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Introduction 

The surging global demand for maize, driven by its diversified 

uses in animal feed, biofuel production and direct human 

consumption, presents substantial challenges for global 

agriculture. This demand is expected to intensify, with global 

maize consumption projected to rise by 23 million tons by 2029, 

a significant portion of which will be met by sub-Saharan Africa 

(SSA) (1, 2). SSA, where maize serves as both a staple food crop 

and an economic driver, is increasingly under pressure to boost 

production amidst worsening climatic and agronomic 

constraints. 

 Despite its importance, maize cultivation in SSA remains 

vulnerable to a multitude of biotic (e.g., diseases and pests) and 

abiotic (e.g., drought, heat and nutrient deficiency) stresses that 

cause substantial yield losses annually (3, 4). The situation is 

further aggravated by global climate change, which is leading to 

rising temperatures and erratic rainfall patterns, especially 

during critical phenological stages such as flowering and grain 

filling. These high-temperature stress episodes can lead to pollen 

sterility, reduced kernel set and ultimately drastic yield 

reductions (5, 6). 
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Abstract  

This study investigates the impact of heat stress on the stability and adaptability of maize genotypes across three environments Odisha, 

Jharkhand and Bihar during 2022-2023. A total of 54 maize inbred lines, along with two check varieties (56 genotypes), were evaluated using 
an alpha-lattice design with two replications. Data were recorded for 18 quantitative traits and stability analysis was conducted using both 

Additive Main Effects and Multiplicative Interaction (AMMI) and Genotype plus Genotype × Environment interaction (GGE) biplot models. 

Pooled ANOVA revealed significant effects for genotypes and environments across all traits, except anthesis-silking interval and brown husk. 

The mean squares due to genotypes were notably high for grain yield per plant (94058.26), grain weight (23656.84), plant height (1962.3), ear 
height (691.99), kernel per row (245.06) and chlorophyll content (53.8). Similarly, environments showed significant contributions, with grain 

weight (11034.5), grain yield per plant (1522), kernel per row (737.15), anthesis-silking interval (603.26), plant height (411.6) and brown husk 

(350.26) exhibiting substantial variation. The G × E interaction was highly significant for most traits, with grain weight (453.3), grain yield per 

plant (282.3), brown husk (24.99), plant height (22.76), days to silking (16.91) and days to anthesis (14.36) being particularly important 
contributors. Partitioning of G × E revealed that IPCA I was significant for traits such as days to 50 % anthesis, days to silking, ears per plant, 

chlorophyll content, plant aspect, grain yield per plant, cob length, grain weight, kernels per row and kernel rows per cob, while IPCA II was 

non-significant across traits (values ranging from 0.018 for brown husk to 59.63 for grain weight) and PC3 was zero for all traits. GGE biplot 

analysis identified genotypes VL1010764, KL155991, KL156009 and KL155979 as high performing under heat stress conditions, whereas 
VL143892, VL143905, KL155989, KL156003, VL13853, KL155739, VL18333, VL18334, VL143891 and KL153072 demonstrated consistent stability 

across all environments. These findings provide critical insights into the identification of heat-resilient and stable maize genotypes. The 

integration of AMMI and GGE biplot models strengthens the precision of selection under heat stress, thereby supporting breeding programs 

aimed at enhancing climate resilience and ensuring maize productivity in the face of rising global temperatures. 

Keywords: ANOVA; food security; grain yield per plant; G × E interactions; heat-resilient  

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.11334&domain=horizonepublishing.com
https://doi.org/10.14719/pst.11334
mailto:swapnilkomal14@gmail.com
mailto:digvijaygpb@nduat.org,%20swapnilkomal14@gmail.com
https:/doi.org/10.14719/pst.11334
https:/doi.org/10.14719/pst.11334


SRUTHIVARDHINI ET AL  2     

https://plantsciencetoday.online 

 Recent IPCC reports and regional climate models indicate 

that SSA is likely to experience more frequent and intense 

heatwaves over the next few decades, exacerbating the 

production challenges for temperature-sensitive crops like 

maize. Consequently, there is an urgent need to develop heat 

stress-resilient maize genotypes capable of sustaining 

productivity under such conditions. Conventional breeding 

methods, though effective, require robust multi-environment 

testing (MET) to accurately identify and select genotypes that 

demonstrate stable performance across variable environments, 

especially under heat stress conditions. 

