:H7 were sanitized through a seed treatment process using
55 °C warm water combined with ultrasound for 5 min (91).
Some of the recent seed treatment techniques, including high-
pressure processing, ultrasound, UV light, non-thermal plasma
and microwave radiation, are also being used to enhance the
quality of microgreens paving the way for future research (92).

Fertilization
microgreens

impact on yield and growth of

Fertilization management plays a pivotal role as a pre-harvest
factor, significantly influencing the overall quality of the produce
by ensuring the optimal nutrient supply (45) for fast growth and
high yield of microgreens (77). Although chemical fertilizers are
unnecessary for microgreens, as the seeds supply sufficient
nutrients for the developing embryo, a small amount of fertilizers
can be applied to support the growth of microgreens with longer
growing periods such as carrot, dill and celery (93). Fertilization
with a general-purpose soluble fertilizer (20-20-20 with
micronutrients) at 100 mg L* nitrogen increased fresh shoot
weight and enhanced nutrient concentrations in ten microgreens.
However, calcium, magnesium and manganese levels decreased,
likely due to the dilution of elements absent in the fertilizer (77).
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Nanofertilizer based on superparamagnetic iron oxide
nanoparticles (SPIONSs) at the rate of 667 ug L* has been shown to
boost biomass, promote root growth and enhance iron absorption
in onion microgreens compared to traditional ionic iron
treatments (94). Calcium fertilization at 5 mM and 10 mM in radish
microgreens led to the highest percentage of shoots (48.7 %), with
increased average hypocotyl length (3.331 ¢cm) and cotyledon
surface area (1.294 cm?) per plant, but exceeding 20 mM Ca
resulted in toxic effects such as yellowing of cotyledons,
accumulation of calcium in shoots and reduced microgreen
growth (95). In contrast, the absence of nutrient supplementation
imposed abiotic stress, which led to a significant increase in lutein,
[3-carotene, total ascorbic acid and total anthocyanins in rocket
(Diplotaxis tenuifolia) microgreens, while it had no effect on
secondary metabolites in Brussels sprout (Brassica oleracea var.
gemmifera) microgreens (43). The application of NPK controlled-
release fertilizer to basil microgreens positively influenced plant
growth by significantly enhancing various parameters, including
height, total fresh mass, total dry mass, leaf area index and specific
leaf area index, compared to the control (96). A single application
of 120 mL of water-soluble 20 N-8.7 P-16.6 K fertilizer increased
fresh shoot height and macronutrient concentrations in four
Brassica microgreens and one Raphanus microgreen (77).
However, crop-specific fertilizer requirements for microgreen
production remain unclear (77).

Suitable harvest and postharvest practices for maintaining
the microgreen quality

