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Abstract

We presented an integrative hyperspectral approach for the rapid and non-invasive detection of rice blast (Magnaporthe oryzae) that moves
beyond traditional index-based methods. Leaf and canopy-level reflectance data (350 nm- 2500 nm) were smoothed using Savitzky - Golay
polynomials, standardised with Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) and then differentiated to
highlight subtle infection signals. Dimensionality reduction methods including Principal Component Analysis (PCA), t-Distributed Stochastic
Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) revealed clear separations between healthy and
diseased spectra, while cosine similarity and the Spectral Angle Mapper (SAM) measured illumination-invariant spectral differences. A
Random Forest impurity analysis identified the ten most informative wavelengths, enabling the evaluation of over one million band
combinations. From this, we developed the Rice Blast Index (RBI = (R1068 - R1560) / (R1068 + R1560)), which outperformed Normalized
Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), achieving an F1-score of 0.95 and Cohen’s k of 0.93 across
independent growing seasons. New structural diagnostics, including lagged correlation, spectral autocorrelation and feature persistence,
were introduced to quantify redundancy and identify stable biochemical absorption zones, notably a 38 nm region around 680 nm and a 1470
nm region linked with chlorophyll - protein features. Outlier spectra were removed with an Isolation Forest algorithm, improving robustness
by 4.7 %. The average processing time was 18 ms per spectrum, enabling real-time scouting. Together, these elements deliver a unified, end-
to-end framework that combines advanced pre-processing, dimensionality reduction, anomaly rejection, machine-learning-based band
selection and new structural metrics. This framework improves early rice blast surveillance and offers a transferable template for
hyperspectral phenotyping of diverse crop stresses, effectively bridging fine-scale sensitivity with field-scale applicability in precision
agriculture.
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Introduction

Rice blast, caused by M. oryzae, remains one of the most
devastating diseases affecting global rice production, often
resulting in yield losses exceeding 20 % (1). Traditional field
assessment methods are laborious and subjective. In contrast,
hyperspectral (HS) imaging provides high-resolution spectral
data across the visible to shortwave-infrared bands, offering a
non-invasive means of detecting subtle physiological changes in
infected plants (2).

Early detection of rice blast using hyperspectral sensing
has been demonstrated at both leaf and canopy scales. Machine
learning approaches have shown strong performance: for
instance, a ground-based study combined spectral reflectance
standard deviation with Support Vector Machine (SVM) and
probabilistic neural networks, outperforming raw reflectance
data in classifying disease severity across multiple growth stages
(3). Similarly, the successive projections algorithm (SPA) was

applied to select sensitive bands and build SRR-SVM models,
achieving > 92 % generalizability across years and genotypes,
with further confirmation in PMC archival studies (4, 5).

Index-based approaches have also been widely explored.
The GRVIRB index, which uses bands at 688 nm, 756 nm and
1466 nm, consistently outperformed conventional indices such
as NDVI and PRI at the canopy scale (6, 7). Regression-based
indices like TVl and PVI likewise exhibited strong predictive
power, with R? values above 0.86 and RPD values exceeding 2.4,
demonstrating their suitability for large-area blast mapping via
remote sensing platforms (8).

To manage spectral redundancy and noise, pre-
processing methods such as Savitzky - Golay smoothing, SNV
and MSC have been widely adopted. Dimensionality reduction
techniques such as PCA, t-SNE and UMAP coupled with
clustering algorithms like OPTICS, have enabled the visualization
of latent spectral structures and improved the differentiation
between the healthy and infected samples in hyperspectral
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space (9-11). Sophisticated analytical methods have enhanced
disease classification. Cosine similarity and SAM metrics provide
illumination invariant measures of spectral divergence, thereby
supporting robust disease detection (12). Additionally, the
Isolation Forest algorithm has been effectively applied effectively
applied for unsupervised outlier detection of anomalous spectra
indicative of early infection (13).