 To address this critical need, the present study aims to 

conduct a comprehensive stability analysis of maize genotypes 

under heat stress. Advanced statistical tools such as the Additive 

Main Effects and Multiplicative Interaction (AMMI) model and the 

Genotype plus Genotype x Environment Interaction (GGE) biplot 

analysis are utilized. These models not only assess the genotypic 

performance across diverse environments but also help visualize 

and interpret the genotype-by-environment (G×E) interactions, 

providing critical insights into the stability and adaptability of 

different maize lines (1, 7). 

 Recent studies have demonstrated the effectiveness of 

GGE and AMMI models in screening heat-tolerant maize varieties 

across South Asia and SSA, making them indispensable tools in 

modern plant breeding programs (8, 9). Moreover, integrating 

phenotypic data with environmental covariates and possibly 

genomic selection tools in future studies can further enhance the 

predictive accuracy and efficiency of selection. 

 Thus, the outcomes of this research are expected to 

guide breeding programs in developing climate-resilient maize 

varieties, contributing not only to regional food security but also 

to the global maize value chain, particularly under the 

impending threat of climate change.  

 

Materials and Methods 

The experimental material used in the present investigation 

consisted of 54 inbred lines of maize (Zea mays) and 2 check 

varieties (Table 1.) which were obtained from ARS, Peddapuram. 

The experimental trial was sown in alpha lattice design with two 

replications during the spring, 2022-23 to carry out the stability 

analysis by evaluating the stable inbreds in relation to the 

environmental effects. The experiments were conducted at Post 

Graduate Farm, Centurion University of Technology and 

Management (CUTM), Paralakhemundi, Odisha as well as two 

additional locations in Narayan Institute of Agricultural Sciences, 

Rohtas, Bihar and Birsa Agricultural University (BAU), 

Jharkhand during spring, 2023 to determine their stable 

performance across the 3 locations. The observations were 

recorded to understand the extent of genetic variability, diversity 

and stability of inbred lines for eighteen quantitative traits. The 

observations viz., plant height, ear height, ears per plant, ear 

aspect, plant aspect, leaf death, number of kernel rows per ear, 

number of kernels per row, 1000 grain weight, cob length and cob 

girth were taken from 5 random selected plants of each genotype. 

Further observations such as days to 50 % anthesis, days to 50 % 

silking, anthesis silking interval, tassel blast, grain yield were taken 

on plot basis in three different environments under heat stress as 

per the standards of abiotic stresses. Data were recorded on 

individual plant and plot basis for grain yield, yield attributing 

characters and stress related traits at the appropriate growth 

stage of the crop.  The GGE biplots have been interpreted for four 

major yield-attributing traits like grain yield per plant, kernels per 

row, kernel rows per cob and 1000 grain weight. These 

measurements provided the basis for assessing genotypic 

performance and stability across environments.  

Statistical analysis  

Analysis of variance over the environments 

The pooled analysis of variance can be further extended in which 

the total mean squares may be partitioned into various 

components. In this model, the total variance is first divided into 

two components, i.e.,  

i) genotype and  

ii) environment plus interaction (E + (G × E)).  

 The second component is further sub-divided into three 

components, viz., (a) environment linear, (b) genotype x 

environment (linear) and (c) pooled deviations. The variance due 

to pooled deviations is further divided into variance due to 

individual genotype. 

