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Genetic engineering and genome editing techniques in peanut plants
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ABSTRACT

Research has long been associated with human life. In the effort to make a living, many experts who
have contributed to the modernization of traditional research methods by conducting various research
activities. In this process, professionals, from farmers to senior researchers, have done their part by
developing plants that can tolerate or resist to disease. The growing population, climate change and
plant disease are having a devastating effect on food security. In particular, it is essential to increase
food production by producing  high  yielding  crops of  good quality,  that  may ensure food security.
Recently,  different  gene-  editing technologies  have been developed.  These techniques  have been
applied in many research fields and their development has provided economic benefits to farmers.
Agrobacterium-mediated and biolistic methods are very important techniques for transforming genetic
materials in plants. Genome- editing technologies are recent and highly applied in plant research to
improve genes associated with yield, disease resistance and drought resistance.  For example, Zinc-
finger  Nucleases  (ZFNS),  Transcription  Activator-like  Effector  Nucleases  (TALEN),  and  Clustered
Regularly  Interspaced  Short  Palindromic  Repeats  system  (CRISPR/  Cas9)  methods  are  now  widely
applied by researchers and are playing a positive role in increasing production and productivity.  Of the
gene- editing technology, CRISPR/ Cas9 is widely applied in plant breeding programme as it is easy to
use and cost-effective. In this review, we mainly focus on peanut plant, which is an important oil-
bearing allotetraploid crop. Therefore, peanut gene editing-technology could increase the oleic acid
content  in  edible  peanut  oil.  Thus,  genome  editing  and  gene  transformation  technologies  are
extensively explored in this review.

Introduction

Due  to  the  development  of  different  gene
transformation  and  gene  removal  or  addition
methods,  researchers  are  applying  to  solve  plant
disease problems, to increase the yield and quality of
the  product.  Recently,  gene-  editing  technology  has
proved  to  be  a  promising  method.  CRISPR/  Cas9  in
particular  is  being  used  and  is  growing. Cas9
endonuclease  and  guide  RNA  can  be  delivered  into
plant cells as DNA, RNA or robonucleoprotein (RNP) to
cleave  target  DNA  sequence  (s)  in  the  genome.
However, in addition to the intended target (on-target)
site,  Case9  can  potentially  cause  off-target  double
strand  breaks  (DSBs)  at  genomic  locations  with
significant sequence similarity to that of the intended
target  sequence  (1,  2).  Cause  of  off-target  (creating
unexpected  mutation)  may  be  a  drawback  of  the
technology which need improvement mechanism and
further investigation to minimize related problem in
the future breeding programme in plants. 

Through  germ  plasm  screening,  plant  breeders
have  identified  crops  having  economically  important
traits.  For  example,  legumes  especially  peanut  with
high oleic acid content was identified. This high oleate
spontaneous mutant line (F435) contain 80% oleic acid
(3).  In this  mutant  line,  two types  of  mutation  were
reported at 448base pair (bp) in the ahFAD2A gene and
insertion between (441_442insA), in the ahFAD2B gene
(4).  Using mutant  line as one of the  parents helps  to
improve  important  trait  in  conventional  breeding  in
the peanut genome. Since then, many high oleic acid to
linoleic acid ratio (O/L) cultivars have been developed
(5). Increasing oleic acid content in the peanut genome
has  a  great  effect  to  enhance  the  shelf  life  and  has
health benefits too. Reports are there on the new G451T
mutation induced by CRISPR/Cas9 based gene-editing in
the coding region of  Arachis hypogaea FAD2B gene in
the peanut  (6).  Using recently developed gene-editing
technologies,  peanut  breeders  will  improve  the  oleic
acid  to  linoleic  acid  ratio  (O/L).  China  has  produced
several high oleate (HO) peanut cultivars and countries
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like  Argentina,  Australia,  Brazil,  Israel,  Japan  and
South  Africa  are  also  producing  high  oleate  peanut
products  for  consumption  (7).  Allotetraploid  Arachis
hypogaea (AABB, 2n=4x=40) has two common diploid
(2n=2x=20) ancestors (Arachis dura-nensis and Arachis
ipaensis having (AA) and (BB) genome respectively (8-
12).

