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Abstract

Cropping intensity (Cl) is an important parameter used for evaluating agricultural land use efficiency, with significant implications for
global food security, sustainable land management and economic stability. As the world’s population continues to grow, effective
monitoring of Cl is vital for fulfilling the rising food demand and addressing challenges caused by climate change. This review article
explains the current state of the field, discusses significant advances made possible by remote sensing and geospatial technologies. The
paper explores the evolution of methodologies, from traditional time-series analysis to modern machine and deep learning algorithms
and highlights regional applications across different continents. However, persistent and critical challenges were identified that limit the
full potential of these tools. some of the Key issues and significant data gaps were included. A major research gap remains due to less
integration of socio-economic and policy data into geospatial models, which limits our ability to understand the complex drivers behind
the changes observed in Cl. The future of this field requires a coordinated, interdisciplinary approach. Recommendations include
promoting open-access platforms and harmonized standardized datasets, developing automated algorithms that leverage multi-source
data fusion and using the ground truth data to fill the gaps. This comprehensive approach is needed to provide the reliable, predictive
intelligence required for accurate policy decisions and sustainable agriculture worldwide.
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Introduction agriculture management and policymaking (7, 8). Understanding
the changes in cropping intensity across diverse landscapes and
over time is important for identifying areas with potential for
intensification, identifying the agricultural stress regions and
creating targeted interventions (9). In this context, geospatial
technologies, like remote sensing and Geographic Information
Systems (GIS), have emerged as necessary tools. Remote sensing
offers a cost-effective and expandable approach to monitor
agriculture land use over large areas and over several seasons,
which enable objective and reproducible observations (10). GIS,
on the other hand, helps in combining, analysing and portraying
these complex spatial data sets, allowing to carry out detailed
evaluations and decision-making on the basis of evidence (11).

Cropping intensity (Cl) defined as the rate of Gross Cropped Area
(GCA) to Net Sown Area (NSA). It is represented as a percentage or
index (1). It is used to measure the extent to which agricultural
land is utilized in several harvests in a year and it is an important
indicator of land use efficiency and agricultural productivity (2). It
is used not only for measurement but also as an important driver
in addressing global food security, strategic land use planning and
agricultural sustainability initiatives (3). Higher cropping intensity
is generally associated with increased food production, which is
important to compensate the increasing food demand due
to increasing world population (4). However, it also measures the
intensive land use, which can lead to problems such as resource
depletion, soil degradation, increased water demand and higher Despite the improvements, the field faces with several
greenhouse gas emissions if not managed sustainably (5). Thus, issues. There are notable gaps observed in the synthesis of cropping
monitoring the cropping intensity should be viewed both as a intensity studies based on geospatial methods, particularly on
measure of productivity and as an indicator of environmental regional to global scales. While numerous studies provide valuable

stress. To mitigate negative impacts, sustainability metrics must ~ insights, the absence of a general framework limits comparative
be integrated (6). analysis and its application to global agricultural policy (12, 13).

Furthermore, a continues challenge lies in the lack of consistent
definitions and measures across various studies. Based on the how
the cropping intensity defined and measured across various studies
and geographical areas show difficulty in comparison and also limit
the development of overall evaluation frameworks (14, 15).

The importance of spatial and temporal monitoring of
cropping intensity cannot be overstated. Traditional methods of
data acquisition are typically time-consuming, labour-intensive
and lack the spatial and temporal variations to enable effective
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The real potential of geospatial analysis in global initiatives, such as
the Sustainable Development Goals (SDGs) and strategies on
climate change adaptation lies in the ability to uniform, large-scale
and timely data. Despite technological progress, the application of
these tools for large-scale impact is still in its infancy, highlighting the
need for cloud-based platforms and automated workflows (16, 17).

Conceptual framework of cropping intensity

The theoretical foundation of cropping intensity is built based on
basic terms of agricultural land use that quantify the intensity of land
use over a period, typically a year. Understanding these definitions
allows for accurate assessment and comparability of studies.

Basic concepts

Net Sown Area (NSA) refers to the area of land that has been sown
with crops at least once during an agricultural year. Gross Cropped
Area (GCA) is nothing, but the total area cultivated and counting
the cultivated area multiple times if the cropping done more than
once in a year (18, 19). The Cropping Intensity (Cl) calculates based
on the ratio of GCA and NSA (Eqn. 1) and expressed as a
percentage. A Cropping Intensity (CI) of 200 % indicates the land
cropped twice annually this index measures land use intensity (20)

Gross Cropped Area (CGA)
Net Sown Area (NSA)

x 100
(Eqn.1)

Cropping Intensity =

Drivers of cropping intensity

Cropping intensity is not a single phenomenon but is closely
related to a multi-faceted association between biophysical and
socio-economic determinants (21, 22). Irrigation is a major
facilitator for successive cropping, especially in arid or semi-arid
areas. The reliability and availability of water resources have a
direct impact on the viability of successive harvests (23, 24). Soil
health is important; highly fertile and well-managed soils can
sustain more than one cropping cycle, but low-quality or
degraded lands can minimize intensification(25, 26). Climate,
such as rainfall regimes, temperature conditions and growing
degree-days, sets the inherent potential for having multiple crop
cycles. Favourable weather with proper moisture and heat
conditions favours to enhance the intensity of cropping (27, 28).