The additive main effect and multiplicative interaction (AMMI) model 

It can effectively explain G × E interaction, identify genotypes for 

specific and wide adaptation and measures the genetic gain in 

plant breeding programmes. The AMMI model analyses the 

additive effect of genotype and environment (location) by a 

S. No Genotypes S. No Genotypes S. No  Genotypes S. No  Genotypes 

1 VL1110501 15 VL107406 29 VL143892 43 KL153241 

2 VL1110514 16 VL109452 30 VL154632 44 KL154688 

3 VL1110517 17 VL109457 31 VL162206 45 KL155738 

4 VL1110519 18 VL109499 32 VL144234 46 KL155739 

5 VL1110532 19 VL109501 33 Vl143891 47 KL154714 

6 VL1110458 20 VL18444 34 KL154678 48 KL153072 

7 VL111341 21 VL18211 35 KL155993 49 KL153092 

8 VL111341 22 VL18327 36 KL155994 50 KL155978 

9 VL1017169 23 VL18333 37 KL155988 51 KL155973 

10 VL1016417 24 VL13692 38 KL155989 52 KL155974 

11 VL1016452 25 VL13853 39 KL155991 53 KL155979 

12 VL1016977 26 VL18523 40 KL156003 54 KL153093 

13 VL1017223 27 VL143903 41 KL156009 55 VL13691 

14 VL1010764 28 VL143905 42 KL154685 56 VL18334 

Table 1. List of genotypes used in the study 
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  standard analysis of variance (ANOVA) and the multiplicative 

effects of the GEI by using a multivariate technique i.e. principal 

component analysis (PCA). The numbers of AMMI family are 

identified according to number of PCA axis. One PCA axis, it is 

defined as AMMI1 and two PCA axis, it is defined as AMMI2 and so 

on. The multivariate analyses reveal the structure of data, 

summarize the data and eliminate the noise from data pattern. 

AMMI combines analysis of variance (ANOVA) and principal 

component analysis (PCA) into a single model with additive and 

multiplicative parameters. AMMI analysis was carried out using R 

software v4.0.2. 

GGE Biplot (Genotype + Genotype × Environment interaction) 

The GGE biplot methodology originates from graphical analysis of 
multi-environment variety trials (MET) data. The GGE Biplot model 

was introduced based on biplots, which are an effective tool for 

visualizing two-way data and are frequently used for the analysis of 

MET data (10) . A GGE biplot can simultaneously display genotype 

main effects (G) and genotype × environment effects (GE) from a 

two-way data table (10). here, it depicts 4 main components, those 

are discriminativeness vs representativeness, mean Vs stability, 

which won where biplot, relationship among the environments. 

The GGE biplots have been interpreted for four major yield-

attributing traits like grain yield per plant, kernels per row, kernel 

rows per cob and 1000 grain weight. 

 Using both AMMI and GGE biplot approaches together 

enhances insights: while AMMI rigorously quantifies component 

effects (G, E, GEI), GGE biplot adds a powerful, intuitive graphical 

representation. Studies have shown that combining these 

methods is particularly effective for comprehensive genotype 

selection and environment evaluation in maize breeding.  

 

Results and Discussion  

In this study, fifty-six maize genotypes were evaluated across the 3 

locations (Odisha, Jharkhand and Bihar) to carry out the stability 

analysis by evaluating the stable inbreds in relation to the 

environmental effects using pooled analysis of variance based on 

the Additive Main Effects and Multiplicative Interaction (AMMI) 

model. Comparable results were also reported, emphasizing the 

importance of coefficient of variation (CV) in assessing 

environmental consistency in breeding trials (8). 

Pooled analysis of variance based on AMMI model 

The pooled analysis of variance of fifty-six maize genotypes for 
eighteen characters using the AMMI model is presented in Table 2. 

The mean squares due to genotypes were significant for all traits 

except anthesis-silking interval and brown husk, while 

environments showed significance across all characters studied. 

The G × E interaction was highly significant for most traits, except 

ear aspect, chlorophyll content, anthesis-silking interval, leaf death, 

tassel blast, cob length, cob girth and kernel rows per cob (11). This 

interaction was partitioned into three interaction principal 

component analysis (IPCA) axes, with IPCA-1 being significant for 

traits such as days to 50 % anthesis, days to silking, anthesis-silking 

interval, brown husk, ears per plant, chlorophyll content, plant 

aspect, grain yield per plant, cob length, grain weight, kernels per 

row and kernel rows per cob, confirming the discriminative capacity 

of IPCA-1 for major agronomic traits (12, 13). 

 In contrast, IPCA-II was non-significant for all traits, with 

values ranging from 0.018 (brown husk) to 59.63 (grain weight), 

while PC3 values remained zero. Residuals ranged from 0.017 

(ears per plant) to 236.21 (grain weight). Variance analysis across 

various traits indicated maximum variance for grain weight 

(892.54), followed by grain yield per plant (557.01), brown husk 

(49.26), plant height (44.92), days to silking (33.27) and days to 

anthesis (28.29), reflecting their major contributions. 