The  desaturase  enzyme  encodes  ahFAD2A  and
ahFAD2B genes (4). This enzyme plays a great role in
the conversion of oleic acid to linoleic acid. To reduce
the  linoleic  acid  and  to  increase  oleic  acid  in  the
peanut genome, gene-editing method has a great effect
on  the  future  breeding  programme.  Therefore,  the
main focus of the current review is to assess genetic
engineering and genome editing techniques in peanut.

Peanut oil contains about 12 fatty acids, of which
nearly  80%  is  composed  of  oleic  acid  a  mono
unsaturated fatty acid (36-67%) and linoleic acid a poly
unsaturated fatty acid (15-43%). Further, palmitic acid
a saturated fatty acid contributes nearly 10%, whereas
remaining  10%  are  constituted  of  up  to  nine  other
fatty acids (7, 13). The nutritional quality, flavor and
shelf-life of peanut seeds and its products dependent
on the presence of relative proportion of various fatty
acids like saturated fatty acids, monounsaturated fatty
acids and polyunsaturated fatty acids in its oil (14).

Peanut transformation via particle bombardment 

Plant  breeders  are  widely  using  different  gene
transformation  techniques  to  transfer  biologically
important  traits  for various reasons. Producing high
yielding  crops  with  good  quality,  fungus  resistance,
bacterial resistance, pest resistance etc. are the main
goal  of  plant  breeding.  Two  genetic  transformation
methods  (particle  bombardment  and  Agrobacterium
mediated transformation) have been widely applied to
produce  economically  important  trait.  Genetic
transformation by particle  bombardment consists  of
the introduction of DNA in to intact cells and tissues by
accelerated microparticles driven at high speed (15).
The use of micro-projectile bombardment as a means
of  developing  transformed  peanut  plant  was  first
reported  (16).  Particle  bombardment  method  was
developed using immature peanut seeds as the source
of explants. In the nucleus, exogenous DNA fragments
are  liberated  and  may  be  integrated  in  to
chromosomal DNA through the process of illegitimate
or  homologous  recombination,  which  depend
exclusively  on  cellular  components  (17,  18).  Some
reports  on micro-projectile  bombardment  of  peanut
tissue  include:  bombarding  leaflets  from  mature
embryos (19, 20), somatic embryogenesis regeneration
system (21). Transformation through this technique is
considered a more suitable to study gene function and
transient gene expression (22). The main advantage of
this technology is ability to transfer gene to a cell or
tissue type and easier and quicker to use (23).

Peanut  transformation  via  Agrobacterium
mediated transformation

The agrobacterium mediated transformation has the
ability  to  transform  gene  in  plants  (24).  It  can
transfer  DNA  located  on  the  tumour-inducing
plasmid into the nucleus of the plant. Since this type
of transformation is  most effective and easy to use

nowadays, it is widely used in the molecular biology
laboratories.  Compared  to  particle  bombardment,
this technique is powerful and have a significant role
in the production of transgenic plants (24).

Peanut is considered to be recalcitrant for tissue
culture and genetic transformation. Many species are
either resistant to this gene transformation system or
show  low  transformation  efficiency  (25).  However,
using  different  explant  sources  such  as  de-
embryonated cotyledons (26-28), embryo axes (9) and
cotyledons (30) successful genetic transformation via
Agrobacterium-mediated  method has  been reported
in peanut research.  Cotyledonary nodes (CNs) have
relatively  better  regeneration  ability  than  another
explant source (31). 

Several  scientific  reports  on  Agrobacterium-
mediated transformation in peanut by using various
explant  sources  have  been  reported,  including  a
cotyledonary  node  (32-34),  de-embryonated
cotyledon (34-36),  Leaflet  (34),  immature leaves (35,
29),  decapitated  half  embryo  (37),  mesocoty  (38),
embryonic  axes  (39,  40),  leaf  and  cotyledon  (41),
embryo  axes  (42),  leaf  (43),  de-embryonated
cotyledon (44). In addition to peanut,  Agrobacterium
mediated transformation has been widely applied in
many  crops.  Some  of  these  include  soybean  (45),
barley (46), wheat (47),  sorghum (48-50), maize (51,
52), rice (53).

