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Introduction 

Rice blast, caused by M. oryzae, remains one of the most 

devastating diseases affecting global rice production, often 

resulting in yield losses exceeding 20 % (1). Traditional field 

assessment methods are laborious and subjective. In contrast, 

hyperspectral (HS) imaging provides high-resolution spectral 

data across the visible to shortwave-infrared bands, offering a 

non-invasive means of detecting subtle physiological changes in 

infected plants (2).  

 Early detection of rice blast using hyperspectral sensing 
has been demonstrated at both leaf and canopy scales. Machine 

learning approaches have shown strong performance: for 

instance, a ground-based study combined spectral reflectance 

standard deviation with Support Vector Machine (SVM) and 

probabilistic neural networks, outperforming raw reflectance 

data in classifying disease severity across multiple growth stages 

(3). Similarly, the successive projections algorithm (SPA) was 

applied to select sensitive bands and build SRR-SVM models, 

achieving > 92 % generalizability across years and genotypes, 

with further confirmation in PMC archival studies (4, 5). 

 Index-based approaches have also been widely explored. 

The GRVIRB index, which uses bands at 688 nm, 756 nm and 

1466 nm, consistently outperformed conventional indices such 

as NDVI and PRI at the canopy scale (6, 7). Regression-based 

indices like TVI and PVI likewise exhibited strong predictive 

power, with R² values above 0.86 and RPD values exceeding 2.4, 

demonstrating their suitability for large-area blast mapping via 

remote sensing platforms (8). 

 To manage spectral redundancy and noise, pre-

processing methods such as Savitzky - Golay smoothing, SNV 

and MSC have been widely adopted. Dimensionality reduction 

techniques such as PCA, t-SNE and UMAP coupled with 

clustering algorithms like OPTICS, have enabled the visualization 

of latent spectral structures and improved the differentiation 

between the healthy and infected samples in hyperspectral 
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Abstract  

We presented an integrative hyperspectral approach for the rapid and non-invasive detection of rice blast (Magnaporthe oryzae) that moves 

beyond traditional index-based methods. Leaf and canopy-level reflectance data (350 nm- 2500 nm) were smoothed using Savitzky - Golay 
polynomials, standardised with Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) and then differentiated to 

highlight subtle infection signals. Dimensionality reduction methods including Principal Component Analysis (PCA), t-Distributed Stochastic 

Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) revealed clear separations between healthy and 

diseased spectra, while cosine similarity and the Spectral Angle Mapper (SAM) measured illumination-invariant spectral differences. A 
Random Forest impurity analysis identified the ten most informative wavelengths, enabling the evaluation of over one million band 

combinations. From this, we developed the Rice Blast Index (RBI = (R1068 - R1560) / (R1068 + R1560)), which outperformed Normalized 

Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), achieving an F1-score of 0.95 and Cohen’s κ of 0.93 across 

independent growing seasons. New structural diagnostics, including lagged correlation, spectral autocorrelation and feature persistence, 

were introduced to quantify redundancy and identify stable biochemical absorption zones, notably a 38 nm region around 680 nm and a 1470 
nm region linked with chlorophyll - protein features. Outlier spectra were removed with an Isolation Forest algorithm, improving robustness 

by 4.7 %. The average processing time was 18 ms per spectrum, enabling real-time scouting. Together, these elements deliver a unified, end-

to-end framework that combines advanced pre-processing, dimensionality reduction, anomaly rejection, machine-learning-based band 

selection and new structural metrics. This framework improves early rice blast surveillance and offers a transferable template for 
hyperspectral phenotyping of diverse crop stresses, effectively bridging fine-scale sensitivity with field-scale applicability in precision 

agriculture.    
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space (9-11). Sophisticated analytical methods have enhanced 

disease classification. Cosine similarity and SAM metrics provide 

illumination invariant measures of spectral divergence, thereby 

supporting robust disease detection (12). Additionally, the 

Isolation Forest algorithm has been effectively applied effectively 

applied for unsupervised outlier detection of anomalous spectra 

indicative of early infection (13). 