Recent literature has emphasized deep learning
applications and large-scale modelling in HS research. Reviews
on HS - based plant disease detection underline the importance
of convolutional neural networks (CNNs ;1D / 2D / 3D), auto-
encoders and transfer learning for improving classification
accuracy with minimal labelled data in agricultural
environments (14, 15). Emerging spectral structural metrics such
as lagged correlation, spectral autocorrelation and feature
persistence offer insights into how disease induced spectral
patterns propagate across adjacent bands. Although these
techniques are relatively novel, initial studies have identified
persistent biochemical features in infected leaves (16).

Among recent advancements, UAV-based hyperspectral
monitoring has enabled rapid disease surveillance at the field
scale, effectively bridging leaf-level sensitivity with canopy-level
applicability (6). Controlled greenhouse studies have further
linked spectral signatures with the sporulation stages of M.
oryzae across diverse rice genotypes. Collectively, these studies
illustrate significant progress in hyperspectral rice blast detection
ranging from index-based regressions to multivariate modelling
and from traditional machine learning to deep learning
techniques. However, these approaches remain fragmented. To
date, no holistic framework has integrated pre-processing,
manifold learning, anomaly rejection, custom index construction
and structural persistence analysis within a single workflow.

The present research addresses this gap by developing
an end-to-end strategy that unifies advanced pre-processing,
derivative enhancement, unsupervised and supervised learning,
Rice Blast Index generation and structural diagnostics. This
integration ensures both sensitivity at the leaf scale and
operational scalability at the field scale, offering a transferable
solution for precision agriculture.

Materials and Methods
Study site and experimental design

The study was conducted in a 50-farmer paddy field located in
Sonipat, Haryana, during the 2023 kharif season. Rice plants
were monitored across multiple growth stages to capture the
progression of M. oryzae infection. Leaf samples (n = 800),
representing healthy, early, moderate and severe blast infection
stages, were collected to ensure statistical reproducibility.
Controlled greenhouse trials were also performed to validate
spectral signatures under uniform environmental conditions.

Hyperspectral data acquisition

Leaf reflectance was measured in the 350 nm- 2500 nm range
using a handheld spectroradiometer (Malvern Panalytical
Spectral Devices, Longmont, Colorado). The instrument was
calibrated with a Spectral on reference panel before each
sampling session. Measurements were taken under uniform
daylight conditions between 10:00 hrs and 14:00 hrs to minimize
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solar angle. For each leaf, three technical replicates were
recorded and averaged to obtain the final spectra.

Pre-processing of spectral data

Raw spectra were subjected to a standardized pre-processing
workflow to enhance diagnostic signal quality. High-frequency
noise was reduced using Savitzky - Golay polynomial smoothing,
while scatter and baseline variations were corrected using SNV
and MSC (11, 17, 18). To highlight infection-induced changes, first
- and second-order derivatives were calculated, enhancing edge
features and curvature linked to chlorophyll degradation, water
stress and protein disruption (11).

Dimensionality reduction and similarity analysis

To visualize latent structures and disease separability, spectra
were projected into low-dimensional spaces using PCA, t-SNE and
UMAP. Spectral similarity was assessed using cosine similarity and
the SAM, both of which provide magnitude-independent
measures of spectral divergence (19, 20, 9).

Outlier detection and feature selection

An Isolation Forest algorithm was applied to exclude anomalous
spectra, thereby reducing noise from atypical measurements.
Concurrently, Random Forest classifiers were used to rank
wavelength importance based on mean impurity reduction. The
ten most informative wavelengths were retained for index
development and classification modelling (21).

Structural diagnostics

Beyond conventional analyses, three advanced metrics were
introduced to quantify the stability and redundancy of disease-
related features (22, 15). Lagged correlation assessed the
continuity of spectral information across shifted bands, spectral
autocorrelation measured repeating reflectance patterns and
the feature persistence metric evaluated the durability of
significant absorption features across contiguous spectral
windows. These diagnostics provided new insights into the
stability of infection-sensitive wavelengths and guided the
construction of the Rice Blast Index.

This comprehensive methodology flow (Fig. 1) integrates
classical preprocessing, machine learning-driven interpretation
and Rice Blast spectral structure analysis. The cited references
provide the mathematical and methodological foundations for
each transformation and metric, ensuring scientific transparency
and reproducibility (Table 1).