Genetic transformation is a powerful tool for the
investigation of gene function in crops, but in some
systems  its  impact  is  reduced  by  limited
transformation  capability  (54).  With  legumes
Agrobacterium tumefaciens mediated transformation
has  been used for  the  study  of  gene  function (55).
Moreover,  wider  availability  and  cost  effectiveness
are also two advantages that can be achieved through
this mechanism of gene transfer (56). 

Zinc-finger Nucleases

Engineered zinc fingers were combined with the DNA
cleavage  domain  of  FokI,  a  type  IIs  restriction
endonuclease,  to form ZFNs. It targets specific  DNA
sequences and alter the genome by creating double
strand  break  (DSB)  at  specific  location.   Double
stranded breaks facilitates DNA-repair process in the
cell by non-homologous end joining creating a loss of
function  mutations.  In  contrast,  homology  directed
repair  can  create  a  precise  mutation.  One  of  the
problems  is  to  cleave  off-target  sites  leading  to
cellular toxicity (57). Using this method large number
of plants have been edited successfully. For example,
rice (58),  Arabidopsis thaliana (59-61),  soybean (62),
wheat  (63),  perennial  fruit  trees  (64),  tomato  (65),
tobacco (66), rapeseed (67).

Transcription Activator-like Effector Nucleases

This is restriction enzymes that can cut desired DNA
sequence in the genome. TALEs protein contain DNA-
binding domain which is composed of many tandems
of amino acid repeats (68).  It  is  highly  specific  and
targets a nucleotide at the specific target site in the
genome.  Like  ZFNs,  TALENs  targets  the  genome
through  protein-DNA interactions.  Its  off-target  site
recognition  in the genome was reported challenge in
TALEN  and  other  gene  editing  technologies  (ZFNs)
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that  need  further  studies  to  overcome  unexpected
gene  mutation  in  the  genome of  the  organism  (69,
57). In many plant species including peanut, this gene
editing-  technology  has  been  used  (70,  71).  Gene-
editing by using TALEN has been reported for various
crops   include:   peanut  (72),   rice  (73-77),  soybean
(78),  maize  (79),  Wheat  (80),  barley  (81-83)
Arabidopsis thaliana  (84). 

Clustered  Regularly  Interspaced  Short
Palindromic Repeat (CRISPR/Cas)

The  CRISPR/  Cas9  system  was  derived  from  the
prokaryotic type II CRISPR system which is developed
from a gene editing system in bacteria. It is a recently
developed  technique  giving  the  opportunity  for
researchers  to  alter  an  organism’s  genome  for  the
intended  purpose  of  study.  This  technology  helps
breeders to add, remove or change genetic materials
at a specific location in the genome. Compared with
ZFNs  and  TALENs  the  CRISPR/Cas9  system  is
characterized  by  its  simplicity,  efficiency  and  low
cost  and by its  ability  to  target  multiple  gene  (85).
Gene-editing  technology  has  a  broad  application
prospects in peanut oleic acid improvement. In 2013,
using CRISPR/ Cas9 the first gene editing in the model
plants  Arabidopsis  thaliana (86)  and  Nicotiana
benthamina (87)  were  reported.  Since  then,  it  is
widely  applied  in  many  plant  species  for  gene
function analysis  and its  current wide usage in the
breeding  of  crop species  has  promising  application
for the future breeding programmes.

In CRISPR/Cas9, the low specificity of sgRNA may
cause off-target DNA sequence. Due to this effect an
unexpected or unwanted mutation will occur in the
genome of the organism. Even though cas9 nickase
developed to reduce the off-target effect, still it needs

further investigation to avoid unnecessary mutation
(88). Recently many crops that have been improved
by  CRISPR/Cas9  include:  Arabidopsis and  soybean
(89),  barley  (90), Brassica  napus (91),  maize  (92),
peanut (6),  rice (93), sorghum  (94),  soybean (95-97),
wheat  (98, 99). These reports provide evidence that
the CRISPR/Cas9 could be used for targeted genome
editing in crops. 