 Recent literature has emphasized deep learning 

applications and large-scale modelling in HS research. Reviews 

on HS - based plant disease detection underline the importance 

of convolutional neural networks (CNNs ;1D / 2D / 3D), auto-

encoders and transfer learning for improving classification 

accuracy with minimal labelled data in agricultural 

environments (14, 15). Emerging spectral structural metrics such 

as lagged correlation, spectral autocorrelation and feature 

persistence offer insights into how disease induced spectral 

patterns propagate across adjacent bands. Although these 

techniques are relatively novel, initial studies have identified 

persistent biochemical features in infected leaves (16). 

 Among recent advancements, UAV-based hyperspectral 

monitoring has enabled rapid disease surveillance at the field 

scale, effectively bridging leaf-level sensitivity with canopy-level 

applicability (6). Controlled greenhouse studies have further 

linked spectral signatures with the sporulation stages of M. 

oryzae across diverse rice genotypes. Collectively, these studies 

illustrate significant progress in hyperspectral rice blast detection 

ranging from index-based regressions to multivariate modelling 

and from traditional machine learning to deep learning 

techniques. However, these approaches remain fragmented. To 

date, no holistic framework has integrated pre-processing, 

manifold learning, anomaly rejection, custom index construction 

and structural persistence analysis within a single workflow. 

 The present research addresses this gap by developing 
an end-to-end strategy that unifies advanced pre-processing, 

derivative enhancement, unsupervised and supervised learning, 

Rice Blast Index generation and structural diagnostics. This 

integration ensures both sensitivity at the leaf scale and 

operational scalability at the field scale, offering a transferable 

solution for precision agriculture. 

 

Materials and Methods 

Study site and experimental design 

The study was conducted in a 50-farmer paddy field located in 

Sonipat, Haryana, during the 2023 kharif season. Rice plants 

were monitored across multiple growth stages to capture the 

progression of M. oryzae infection. Leaf samples (n = 800), 

representing healthy, early, moderate and severe blast infection 

stages, were collected to ensure statistical reproducibility. 

Controlled greenhouse trials were also performed to validate 

spectral signatures under uniform environmental conditions. 

Hyperspectral data acquisition 

Leaf reflectance was measured in the 350 nm- 2500 nm range 
using a handheld spectroradiometer (Malvern Panalytical 

Spectral Devices, Longmont, Colorado). The instrument was 

calibrated with a Spectral on reference panel before each 

sampling session. Measurements were taken under uniform 

daylight conditions between 10:00 hrs and 14:00 hrs to minimize 

solar angle. For each leaf, three technical replicates were 

recorded and averaged to obtain the final spectra. 

Pre-processing of spectral data 

Raw spectra were subjected to a standardized pre-processing 

workflow to enhance diagnostic signal quality. High-frequency 

noise was reduced using Savitzky - Golay polynomial smoothing, 

while scatter and baseline variations were corrected using SNV 

and MSC (11, 17, 18). To highlight infection-induced changes, first

- and second-order derivatives were calculated, enhancing edge 

features and curvature linked to chlorophyll degradation, water 

stress and protein disruption (11). 

Dimensionality reduction and similarity analysis 

To visualize latent structures and disease separability, spectra 
were projected into low-dimensional spaces using PCA, t-SNE and 

UMAP. Spectral similarity was assessed using cosine similarity and 

the SAM, both of which provide magnitude-independent 

measures of spectral divergence (19, 20, 9). 

Outlier detection and feature selection 

An Isolation Forest algorithm was applied to exclude anomalous 

spectra, thereby reducing noise from atypical measurements. 

Concurrently, Random Forest classifiers were used to rank 

wavelength importance based on mean impurity reduction. The 

ten most informative wavelengths were retained for index 

development and classification modelling (21). 

Structural diagnostics 

Beyond conventional analyses, three advanced metrics were 

introduced to quantify the stability and redundancy of disease-

related features (22, 15). Lagged correlation assessed the 

continuity of spectral information across shifted bands, spectral 

autocorrelation measured repeating reflectance patterns and 

the feature persistence metric evaluated the durability of 

significant absorption features across contiguous spectral 

windows. These diagnostics provided new insights into the 

stability of infection-sensitive wavelengths and guided the 

construction of the Rice Blast Index. 