 Environmental mean sums square further emphasized 

significant effects, particularly for grain weight (11034.5), grain yield 

per plant (1522), kernels per row (737.15), anthesis-silking interval 

(603.26), plant height (411.6) and brown husk (350.26). Comparable 

studies in maize and wheat reported similar outcomes, where IPCA-

I captured core interaction effects and grain yield traits exhibited 

the highest variance, validating their role in selection across 

environments (14, 15). In multi environment maize trials, IPCA-II 

also failed to achieve statistical significance, while grain yield and 

weight consistently displayed maximum variance, underscoring 

their importance in breeding programs (11). 

Sources of variation ENV GEN ENV*GEN PC1 PC2 Residuals 

DTA 247.34 18.81 14.36 26 2.29 9.52 
DTS 331.5 19.25 16.91 31.74 1.53 12.73 
ASI 603.26 5.55 10.68 20.46 0.54 10.78 

BHK 350.26 20.77 24.99 44.23 5.03 16.56 
LDT 1.17 3.12 0.05 0.09 0.02 1.09 
EHT 97.52 691.99 7.95 10.87 4.93 6.24 
PHT 411.6 1962.3 22.76 39.12 5.8 38.58 
EPP 0.008 0.4 0.01 0.03 0 0.01 
EAT 3.92 7.72 0.17 0.31 0.03 0.38 
CHC 10.95 53.8 0.86 1.38 0.33 0.91 
PLA 0.53 6.423 0.032 0.058 0.004 0.02 
GPP 2.33 7.34 0.12 0.23 0.01 0.17 
TBT 11.77 35.88 1.7 2.74 0.62 1.56 
COL 10.12 20.9 0.76 0.94 0.57 0.67 
COG 11034.5 23656.84 453.3 832.91 59.63 236.21 
GWT 737.15 245.06 12.95 23.21 2.3 6.65 
KPR 113.44 46.92 2.28 3.69 0.83 1.92 
KRC 1522.26 94058.26 282.8 514.77 42.24 145.88 

Table 2. Pooled analysis of variance for eighteen quantitative traits in maize 

DTA=Days to Anthesis, DTS=Days to silking, ASI=Anthesis-silking interval, BHK=Brown husk, LDT=Leaf death, EHT=Ear height, PHT=Plant 
height, EPP=Ears per plant, EAT=Ear Aspect, CHC=Chlorophyll content, PLA=Plant Aspect, GPP=Grain yield per plant, TBT=Tassel Blast, 

COL=Cob length, COG=Cob girth, GWT=Grain weight, KPR=Kernel per row, KRC=Kernel rows per cob. 
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 The mean sum squares due to genotypes highlighted 

strong contributions from grain yield per plant (94058.26), grain 

weight (23656.84), plant height (1962.3), ear height (691.99), kernels 

per row (245.06) and chlorophyll content (53.8), whereas anthesis 

silking interval and brown husk were non-significant. Similar 

environmental effects on grain traits and plant architecture were 

reported earlier in multi-environment trials (16, 17). The G × E 

interaction also revealed notable contributions for grain weight 

(453.3), grain yield per plant (282.3), brown husk (24.99), plant 

height (22.76), days to silking (16.91) and days to anthesis (14.36), 

reaffirming their importance in genotype evaluation. These findings 

are consistent with earlier studies highlighting the significance of 

these traits in dissecting G × E interactions (9, 11). 

Interpretation of GGE biplots and its components 

The graphical representation provides insight into genotype and 

genotype × environment interaction. It comprises four primary 

components: discriminativeness versus representativeness, 

mean versus stability, which-won-where biplot and relationship 

among the environments. The GGE biplots have been analysed 

specifically for four major yield-contributing traits: grain yield per 

plant, kernels per row, kernel rows per cob and 1000 grain weight. 

Grain yield per plant  

Discriminativeness vs representativeness 

The GGE biplot (Fig. 1) illustrates discriminativeness through 

concentric circles representing the standard deviation within each 

environment, where longer vectors signify greater discriminatory 

power. Among the test sites, Bihar exhibited the highest 

discriminative ability. Representativeness was assessed using the 

average environmental axis (AEA), with environments positioned 

closer to this axis considered more representative. Bihar and 

Jharkhand were found to be more representative than Odisha, 

making them optimal for genotype selection. Similar findings were 

reported by (18, 19), where environments with both high 

discriminative ability and representativeness such as certain 

eastern Indian states were identified as most effective for selecting 

stable, high-yielding maize hybrids using GGE biplot analysis. 