Harvesting and postharvest handling conditions play a
significant role in determining the overall quality of microgreens
(97). The time required to harvest microgreens after planting
varies based on the type of seed and species chosen, typically
ranging from 2 to 3 weeks (98). Microgreens are ready to harvest
when their cotyledonary leaf is fully extended, with the ideal
harvest time determined by a combination of their height and
leaf area (99). It should be harvested without roots and seed
coats, by cutting the base of the seedling, just above the lower
hypocotyl, close to the substrate surface (2, 74). The timing of
harvest also influenced the dry matter content, which can
positively affect post-harvest outcomes, as higher dry weight has
been shown to prolong the shelf life of microgreens (25).
Harvested microgreens are extremely perishable and need to be
washed and cooled promptly to maintain their freshness (100).
During post-harvest storage, microgreens exhibit signs of
browning, physiological breakdown, weight loss, microbial
growth, biochemical changes and overall quality decline (101).
The limited marketing potential of microgreens is due to their
short lifespan and rapid senescence makes it crucial to improve
production and storage conditions to enhance their post-harvest
quality, shelf life and safety (32). The post-harvest practice of dipping
broccoli microgreens in a 50 mmol-L* calcium lactate solution
proved effective in extending their shelf life and minimizing tissue
electrolyte leakage (102). Sunflower microgreens sprayed with citric
acid and ascorbic acid (2.5 g/L each) exhibited an extended shelf life
of up to 16 days. They retained the highest levels of total chlorophyll
and ascorbic acid while maintaining the lowest microbial load by the
end of storage (103). Some preharvest treatments can also influence
the post-harvest quality of microgreens (104). The reduction in
glucosinolates in broccoli microgreens during postharvest storage,
primarily caused by myrosinase-catalyzed glucosinolate
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breakdown, may be delayed by pre-harvest treatments with UVB
(0.27 Wh/m’) and 10 mM CaCl, spray, which reduce myrosinase
gene expression (105). Red:blue LED illumination during
microgreen growth coupled with post-harvest UV-C irradiation for
10 min reduces weight loss in radish microgreens after 12 days of
storage by potentially forming a thin dried layer on the surface,
which slows water loss (106). Similarly, 8 hr of red light (35 uM m?s?)
improves the postharvest quality of pak-choi microgreens by
suppressing the expression of genes linked to chlorophyll
degradation and senescence, while enhancing the expression of
genes involved in vitamin C biosynthesis (107). A study reported
that when chlorinated water was sprayed during the growth of
radish microgreens, it reduced Salmonella populations by 1.1 log
CFU/g and E. coli O 157: H 7 populations by 0.9 log CFU/g (108). In a
comparison of pre-harvest spray treatment and post-harvest dip
coating using Aloe vera gel for storing radish microgreens at 5 °C,
the Aloevera spray coating created an initial edible layer that
helped reduce physiological weight loss, lower microbial counts
and preserve higher ascorbic acid levels (109).

Packing and Storage conditions for prolonged shelf life
of microgreens

The shelf life of microgreens after harvest is influenced by several
factors, including storage temperature, humidity levels, the type of
packaging film used and the initial amount of microbial load (110). In
several developing and underdeveloped regions, packaging
microgreens remains a major challenge, as maintaining sufficiently
low temperatures from harvest until consumption is difficult (111).
Washing microgreens before packaging lowers the initial bacterial
count, but it also creates a humid environment that fosters microbial
growth, making it essential to remove excess moisture to prevent
this (37). One of the most effective ways to extend the shelf life of
microgreens is by modifying the atmosphere inside the packaging
(109). In this method, oxygen is substituted with nitrogen or carbon
dioxide, thereby reducing oxidative reactions and slowing down
metabolic processes (112). Additionally, storing microgreensin a low
temperature environment slows down the majority of metabolic
reactions, effectively maintaining higher levels of antioxidant activity
and extending freshness (36). Tartary buckwheat microgreens, when
stored at 5 °C with low-density polyethylene (LDPE) packaging and
treated with a chlorine dioxide ClO, + citric acid wash, inhibit quality
deterioration and extend the shelf life of microgreens (113). Similarly,
broccoli microgreens treated with 0.25 % wj/v ascorbic and citric acid
and stored at 5 °C with modified atmospheric packaging (15 % CO,, 5%
0,, balanced N,) can be preserved for up to 12 days. They retain higher
levels of bioactive compounds such as total phenols (1247.68 mg
GAE/100 g FW), flavonoids (56.9 mg QE/100 g FW) and chlorophyll (42.12
mg/100 g FW), along with improved antioxidant activity (44.78 %
inhibition) (32). Microgreens packaging should vary based on
transportation needs. While macro-perforated PET clamshell (PET-
CS) packaging has proven superior to LDPE self-seal bag (LDPE-SSB)
for storing radish and roselle microgreens, PET-CS is more suitable
as rigid packaging for long-distance transport. However, LDPE-SSB
serves as a cost-effective option for shorter-distance markets and
sturdier microgreens (109).

Economic viability of microgreens

Microgreens are economically viable because they can be
produced year-round, unlike traditional crops (114). Their
cultivation is often carried out by small-scale enterprises, as
production does not require sophisticated or high-tech equipment
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(115). In addition, microgreens are frequently marketed close to
the site of production, supporting sustainable short supply chains.
Such localized distribution reduces transportation distances,
minimizes quality losses during handling and ensures proximity to
the target market (116). Furthermore, due to their relatively short
growth cycle, microgreens typically do not require pesticide
application. The economic feasibility of microgreen production
has been further demonstrated in diverse systems, including
vertical farming, aquaponics and urban rooftop farming (117-119).