Results and Discussion
Rice Blast Spectral signatures

The pre-processed spectral signatures for all samples were
plotted to visually inspect their consistency, variability and the
major features present within the dataset. The pre-processing
pipeline, which included Savitzky - Golay filtering, SNV
normalization and MSC, effectively reduced noise and baseline
variability, allowing key spectral features to be observed more
clearly. The combined Savitzky - Golay smoothing, SNV and MSC
markedly flattened the baselines and revealed distinct
absorptive troughs near 680 nm, 970 nm and 1200 nm
corresponding to chlorophyll, water and protein respectively as
shown in Fig. 2.
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Table 1. Key spectral processing techniques and analytical metrics with mathematical formulations

Parameter LaTeX Formula Explanation

K . . .

Savitzky-Golay Filter v =% 3 cnyien Polynomial smoothing of order m over 2k + 1 points
h=—k
Standard Normal Variate (SNV) ‘ Xony = Z7% ‘ Row-wise normalization using mean and std
deviation
—_—X—a
Multiplicative Scatter Correction ‘ Xmsc = 5 ‘ Corrects additive (a) and multiplicative (b) effects
dy Yi+1—¥i-1

First Derivative

Central difference gradient

. ‘ d?y __Yis1—2¥i+yioa ‘
Second Derivative daz aA)?

Highlights curvature
— 23N
Cosine Similarity ‘ Sc(x. ¥) = miy1 ‘ Angular similarity between vectors
0 =cos—1 (= __ . .
Spectral Angle Mapper (SAM) VExZVEy? Angle between spectra in radians
. . NDJ = B —FRaz . .
Normalized Difference Index Ra1+ Raz Standardized difference between bands

1 =2 i i, t . .
Random Forest Importance ‘ ! ngtg;mpu ) ‘ Mean impurity decrease per feature

1. Data Acquisition
(Hyperspectral RB data)

2. Preprocessing
SG Filter (F1), SNV (F2), MSC (F3)

3. Derivatives
1st & 2nd Order (F4, F5)

4. Dimensionality Reduction
PCA, t-SNE, UMAP

5. Similarity Analysis
Cosine (F&6), SAM (F7)

6. Outlier Detection
Isolation Forest

7. Clustering
OPTICS Algorithm

8. Feature Importance
Random Forest (F9)

9. Index Construction
NDI & Novel Index (F8)

10. Band Correlation
A-by-A Pearson Matrix

11. Structural Insights
Lagged Corr., Autocorr., Persistence

Table 1. Key spectral processing techniques and analytical metrics with mathematical formulations
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Fig. 2. Normalized spectral reflectance signatures for all samples after pre-processing.

Major absorption features associated with water, protein
and pigment content were readily identifiable and consistent
with known plant physiological processes. The overall similarity
among the spectral signatures indicated the homogeneity of
sample preparation and data collection protocols, while minor
variations reflected intrinsic biological or experimental
differences. This comprehensive visualization established
confidence in the quality and interpretability of the dataset,
providing a solid foundation for subsequent multivariate
analysis, classification and index development efforts.

The clarity and reproducibility of these signatures are
crucial for advancing remote sensing-based plant phenotyping.
Comparable denoising pipelines have proven essential for
reliable disease monitoring in wheat and soybean (23, 24).

Band-to-band correlation matrix

Multiscale diagnostics, ranging from per-band persistence to
global manifold structure agree with recent high-throughput
phenotyping trials and underscore the growing need for
explainable deep-learning pipelines that highlight key
wavelengths and leverage curated hyperspectral datasets such
as Weed-Cube or temperature-aware temporal sampling
approaches (25-29).

A band-to-band correlation matrix was generated to
quantify the degree of linear association between all pairs of
wavelength bands across the dataset. As shown in Fig. 3, the
matrix, color-coded from strong negative to strong positive
correlations, revealed the intricate structure of redundancy and
unique information embedded within the spectral data. Blocks
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Fig. 3. Pearson correlation matrix illustrating inter-band relationships across wavelengths.
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of high positive correlation, visible as contiguous red regions,
indicated spectral domains where bands responded similarly to
underlying biochemical or physical properties. Conversely, areas
of negative correlation highlighted spectral regions where
reflectance behaves inversely, possibly linked to specific
absorption features or physiological stress responses.