Mean vs stability 

 The "Mean vs. Stability" biplot (Fig. 1) evaluates both genotype 

performance and stability. Genotypes positioned farther to the 

right indicate higher yield potential, whereas those on the 

extreme left reflect poor performance. Along the y-axis, higher 

values represent greater variability, while lower values denote 

Fig. 1. GGE biplot of grain yield per plant in maize genotypes. 
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stability. Genotype VL18523 recorded the highest yield potential, 

while KL155994 performed poorly. In contrast, genotypes such as 

KL155991, with lower y-axis values, demonstrated greater 

stability. Similar observations were reported in maize (20), where 

high-yielding and stable genotypes were identified through GGE 

biplots. This method was also successfully applied in wheat for 

recognizing multi-environment stable performers under diverse 

climatic zones (21). 

Which won where biplot 

 The biplot (Fig. 1) highlights the top-performing genotypes in 

each environment and their adaptability across locations. 

Genotypes located at the polygon vertices represent the best 

performers in specific environments. For grain yield per plant, 

VL18523 was superior in Odisha, while KL153241 performed best 

in Jharkhand and Bihar. Additional genotypes such as VL1110519 

and VL1110458 also exhibited promising performance in certain 

environments. Similar findings were reported where GGE biplots 

were applied in rice to assess regional adaptability and in maize to 

identify climate-resilient genotypes (22, 23).  

Relationship among environments 

The relationship among environments was assessed through the 

angles between vectors, which indicate correlation coefficients 

smaller angles suggesting stronger correlations. The analysis 

revealed positive correlations among Odisha, Jharkhand and Bihar, 

with the strongest relationship observed between Jharkhand and 

Bihar, followed by Odisha. This indicates consistent performance 

patterns across environments. Comparable results were 

documented in wheat studies, where strong inter-environmental 

correlations were observed across the Indo-Gangetic Plain (12). 

Likewise, clustering of environments in GGE biplots has been 

shown to aid mega-environment identification and regional 

breeding strategies in rice (24). 

Kernels per row  

Discriminativeness vs representativeness 

The GGE biplot (Fig. 2) illustrates the discriminative and 

representative capacities of the three environments Odisha, 

Jharkhand and Bihar based on the angle between the Average 

Environmental Axis (AEA) and environment vectors. Jharkhand 

demonstrated both high discriminativeness and representativeness, 

making it ideal for selecting generally adapted genotypes for the 

kernel per row trait. In contrast, Odisha was discriminative but 

lacked representativeness, while Bihar, though highly 

representative, was non-discriminative and offered limited 

information for genotype differentiation. Similar outcomes were 

reported in earlier studies on multi-environment GGE analyses of 

maize kernel traits (18). 

Fig. 2. GGE biplot of kernels per row in maize genotypes. 
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Mean vs stability 

The biplot (Fig. 2) presents genotypes based on their variability 

and stability. Genotype KL155979 recorded the highest number of 

kernels per row, confirming its superiority, whereas VL1017169 

showed the lowest count, indicating poor performance. 

Genotypes KL15594 and KL15591 displayed high variability, while 

VL144234 emerged as a stable genotype. Similar findings were 

reported in earlier studies examining genotype-by-environment 

interaction in maize hybrids (25). 

Which won where biplot 

The vertices of the polygon in the biplot (Fig. 2) represent the best-

performing genotypes in each environment. In Bihar, KL155979 

was identified as the top performer, followed by VL111341, 

whereas VL1017169 showed poor performance. In Odisha, 

KL155994, VL143892 and VL18523 emerged as winning 

genotypes, while in Jharkhand, VL13692 and VL13853 exhibited 

superior performance. Similar observations were reported in 

earlier studies on maize trials where location-specific winners 

were identified using the polygon view approach (26).  

 

Relationship among environments 

The relationship among environments revealed that Bihar formed 

the smallest angle with the average environmental axis, indicating 

the strongest positive correlation with other environments, 

followed by Jharkhand and then Odisha. This alignment suggests 

consistent performance trends across the environments. 