Genome-editing  approaches  utilizing  site-
directed  endonucleases  capable  of  making
chromosomal double-strand breaks (71, 119, 120) can
help  overcome  the  limitations  of  conventional
breeding  and  accelerate  development  of  improved
crops.  By  harnessing  natural  cellular  DNA  repair
process, double stranded breaks (DSBs) can be used
to  introduce  targeted  disease  resistance,  genome
edits  ti  improve  agronomic  traits  such  as  yield,
nutritional content (121, 122) (Table 1).

Conclusion

Among gene-editing  technologies,  ZFNs  and  TALENs
target the genome through protein-DNA interactions,
whereas  genomic  DNA  editing  by  the  CRISPR-Cas
system is based on short RNA-DNA base pairing (69).
Targeting  one  gene  at  two  positions  increase  the
overall mutation frequency and allows the recovery of
homozygous mutants in one generation (123, 124). The
ease of multiplexing with the  CRISPR/Cas9 system is
therefore  an  advantage  for  the  generation  of
knockouts using this dual-gRNA approach. In contrast
to  ZFNs  and  TALENs,  Cas9  generates  blunt  double
strand  breaks  that  are  typically  repaired  by  the
formation of small (usually 1-bp) indels, leading to the
frequency recovery of frame shift mutants when the
target site is within an exon (125).

Table 1. Genome editing technology in different plant species.

Plant  Method of editing Purpose of editing References
Peanut CRISPR/Cas9 Mutagenesis of FAD2 genes (6)
Tomato CRISPR/Cas9 Generate long-shelf life tomato (100)
Potato TALEN Targeting sterol side chain reductase 2 (SSR2) gene (101)
Arabidopsis CRISPR/Cas9 Generate inheritable mutants of Arabidopsis (89)
Soybean CRISPR/Cas9 Generate inheritable mutants of soybean (89)
Peanut TALEN Mutagenesis of fatty acid desaturase 2 (72)
Soybean CRISPR/Cas9 Detect Glyma06g14180,Glyma08g02290   and Glyma12g37050 gene (102)
Maize CRISPR/Case 9 Evaluate specificity of CRISPR-cas9 editing (103)
Maize CRISPR/ Case9 Streamlines trait gene identification (104)
Maize TALEN Induced targeted mutations in ZmPDSZmIPK1A ZmIPK&ZmMRP4 genes (79)
Barley CRISPR/Cas9 Generating homozygous knockout mutants (105)
Melon CRISPR/Cas9 knockout phytoene  desaturase gene (106)
Barley CRISPR/cas9 Elucidate genetic control of vitamin E composition (107)
Rice ZFNs Mutagenesis of SSIVa gene (58)
Wheat TALEN Evaluate mutation screening (108)
Barley CRISPR/Cas9 Creating targeted gene knockout (109)
Wheat CRISPR/Cas9 Examine the role of temperature to editingefficiency (110)
Tomato ZFNs Targeted LEC1-LIKE4 gene (65)
Apple CRISPR/Cas9 Mutagenesis of MdCNGC2 (111)
Apple CRISPR/Cas9 Induction of phytoene desaturase (PDS) gene (112)
Rice CRISPR/Cas9 Improvement of rice blast resistance targeting the OsERF922 gene (113)
Arabidopsis ZFNs Targeted mutations (59)
Apple CRISPR/ Cas9 Reduced fire blight susceptibility (114)
Grape vine CRISPR/Cas9 Mutagenesis of TAS4 and MYBA7 loci (115)

Sorghum CRISPR/Cas9 Target cinnamyl alcohol dehyderogenase (CAD)   and phytoene desaturase 
(PDS) genes  

(116)

Cabbage CRISPR/Case9    Cy3-Cas9 protein delivery in to the nucleus (117)
Wheat TALEN gene editing (80)
Rice CRISPR/Cas9  knock out OsSWEET14 gene (107)
Tomato CRISPR/Cas9 test novel sequence-specific mutations at eIF4E1 (118)
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