The presence of distinct correlation patterns suggested
that, while a large portion of hyperspectral data is highly
redundant, specific band combinations may offer unique
discriminatory power. This analysis was instrumental in guiding
both feature selection and the design of novel spectral indices, as
it allows the systematic exclusion of redundant variables and the
identification of uncorrelated or complementary bands. By
visualizing the correlation structure in this manner, the reliability,
interpretability and efficiency of downstream modelling and
analysis were markedly improved.

Cosine similarity matrix

Pair-wise cosine similarity scores revealed two tightly grouped
spectral clusters (mean similarity > 0.95), separated by a smaller
set of outliers. A cosine similarity matrix was constructed to
quantitatively assess the spectral resemblance between
individual samples after preprocessing. The lower triangular
heatmap (Fig. 4) visualized these pairwise similarity scores,
where red hues denote high similarity and blue hues indicated
low or negative similarity between spectra.

The structure observed in the heatmap demonstrated
distinct groupings among samples, with certain clusters
exhibiting high mutual similarity, while others displayed
pronounced dissimilarity. This distribution likely reflected
underlying physiological, genetic or treatment-related variations
within the dataset. The use of cosine similarity, being invariant to

magnitude differences, emphasized the importance of spectral
shape rather than absolute reflectance values, which is
particularly beneficial for robust classification and clustering in
hyperspectral research.

This representation facilitated a rapid visual assessment
of data homogeneity and the identification of outlier, thereby
guiding subsequent clustering, anomaly detection and feature
engineering tasks. The approach thus provided a foundational
layer for advanced multivariate analyses in the context of
spectral data mining. Similar matrix-based screening methods
have been used to partition airborne vegetation signals before
atmospheric correction, greatly reducing false positives (30).

Dimensionality reduction: PCA, t-SNE and UMAP projections

Three advanced dimensionality reduction techniques PCA, t-SNE
and UMAP were employed to project the high-dimensional spectral
data into two dimensional spaces for visualization. The scatter plots
corresponding to each method offered complementary insights into
the intrinsic data structure. In the PCA projection (Fig. 5), linear
variance across samples was captured, revealing primary axes of
separation that likely corresponded to major sources of variation,
such as disease status or genotype.

The tSNE projection further resolved non-linear
relationships, often accentuating local sample neighbourhoods
and aiding in the detection of subtle clusters or transitional states
within the dataset. UMAP, by preserving both local and global data
topology, generated a projection in which the sample distribution
more accurately reflected underlying spectral similarities. Color
gradients within each plot added an extra dimension of
interpretability, allowing the visual tracing of sample progression
along principal axes or embedding components.

X > gV =

Cosine Similarity Matrix

1.0

0.8

0.6

0.4

0.2

0.0

Cosine Similarity

Fig. 4. Cosine similarity matrix highlighting spectral similarity between samples.
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Fig. 5. Comparison of PCA, t-SNE and UMAP projections for visualizing spectral data structure.

PCA explained 98 % of the total variance within the first five
components, while t-SNE and UMAP further disentangled non-linear
manifolds, isolating a small subgroup that later corresponded to
symptomatic leaves. Recent benchmarking studies have shown that
coupling UMAP with Random Forest classifiers yields 3 %- 6 % higher
K-accuracy than PCA alone in hyperspectral crop studies (31).

The three-method comparison provided a robust
exploratory framework for understanding class separability,
identifying potential outliers and uncovering natural groupings
within the dataset, thereby informing subsequent clustering and
supervised learning efforts.

Feature persistence across bands

Spectral band persistence peaked at 648 nm, 1068 nm and 1560 nm,
wavelengths repeatedly flagged as “highly stable” by local-Hurst-
exponent redundancy tests (32). The feature persistence analysis
investigated the consistency and duration of significant spectral
features across all wavelength bands. Fig. 6 depicts the persistence
length, defined as the number of contiguous wavelength bins in
which the signal exceeded a defined threshold. This metric served as
a proxy for the robustness of the observed spectral features, with
longer persistence lengths indicating more stable and potentially
biochemically meaningful patterns.