Kernel row per cob  

Discriminativeness vs representativeness 

 Analysis of the GGE biplot (Fig. 3) shows that Odisha is the most 

discriminative environment, followed by Bihar and then 

Jharkhand. However, in terms of representativeness, Jharkhand 

ranks highest, ahead of Bihar and Odisha. This trend highlights 

Bihar as both discriminative and representative, making it the 

most suitable environment for evaluating generally adapted 

genotypes. Jharkhand contributes discriminative but less 

representative insights, whereas Odisha, despite being relatively 

representative, provides limited genotype information. Similar 

findings were reported in a multi-location maize breeding 

program in eastern India, where Bihar was emphasized for its dual 

utility in selection (27). 

Fig. 3. GGE biplot of kernel row per cob in maize genotypes. 
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Mean vs stability 

From the mean vs. stability plot (Fig. 3), genotype VL1110514 

recorded the highest kernel rows per cob in Jharkhand, followed by 

KL155979 and VL1016452. In Odisha, VL111341 showed the highest 

magnitude, with VL143892 and VL143891 also performing strongly, 

though with greater variability. In contrast, KL155978 emerged as 

the most stable genotype, while several other variants performed 

poorly, particularly in Bihar. Similar findings were reported earlier, 

where specific genotypes demonstrated both high performance 

and stability across states in eastern India (28). 

Which won where biplot 

 In the "which won where" biplot (Fig. 3), genotypes VL1110514, 

VL111341, VL143905 and KL154688 occupy the polygon vertices. 

Among these, VL1110514 recorded the highest kernel rows per 

cob, making it the top-performing genotype. Similar findings were 

reported where vertex genotypes were identified as environment-

specific winners for kernel traits in maize (29).  

Relationship among environments 

 The relationship among environments Odisha, Jharkhand and 

Bihar also shows positive correlations, as indicated by the biplot. 

The angles between environment vectors are less than 90°, 

suggesting that improvement in kernel rows per cob in one 

environment positively influences performance in the others. This 

direct proportionality reflects consistent performance trends 

across environments. Similar results were observed in maize and 

sorghum trials conducted across multiple Indian locations (12). 

Grain weight  

Discriminativeness vs representativeness 

In the graph (Fig. 4), Odisha displayed the widest angle among the 

environments, identifying it as the most discriminative, followed 

by Bihar and then Jharkhand (Odisha > Bihar > Jharkhand). In 

terms of representativeness, Jharkhand ranked highest, followed 

by Bihar and Odisha. Notably, Odisha was also reported as a 

strongly discriminative environment in multi-environment maize 

trials conducted in eastern India (21). 

Mean vs stability 

 In the graph (Fig. 4), genotype KL156009 recorded the highest 

grain weight, while KL155979 exhibited the highest magnitude 

along the y-axis in both Jharkhand and Bihar. In Odisha, 

VL1010764 was identified as the most stable genotype. Similar 

findings were reported, where high yielding but moderately 

stable maize genotypes were considered preferable for breeding 

programs targeting eastern India (27). 

Fig. 4. GGE biplot of grain weight in maize genotypes. 
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Which won where biplot 

 In which won where biplot, Fig. 4 the genotypes KL155979, 

KL156009, VL111341, VL143903 were joined along the vertices of 

the polygon which represented the winning genotype, however 

KL156009 showed the highest grain weight. 

Relationship among environments 

 The relationship among the environments showed a positive 

correlation between three environments Odisha, Jharkhand and 

Bihar as the angle were less than 90°. It means that grain weight in 

Odisha is directly proportional to grain weight in Jharkhand and 

Bihar. 

 The results highlight the differential sensitivity of maize 
genotypes to heat stress, underscoring the importance of genetic 

factors in plant responses. Several genotypes showed strong 

performance under stress across variable environments. Notably, 

VL1010764, KL155991, KL156009 and KL155979 demonstrated 

superior resilience, marked by reduced tassel blast, lower leaf death 

and better overall plant and ear health. Bihar emerged as the most 

effective environment for discriminating genotype performance. 