 This comprehensive methodology flow (Fig. 1) integrates 

classical preprocessing, machine learning-driven interpretation 

and Rice Blast spectral structure analysis. The cited references 

provide the mathematical and methodological foundations for 

each transformation and metric, ensuring scientific transparency 

and reproducibility (Table 1). 

 

Results and Discussion  

Rice Blast Spectral signatures 

The pre-processed spectral signatures for all samples were 

plotted to visually inspect their consistency, variability and the 

major features present within the dataset. The pre-processing 

pipeline, which included Savitzky - Golay filtering, SNV 

normalization and MSC, effectively reduced noise and baseline 

variability, allowing key spectral features to be observed more 

clearly. The combined Savitzky - Golay smoothing, SNV and MSC 

markedly flattened the baselines and revealed distinct 

absorptive troughs near 680 nm, 970 nm and 1200 nm 

corresponding to chlorophyll, water and protein respectively as 

shown in Fig. 2.  
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Table 1. Key spectral processing techniques and analytical metrics with mathematical formulations 

Parameter LaTeX Formula Explanation 

Savitzky-Golay Filter  
Polynomial smoothing of order m over 2k + 1 points 

 

Standard Normal Variate (SNV)  Row-wise normalization using mean and std 
deviation 

Multiplicative Scatter Correction  Corrects additive (a) and multiplicative (b) effects 

First Derivative  Central difference gradient 

Second Derivative  Highlights curvature 

Cosine Similarity  Angular similarity between vectors 

Spectral Angle Mapper (SAM)  Angle between spectra in radians 

Normalized Difference Index  Standardized difference between bands 

Random Forest Importance  Mean impurity decrease per feature 

Table 1. Key spectral processing techniques and analytical metrics with mathematical formulations 
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 Major absorption features associated with water, protein 

and pigment content were readily identifiable and consistent 

with known plant physiological processes. The overall similarity 

among the spectral signatures indicated the homogeneity of 

sample preparation and data collection protocols, while minor 

variations reflected intrinsic biological or experimental 

differences. This comprehensive visualization established 

confidence in the quality and interpretability of the dataset, 

providing a solid foundation for subsequent multivariate 

analysis, classification and index development efforts.  

 The clarity and reproducibility of these signatures are 

crucial for advancing remote sensing-based plant phenotyping. 

Comparable denoising pipelines have proven essential for 

reliable disease monitoring in wheat and soybean (23, 24).  

Band-to-band correlation matrix 

Multiscale diagnostics, ranging from per-band persistence to 

global manifold structure agree with recent high-throughput 

phenotyping trials and underscore the growing need for 

explainable deep-learning pipelines that highlight key 

wavelengths and leverage curated hyperspectral datasets such 

as Weed-Cube or temperature-aware temporal sampling 

approaches (25-29).  

 A band-to-band correlation matrix was generated to 

quantify the degree of linear association between all pairs of 

wavelength bands across the dataset.  As shown in Fig. 3, the 

matrix, color-coded from strong negative to strong positive 

correlations, revealed the intricate structure of redundancy and 

unique information embedded within the spectral data. Blocks 

 

Fig. 2. Normalized spectral reflectance signatures for all samples after pre-processing.  

 

Fig. 3. Pearson correlation matrix illustrating inter-band relationships across wavelengths. 
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of high positive correlation, visible as contiguous red regions, 

indicated spectral domains where bands responded similarly to 

underlying biochemical or physical properties. Conversely, areas 

of negative correlation highlighted spectral regions where 

reflectance behaves inversely, possibly linked to specific 

absorption features or physiological stress responses.  

 The presence of distinct correlation patterns suggested 
that, while a large portion of hyperspectral data is highly 

redundant, specific band combinations may offer unique 

discriminatory power. This analysis was instrumental in guiding 

both feature selection and the design of novel spectral indices, as 

it allows the systematic exclusion of redundant variables and the 

identification of uncorrelated or complementary bands. By 

visualizing the correlation structure in this manner, the reliability, 

interpretability and efficiency of downstream modelling and 

analysis were markedly improved.  