Nutrient profile of microgreens

Microgreens are primarily associated with rich sources of both
micronutrients and macronutrients (4, 5) (Table 1). Their rich
concentrations of essential nutrients make them ideal for health-
supporting diets, as consuming even small amounts can help
prevent nutrient deficiencies and chronic diseases that are
prevalent in today's world (129). The nutrient composition and yield
of microgreens can be impacted by cultural practices, including pre-
sowing seed treatments, seeding rates and fertilization, as well as by
microenvironmental factors like temperature, light and growth
media (77) (Fig. 1). Purple mint microgreens, when exposed to short-
term red LED light of 638 nm, showed enhanced anthocyanin and
ascorbic acid levels while reducing nitrate content (130). The mineral
concentration in spinach microgreens increased when a nutrient
solution was supplied for 10 days (129). Under high-temperature
conditions, broccoli microgreens exhibited greater accumulation of

Table 1. Nutrient composition of microgreens

Hg, As, Co, Cr, Na, K, Ni, Se, Pb and Sn, while showing decreasesin P,
Mg, Ca, Mn, Cu and Cd (131).

Secondary metabolites of microgreens

Secondary metabolites are not essential for immediate survival
but play a crucial role in long-term health, disease prevention
and overall well-being (132). In general, microgreens are rich in
secondary metabolites (1) (Table 2). Enhancing the production of
secondary metabolites can lead to improved nutritional value
and better sensory qualities. This can be achieved by modifying
agronomic practices such as seed selection, growing media, light
quality and nutrient biofortification, ultimately resulting in
nutrient-enriched produce (97).

Anti-nutritional factors of microgreens

Anti-nutritional factors are compounds commonly present in
various food sources that hinder the body's ability to absorb and
utilize nutrients effectively, thereby reducing the overall
nutritional value of the food (140). The major anti-nutritional
factors are oxalates, tannins and phytic acid.

Oxalates interfere with calcium and magnesium metabolism
and bind with proteins to form complexes that hinder peptic
digestion (141). Microgreens generally contain lower oxalate levels,
as shown in the previous studies which reported 14.3 mg/100 g FW in
radish microgreens and 68.2 mg/100 g FW in fennel microgreens, both
lower compared to their mature counterparts (109). Similarly, roselle
and spinach microgreens contained approximately sixfold and

Category Component Range / Content Microgreen Examples References
Macronutrients Potassium (K) 176-416 mg/100 g FW Brassicaceae, Sunflower, Pea, Bean, Red beet (120, 121)
. Black radish, Broccoli, Pea, Bean, Red beet,
Magnesium (Mg) 45.96-86.83 mg/100 g FW Sunflower (121)
Calcium (Ca) 8.76 mg/g DW Romaine lettuce (122)
Phosphorus (P) 16.7-39.8 pg/g DW Red amaranth, Pea, Broccoli, Red beet (123)
Micronutrients Iron (Fe) 14 mg/kg FW Lettuce (124)
. Black radish, Broccoli, Pea, Bean, Red beet,
Zinc (Zn) 31.92-129.78 ug/100 g FW Sunflower (121)
Copper (Cu) 2.69-2.72 mg/kg FW Water spinach, Bottle gourd (125)
Manganese (Mn) 4.84-14.22 mg/100 g DW Nigella, Safflower, Camelina (126)
Vitamins Ascorbic Acid (Vitamin C) 51.10 mg/100 g FW Beet (127)
Vitamin E (a/y-tocopherol) a: 34.5-47.7,y: 8.3-19.7 mg/100 g FW Red beet, Pea, peppercress, radish (128)
Phylloguinone (Vitamin K) 2.8-3.3 ug/g FW Red cabbage, Pea, Red sorrel (128)