Similar findings reported maize genotypes with enhanced 

tolerance under high-temperature stress in eastern India, 

characterized by reduced tassel blast and leaf senescence (28). 

 Mean vs. stability plots identified KL156003, VL143892, 

VL143905, VL13853 and KL155738 as high-yielding and stable 

across environments, while the GGE biplot recognized genotypes 

VL18523, KL153241, KL155979 and VL111341 as robust 

performers. Additionally, genotypes VL143892, VL143905, 

KL155989, KL156003, VL13853, KL155739, VL18333, VL18334, 

VL143891 and KL153072 consistently demonstrated stability 

across all test locations. Similar outcomes were reported where 

maize hybrids combined high yield with environmental stability 

across multi location trials in eastern and central India (12). 

 The study’s findings align with earlier research on 

genotype-environment (G × E) interactions, validating the utility of 

AMMI and GGE biplot models in stability analysis. Comparable to 

previous studies (11), this works also revealed significant 

environmental influences on maize yield, with grain yield and 

related traits contributing strongly to G × E interactions. GGE 

interpretations on discriminativeness, representativeness and 

stability further corroborate earlier reports on maize hybrids and 

other crops (29, 30). "Which-won-where" biplot analyses 

confirmed environment-specific winners, consistent with earlier 

observations that highlighted the role of regional adaptability in 

breeding (11, 31, 32). 

 These parallels reinforce the robustness of AMMI and GGE 

biplot models as tools for interpreting G × E interactions and 

guiding the selection of stable, high-yielding genotypes across 

environments (14, 15, 33). The identification of environment-

specific and broadly adapted heat-tolerant maize hybrids, as also 

demonstrated in other studies across South Asia’s climate-

vulnerable zones (29, 19), offers valuable opportunities for 

developing climate-resilient varieties. Such findings hold strong 

implications for advancing breeding strategies and ensuring 

global food security (34, 35). 

 

 

Conclusion  

The GGE biplot analysis highlights that among the three test 

environments, Bihar (E3) emerged as the most discriminative and 

representative site, making it the most reliable for selecting 

generally adapted inbreds. Jharkhand also correlated strongly with 

Bihar in terms of grain yield, while Orissa showed superiority 

specifically in grain weight. Overall, positive correlations across 

environments were evident for yield-related traits. Key inbreds 

showing trait-specific superiority included VL18523 for grain yield 

per plant, KL155979 for kernels per row, VL1110514 for kernel rows 

per cob and KL156009 for grain weight, while KL155991, VL144234, 

KL155978 and VL1010764 displayed strong stability across 

environments. The "Which-Won-Where" analysis further confirmed 

inbreds such as KL155979, VL111341, KL155994 and VL143892 as 

strong performers in specific environmental niches. Importantly, 

the study identified highly resilient and heat-tolerant inbreds 

VL1017223, VL1010764, VL144234, KL155993, KL155991, KL156009 

and KL155979 based on key stress indicators like tassel blast, leaf 

death and plant and ear traits. Vertex inbreds VL18523, KL153241, 

KL155979 and VL111341 were additionally marked as robust 

performers across environments. In terms of yield stability 

combined with adaptability, inbreds KL156003, VL143892, 

VL143905, VL13853 and KL155738 demonstrated high productivity 

while maintaining stability, with VL143892, VL143905, KL155989, 

KL156003, VL13853, KL155739, VL18333, VL18334, VL143891 and 

KL153072 consistently stable across all environments. In conclusion, 

E3 (Bihar) stands out as the most effective environment for selection, 

while specific high-performing inbreds such as VL18523, KL155979, 

KL156009 and VL1110514, alongside stress-resilient lines like 

KL155991, VL1010764 and VL144234, represent valuable genetic 

resources for maize breeding under heat stress and multi-

environment conditions. The study effectively demonstrated the 

utility of AMMI and GGE biplot models in dissecting G × E interactions 

and identifying stable, high-yielding maize genotypes under heat 

stress across eastern India. Significant genotypic and environmental 

effects were observed, particularly for grain yield and grain weight. 

Genotypes like KL156003, VL143892 and VL13853 emerged as both 

high-performing and stable across diverse environments. These 

insights are valuable for breeding climate-resilient maize varieties 

suited for stress-prone regions, thereby supporting sustainable crop 

improvement and food security.  
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