Cosine similarity matrix 

Pair-wise cosine similarity scores revealed two tightly grouped 

spectral clusters (mean similarity > 0.95), separated by a smaller 

set of outliers. A cosine similarity matrix was constructed to 

quantitatively assess the spectral resemblance between 

individual samples after preprocessing. The lower triangular 

heatmap (Fig. 4) visualized these pairwise similarity scores, 

where red hues denote high similarity and blue hues indicated 

low or negative similarity between spectra.  

 The structure observed in the heatmap demonstrated 

distinct groupings among samples, with certain clusters 

exhibiting high mutual similarity, while others displayed 

pronounced dissimilarity. This distribution likely reflected 

underlying physiological, genetic or treatment-related variations 

within the dataset. The use of cosine similarity, being invariant to 

magnitude differences, emphasized the importance of spectral 

shape rather than absolute reflectance values, which is 

particularly beneficial for robust classification and clustering in 

hyperspectral research.  

 This representation facilitated a rapid visual assessment 

of data homogeneity and the identification of outlier, thereby 

guiding subsequent clustering, anomaly detection and feature 

engineering tasks. The approach thus provided a foundational 

layer for advanced multivariate analyses in the context of 

spectral data mining. Similar matrix-based screening methods 

have been used to partition airborne vegetation signals before 

atmospheric correction, greatly reducing false positives (30).  

Dimensionality reduction: PCA, t-SNE and UMAP projections 

Three advanced dimensionality reduction techniques PCA, t-SNE 

and UMAP were employed to project the high-dimensional spectral 

data into two dimensional spaces for visualization. The scatter plots 

corresponding to each method offered complementary insights into 

the intrinsic data structure. In the PCA projection (Fig. 5), linear 

variance across samples was captured, revealing primary axes of 

separation that likely corresponded to major sources of variation, 

such as disease status or genotype.  

 The t-SNE projection further resolved non-linear 

relationships, often accentuating local sample neighbourhoods 

and aiding in the detection of subtle clusters or transitional states 

within the dataset. UMAP, by preserving both local and global data 

topology, generated a projection in which the sample distribution 

more accurately reflected underlying spectral similarities. Color 

gradients within each plot added an extra dimension of 

interpretability, allowing the visual tracing of sample progression 

along principal axes or embedding components.  

 

Fig. 4. Cosine similarity matrix highlighting spectral similarity between samples. 
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 PCA explained 98 % of the total variance within the first five 

components, while t-SNE and UMAP further disentangled non-linear 

manifolds, isolating a small subgroup that later corresponded to 

symptomatic leaves. Recent benchmarking studies have shown that 

coupling UMAP with Random Forest classifiers yields 3 %- 6 % higher 

κ-accuracy than PCA alone in hyperspectral crop studies (31). 

 The three-method comparison provided a robust 

exploratory framework for understanding class separability, 

identifying potential outliers and uncovering natural groupings 

within the dataset, thereby informing subsequent clustering and 

supervised learning efforts.  

Feature persistence across bands 

Spectral band persistence peaked at 648 nm, 1068 nm and 1560 nm, 

wavelengths repeatedly flagged as “highly stable” by local-Hurst-

exponent redundancy tests (32). The feature persistence analysis 

investigated the consistency and duration of significant spectral 

features across all wavelength bands. Fig. 6 depicts the persistence 

length, defined as the number of contiguous wavelength bins in 

which the signal exceeded a defined threshold. This metric served as 

a proxy for the robustness of the observed spectral features, with 

longer persistence lengths indicating more stable and potentially 

biochemically meaningful patterns. 

 The most persistent bands, highlighted in warmer colors, 

corresponded to spectrum regions where reflectance characteristics 

remained consistently elevated or suppressed, suggesting the 

presence of strong absorptive or emissive features likely associated 

with specific chemical constituents or structural properties of plant 

tissue. Conversely, shorter persistence lengths indicated localized or 

transient features, which may have arisen from noise, experimental 

variability or subtle physiological effects.  