Growing media

Storage condition and packaging

Pre-harvest and post-harvest
factors of microgreens

Seed pre-treatment \
=\ & S
A >
- — P :
’

Microgreens

oy

g

Nutrients, Vitamins

o

o \a®
Minerals
\ Q Y

IR

é)o

Secondary metabolites

Health promoting
attributes of microgreens

Fig. 1. Production and quality traits of microgreens.
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Table 2. Secondary metabolites of microgreens

Secondary metabolites Microgreens References
Glucosinolates, Flavonols, Phenolic acids Arugula, Radish, Red cabbage, (123,133)
’ ’ Red amaranth ’
Organosulfur compounds Arugula (123)
Betanin, Amaranthin Red beet, Red amaranth (123)
Total dietary fiber Radish (134)
. . . Kale, Radish, Beetroot, Green peas,

Organic acids, Carotenoids ‘Amaranth (135)
Polyphenols, flavonoids Kale, Kohlrabi, Red cabbage, Radish (136)
Phytoestrogens, Triterpene Saponins, Condensed tannins Alfalfa, Black medick, Sainfoin (137)
Aliphatic glucosinolates Choy sum (138)
Flavonoid Sunflower (139)
Flavonol glycosides, Hydroxycinnamic acids and their derivatives, Flavone glycosides, Lettuce, Mustard and Rocket (12)

Caffeoyl quinic acid, Quercetin-3-sinapoyl triglucoside, Synapoyl-hexose.

sixteen-fold less oxalate respectively, than their mature leaves (142).

Tannin is a bitter, astringent plant-derived polyphenol that
can bind to or precipitate proteins, as well as other organic
compounds such as amino acids and alkaloids (141). However,
tannin content is lower in microgreens since it is higher in raw
seeds and decreases once the seeds start germinating (143, 144).

Phytic acid carries negative charge, allowing it to bind
with positively charged metal ions such as zinc, iron, magnesium
and calcium. This interaction forms complexes that reduce the
bioavailability of these minerals by limiting their absorption in the
body (145). Phytic acid levels in microgreens are generally low and
within permissible limits, though they vary among species. The
phytic acid content of six microgreens such as mung bean, lentil, red
radish, pearl millet, mustard and red cabbage was studied, with
pearl millet microgreens showing the highest content (0.304 g/100 g
fresh weight) and red radish microgreens the lowest (0.156 g/100 g
FW) (99). Similarly, the phytic acid content in beetroot, red
amaranthus, radish sango, cabbage, broccoli, flaxseed and pak choi
microgreens was found to range from 145.32 to 507.46 mg/100 g FW,
with the highest concentration in red amaranthus and the lowest in
radish sango microgreens (146).

However, the phytic acid content of microgreens was
lower compared to their mature counterpart as reported in earlier
studies, showing that fenugreek and broccoli microgreens had
lower phytic acid content compared to their mature forms, which
contributed to enhanced iron absorption (147). Biofortification
strategies have been shown to mitigate the negative effects of
phytic acid. Soaking pea and sunflower seeds in high
concentrations of ZnSO, and ZnO solutions significantly reduced
the phytic acid-to-zinc molar ratio, suggesting improved zinc
bioaccessibility in the resulting microgreens (84).

Conclusion

Microgreens offered an effective and sustainable approach to
improving human nutrition, particularly in the context of rising
population pressures and limited agricultural space. Their fast
growth cycle, high nutrient density and compatibility with urban
and controlled-environment farming systems made them a
valuable addition to modern food production. Advances in
growing substrates, lighting conditions, seed treatments and
fertilization contributed significantly to improving both the yield
and nutritional quality of microgreens. In addition, biofortification
and sanitation practices enhanced their safety and nutrient
bioavailability. Despite these advantages, challenges remained in

standardizing cultivation protocols, developing costeffective
biodegradable substrates, reducing anti-nutritional factors while
enhancing biofortification of key micronutrients and improving
postharvest technologies including edible coatings and modified
atmosphere packaging, to extend shelf life without nutrient loss.
Ongoing research and technological advancements were essential
to fully harness the potential of microgreens for improving public
health and supporting global food security.
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