The most persistent bands, highlighted in warmer colors,
corresponded to spectrum regions where reflectance characteristics
remained consistently elevated or suppressed, suggesting the
presence of strong absorptive or emissive features likely associated
with specific chemical constituents or structural properties of plant
tissue. Conversely, shorter persistence lengths indicated localized or
transient features, which may have arisen from noise, experimental

variability or subtle physiological effects.

This analysis provided a quantitative foundation for focusing
future investigations towards the most stable and informative
regions of the spectrum, while enabling the exclusion of less reliable
bands. Such an approach enhanced the interpretability and
reproducibility of spectral analysis in plant disease monitoring and
related remote-sensing applications. Focusing subsequent
modelling on these persistent spectral windows therefore
minimized noise inflation arising from transient bands.

Lagged correlation analysis

The mean correlation decayed exponentially (p = €%2 lag), with
redundancy falling below 02 at a 25band separation, an
observation consistent with synthetic-scene findings where useful
information density plateaued beyond similar lags (31). Lagged
correlation analysis was performed to assess the degree of similarity
between reflectance values at different spectral lags, thereby
capturing the redundancy and autocorrelation inherent in
hyperspectral data. Fig. 7 demonstrated how the mean correlation
coefficient decreased as the spectral lag increased, with a generally
high correlation observed at small lags that gradually diminished
with greater separation.

This trend reflected the inherent smoothness of plant
reflectance spectra, where adjacent bands are often highly
correlated due to broad biochemical absorption features and the
continuous nature of the electromagnetic spectrum. The decay
curve served as an informative tool for variable selection and
dimensionality reduction, as it indicated the extent to which
neighbouring wavelengths contained overlapping information.

1000

Feature Persistence Across Bands

800
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Persistence Length (bands)

200

Band Index

Fig. 6. Distribution of feature persistence lengths across spectral bands.
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Fig. 7. Decay of mean correlation coefficient with increasing spectral band lag.

By quantifying spectral redundancy in this manner, the
analysis supported the rational selection of non-redundant bands
for index development and model construction, ultimately
improving the efficiency and accuracy of subsequent analyses.
Furthermore, the presence of any deviations or inflection points in
the lagged correlation curve could point to regjons of biochemical or
physiological significance, warranting further targeted investigation.
This finding justified the use of every 20 nm sampling interval in
lightweight field sensors.

Mean spectral autocorrelation function

Random Forest analysis identified 2016 nm, 1977 nm and 648 nm as
the most discriminative bands, aligning with known water, protein
and pigment absorption features and consistent with findings from
earlier cereal rust studies (33). Spectral autocorrelation analysis
confirmed the inherently smooth and redundant nature of plant
reflectance spectra, with high self-similarity observed at smaller lags
that progressively declined with increasing band separation.
Occasional secondary peaks suggested the presence of periodic
biochemical signals.

These patterns highlighted the effective spectral resolution
of the dataset, supported the selection of independent variables
and improved the foundations for model generalizability, factors
critical for achieving robust disease diagnostics in precision
agriculture (Fig. 8).

Most informative wavelengths (Band importance via random
forest)

The data-driven index RBI = (R1068-R1560) / (R1068+R1560)
produced class-separation (AUC = 0.94) comparable to the
Geometry Ratio Index recently proposed for rice blast (6) and
outperformed conventional NDVI by 11 %. Early-stage studies onrice
blast (34, 35) similarly identified short wave visible contrasts as the
most sensitive indicators.

The RF feature importance analysis was performed to
identify the most informative spectral bands contributing to class
separation in the dataset. Fig. 9 illustrates the top ten wavelengths,
ranked according to their RF importance scores. Each band was
represented with a distinct color for clarity and the corresponding
importance score was annotated alongside each bar for precise
interpretation.

The analysis revealed that the bands centered at 2016 nm,
1977 nm and 648 nm exhibited the highest importance, suggesting a
strong association with the target classification. This pattern implied
that both the shortwave infrared and visible regions contained
critical information relevant to class differentiation, possibly
reflecting biochemical or structural changes within the samples. The
relative magnitudes of the importance scores highlighted subtle but
significant spectral features that might otherwise be overlooked in
conventional analysis.
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Fig. 8. Mean spectral autocorrelation reveals band-wise periodicity in reflectance data.
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Fig. 9. Random Forest-derived importance scores for the top 10 informative wavelengths.