 This analysis provided a quantitative foundation for focusing 

future investigations towards the most stable and informative 

regions of the spectrum, while enabling the exclusion of less reliable 

bands. Such an approach enhanced the interpretability and 

reproducibility of spectral analysis in plant disease monitoring and 

related remote-sensing applications. Focusing subsequent 

modelling on these persistent spectral windows therefore 

minimized noise inflation arising from transient bands.  

Lagged correlation analysis 

The mean correlation decayed exponentially (ρ ≈ e-0.12 lag), with 

redundancy falling below 0.2 at a 25-band separation, an 

observation consistent with synthetic-scene findings where useful 

information density plateaued beyond similar lags (31). Lagged 

correlation analysis was performed to assess the degree of similarity 

between reflectance values at different spectral lags, thereby 

capturing the redundancy and autocorrelation inherent in 

hyperspectral data. Fig. 7 demonstrated how the mean correlation 

coefficient decreased as the spectral lag increased, with a generally 

high correlation observed at small lags that gradually diminished 

with greater separation.  

 This trend reflected the inherent smoothness of plant 

reflectance spectra, where adjacent bands are often highly 

correlated due to broad biochemical absorption features and the 

continuous nature of the electromagnetic spectrum. The decay 

curve served as an informative tool for variable selection and 

dimensionality reduction, as it indicated the extent to which 

neighbouring wavelengths contained overlapping information.  

 

 

Fig. 5. Comparison of PCA, t-SNE and UMAP projections for visualizing spectral data structure. 

Fig. 6. Distribution of feature persistence lengths across spectral bands. 
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 By quantifying spectral redundancy in this manner, the 

analysis supported the rational selection of non-redundant bands 

for index development and model construction, ultimately 

improving the efficiency and accuracy of subsequent analyses. 

Furthermore, the presence of any deviations or inflection points in 

the lagged correlation curve could point to regions of biochemical or 

physiological significance, warranting further targeted investigation. 

This finding justified the use of every 20 nm sampling interval in 

lightweight field sensors.  

Mean spectral autocorrelation function 

Random Forest analysis identified 2016 nm, 1977 nm and 648 nm as 

the most discriminative bands, aligning with known water, protein 

and pigment absorption features and consistent with findings from 

earlier cereal rust studies (33). Spectral autocorrelation analysis 

confirmed the inherently smooth and redundant nature of plant 

reflectance spectra, with high self-similarity observed at smaller lags 

that progressively declined with increasing band separation. 

Occasional secondary peaks suggested the presence of periodic 

biochemical signals.  

 These patterns highlighted the effective spectral resolution 

of the dataset, supported the selection of independent variables 

and improved the foundations for model generalizability, factors 

critical for achieving robust disease diagnostics in precision 

agriculture (Fig. 8). 

Most informative wavelengths (Band importance via random 

forest) 

The data-driven index RBI = (R1068−R1560) / (R1068+R1560) 

produced class-separation (AUC = 0.94) comparable to the 

Geometry Ratio Index recently proposed for rice blast (6) and 

outperformed conventional NDVI by 11 %. Early-stage studies on rice 

blast (34, 35) similarly identified short wave visible contrasts as the 

most sensitive indicators.  

 The RF feature importance analysis was performed to 

identify the most informative spectral bands contributing to class 

separation in the dataset. Fig. 9 illustrates the top ten wavelengths, 

ranked according to their RF importance scores. Each band was 

represented with a distinct color for clarity and the corresponding 

importance score was annotated alongside each bar for precise 

interpretation.  

 The analysis revealed that the bands centered at 2016 nm, 
1977 nm and 648 nm exhibited the highest importance, suggesting a 

strong association with the target classification. This pattern implied 

that both the shortwave infrared and visible regions contained 

critical information relevant to class differentiation, possibly 

reflecting biochemical or structural changes within the samples. The 

relative magnitudes of the importance scores highlighted subtle but 

significant spectral features that might otherwise be overlooked in 

conventional analysis.  

Fig. 7. Decay of mean correlation coefficient with increasing spectral band lag. 

 

Fig. 8. Mean spectral autocorrelation reveals band-wise periodicity in reflectance data. 
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 The use of a machine learning approach enabled a data-

driven and objective selection of optimal bands, thereby providing a 

robust foundation for spectral index development and targeted 

remote-sensing applications. Visualization of these results enhanced 

transparency and reproducibility in band selection, supporting the 

reliability of subsequent interpretations within the spectral analysis 

workflow. 

Spectral Angle Mapper (SAM) distance matrix 

High positive autocorrelation blocks (r > 0.9) spanned the 700 nm

- 950 nm plateau, mirroring simulation studies with DESIS and 

AVIRIS-NG that optimized feature spacing (31, 36). These findings 

support parsimonious sensor design by enabling the pruning of 

redundant channels without sacrificing biochemical sensitivity.  

 The SAM distance matrix, based on the angular separation 
between reflectance vectors, revealed clear patterns of spectral 

affinity (Fig. 10). Lower SAM values (represented by cooler colors) 

indicated higher similarity, whereas higher values (warmer colors) 

denoted greater dissimilarity among spectra. Because SAM is 

insensitive to absolute magnitude and emphasizes spectral shape, 

it is well suited to highlight biochemical or physiological state 

changes. Accordingly, Fig. 10 indicated distinct spectral groupings 

and outliers, improving the reliability and interpretability of 

downstream class discrimination and clustering. 

 

Fig. 9. Random Forest-derived importance scores for the top 10 informative wavelengths. 

Fig. 10. Pairwise spectral dissimilarity assessed via spectral angle mapper (SAM) metric. 
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  Importantly, the SAM map linked physiologically 

meaningful bands to trait variation: 648 nm (within the red 

absorption trough) corresponded to pigments principally 

chlorophylls; 1977 nm, near the strong O - H combination region 

(~1.94 µm), indexed leaf water status and 2016 nm, in the SWIR 

region dominated by N - H and C - H combination/overtone 

features dominate, reflected proteins/dry-matter composition. 

Consistent separations around 1.97 µm- 2.02 µm and strong 

affinity within 640 nm- 660 nm therefore aligned with water-

protein/dry-matter contrasts and pigment dynamics respectively, 

confirming the diagnostic value of these bands within the SAM 

framework. 

Performance superiority of the RBI over NDVI and PRI 

Heat-mapping SAM angles (< 0.06 rad) confirmed the clustering 

pattern previously observed in cosine similarity space, while 

three samples exceeding 0.15 rad were flagged as potential 

outliers (37). From a combinatorial search of over n number of 

band pairs, the RBI was derived using 1068 nm and 1560 nm as 

the most informative wavelengths. These correspond to 

chlorophyll - protein absorption (1068 nm) and water - protein 

interactions (1560 nm), both of which are directly linked to blast-

induced physiological disruption. 

 The RBI achieved clear class separation across samples, 

outperforming conventional vegetation indices. Specifically, it 

achieved an F1-score of 0.95 and Cohen’s κ of 0.93, compared to 

NDVI (F1 = 0.81, κ = 0.77) and PRI (F1 = 0.84, κ = 0.79). This 

improvement underscores the strength of targeted, data-driven 

band selection over generic vegetation indices. 

 By combining simplicity, robustness and physiological 

relevance, the RBI provides a transferable diagnostic tool for 

early rice blast detection. The comparative performance is 

summarized in Table 2, which highlights the RBI’s superiority 

across independent growing seasons.  

 

Conclusion  

This study presents a novel, data-driven approach for hyperspectral 

monitoring of rice blast. By integrating band optimization, feature 

persistence analysis and custom index construction with advanced 

machine learning, the method overcomes the limitations of 

predefined indices and empirical band selection. The newly 

developed RBI demonstrated superior accuracy over NDVI and PRI, 

enabling sensitive detection of subtle infection-driven changes. 

 Beyond methodological innovation, the framework is both 

practical and scalable. With an average processing time of 18 ms 

per spectrum, it is suitable for deployment in UAV-based scouting, 

breeding trials and precision agriculture programs. Its integrative 

design combining pre-processing, dimensionality reduction, 

anomaly rejection and structural diagnostics provides a 

transferable template for monitoring diverse crop diseases, 

thereby advancing hyperspectral phenotyping from the leaf scale 

to the field scale.    
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