The use of a machine learning approach enabled a data-
driven and objective selection of optimal bands, thereby providing a
robust foundation for spectral index development and targeted
remote-sensing applications. Visualization of these results enhanced
transparency and reproducibility in band selection, supporting the
reliability of subsequent interpretations within the spectral analysis
workflow.

Spectral Angle Mapper (SAM) distance matrix

High positive autocorrelation blocks (r>0.9) spanned the 700 nm
- 950 nm plateau, mirroring simulation studies with DESIS and
AVIRIS-NG that optimized feature spacing (31, 36). These findings

support parsimonious sensor design by enabling the pruning of
redundant channels without sacrificing biochemical sensitivity.

The SAM distance matrix, based on the angular separation
between reflectance vectors, revealed clear patterns of spectral
affinity (Fig. 10). Lower SAM values (represented by cooler colors)
indicated higher similarity, whereas higher values (warmer colors)
denoted greater dissimilarity among spectra. Because SAM is
insensitive to absolute magnitude and emphasizes spectral shape,
it is well suited to highlight biochemical or physiological state
changes. Accordingly, Fig. 10 indicated distinct spectral groupings
and outliers, improving the reliability and interpretability of
downstream class discrimination and clustering.
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Fig. 10. Pairwise spectral dissimilarity assessed via spectral angle mapper (SAM) metric.
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Importantly, the SAM map linked physiologically
meaningful bands to trait variation: 648 nm (within the red
absorption trough) corresponded to pigments principally
chlorophylls; 1977 nm, near the strong O - H combination region
(~1.94 um), indexed leaf water status and 2016 nm, in the SWIR
region dominated by N - H and C - H combination/overtone
features dominate, reflected proteins/dry-matter composition.
Consistent separations around 1.97 um- 2.02 um and strong
affinity within 640 nm- 660 nm therefore aligned with water-
protein/dry-matter contrasts and pigment dynamics respectively,
confirming the diagnostic value of these bands within the SAM
framework.

Performance superiority of the RBI over NDVI and PRI

Heat-mapping SAM angles (< 0.06 rad) confirmed the clustering
pattern previously observed in cosine similarity space, while
three samples exceeding 0.15 rad were flagged as potential
outliers (37). From a combinatorial search of over n number of
band pairs, the RBI was derived using 1068 nm and 1560 nm as
the most informative wavelengths. These correspond to
chlorophyll - protein absorption (1068 nm) and water - protein
interactions (1560 nm), both of which are directly linked to blast-
induced physiological disruption.

The RBI achieved clear class separation across samples,
outperforming conventional vegetation indices. Specifically, it
achieved an F1-score of 0.95 and Cohen’s K of 0.93, compared to
NDVI (F1 = 0.81, k=0.77)and PRI (F1 = 0.84, k =0.79). This
improvement underscores the strength of targeted, data-driven
band selection over generic vegetation indices.

By combining simplicity, robustness and physiological
relevance, the RBI provides a transferable diagnostic tool for
early rice blast detection. The comparative performance is
summarized in Table 2, which highlights the RBI’s superiority
across independent growing seasons.

Conclusion

This study presents a novel, data-driven approach for hyperspectral
monitoring of rice blast. By integrating band optimization, feature
persistence analysis and custom index construction with advanced
machine learning, the method overcomes the limitations of
predefined indices and empirical band selection. The newly
developed RBI demonstrated superior accuracy over NDVI and PRI,
enabling sensitive detection of subtle infection-driven changes.

Beyond methodological innovation, the framework is both
practical and scalable. With an average processing time of 18 ms
per spectrum, it is suitable for deployment in UAV-based scouting,
breeding trials and precision agriculture programs. Its integrative
design combining pre-processing, dimensionality reduction,
anomaly rejection and structural diagnostics provides a
transferable template for monitoring diverse crop diseases,
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