Apart from these biophysical factors, socio-economic
factors play an important role in shaping farmers' decisions on
cropping intensity. Demand from the market for certain
commodities like labour availability and its price, credit access and
government policies like subsidies, minimum support prices and
systems of land tenancy, all of these have major impacts on
farming operations (29, 30). These human choices are the eventual
determinants of cropping intensity that is measured. However, a
recurring problem lies in the inconsistencies in cropping intensity
definition and measurement between areas and studies. Different
national or sub-regional data collection practices and conceptual
frameworks can result in non-comparable findings that complicate
syntheses at a larger scale (31).

In addition, there is also an obvious need for harmonized
classification systems within multi-temporal analysis to properly
monitor changes and compare Cl through time and over different
geographical locations (32, 33).

The "hidden" influence of socio-economic drivers on
geospatial observables is commonly undervalued. Geospatial
techniques tend to measure mainly biophysical properties such as
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the presence of crops and phenology, whereas the varied socio-
economic contexts that determine farm practices too often are
behind the variation in definition and measurement (34, 35). For
example, the broken-up landholding pattern typical of smallholder
farm systems or the regional market incentives can result in intricate,
non-standard planting regimes that are hard to reproduce using
homogenous geospatial models. This implies that geospatial
analyses, although powerful, can only measure the outcome of
complex human-environment interactions. To accurately predict
and understand cropping intensity, models have to go beyond
strictly biophysical parameters and incorporate socio-economic
layers, which in turn are usually less available or spatially explicit (36,
37). For example, a study in Ghana combined remote sensing and
GIS with census and socio-economic survey data to map the
"proximate causes" of land use change, including slash-and-burn
cultivation and intensive cultivation areas (38). A research on Indian
smallholder farms revealed that a Landsat threshold approach was
most accurate, highlighting the need for methods that can handle
fragmented landscapes and heterogeneous cropping patterns,
which are socio-economically driven (39). In Malawi and Ethiopia,
scientists were able to integrated Sentinel2 imagery with
georeferenced plot-level data of national household surveys and
successfully map maize cultivation at 10-meter resolution. This study
highlighted how gathering complete plot boundaries in surveys
offers the highest quality data for training such geospatial models
(40). Another study in Fiji Islands utilized a geographical method to
combine maps in a national agricultural census with socio-economic
drivers such as population and market pressures data (41). Through
creating "critical maps,”" the researchers were able to measure
where high land use intensity overlapped with certain socio-
economic drivers and so unveil significant relationships. These
example demonstrate that while challenging, the integration of
geospatial and socio-economic data is feasible and provides strong
insights that cannot be possible from either data sources alone.

A second important factor to take under consideration is
the difference between "effective" and "observed" cropping
intensity. Geospatial techniques are particularly good at
identifying when crops are present and their phenological cycle,
accurately determining that there are multiple cropping seasons.
However, they tend to have difficulty in assessing the effectiveness
or productivity of each cropping cycle (42, 43). A field may be seen
to be cropped twice, but if the second crop fails to deliver well
because of drought, pest attack, or market failure, its contribution
to food security or economic production is negligible (44, 45). This
points out that there could be a high geospatial cropping intensity
concealing low productivity or crop failure in particular seasons.
Therefore, it is an overwhelming necessity to incorporate yield
estimation and monitoring of crop health with cropping intensity
measurement to offer a more discriminative and useful insight into
farm productivity(46, 47).

Remote sensing platforms and data sources

The ability to assess the cropping intensity accurately at a global
scale is highly dependent upon the availability and nature of
different remote sensing platforms and data sources (Table 1).
Technology provide varied capabilities in spatial, temporal and
spectral resolution, each with different advantages and limitations
in sensing cropping cycles.
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Table 1. Comparative analysis of key satellite sensors for cropping intensity assessment

Sensor Name Type Spatial Resolution Temporal Resolution Key Bands/Frequencies
MODIS Optical 250-1000m Daily Visible, NIR, SWIR
Landsat-8/9 Optical 30m 16-day Visible, NIR, SWIR, Thermal
Sentinel-2 Optical 10-20m 5-day Visible, Red Edge, NIR, SWIR
Sentinel-1 SAR 5-20m 6-12 days C-band (W, VH)
Sensor Name Type Spatial Resolution Temporal Resolution Key Bands/Frequencies
MODIS Optical 250-1000m Daily Visible, NIR, SWIR

Overview of optical sensors

MODIS (Moderate Resolution Imaging Spectroradiometer) is a
satellite sensor on board the NASA's Terra and Aqua satellites,
offers high temporal resolution (daily revisits) but at coarse spatial
resolution (250-1000m). This renders MODIS data suitable for
regional to global scale monitoring and the detection of broad
phenological cycles, like the onset and end of growing seasons
over continents (48,49). Due to the coarse spatial resolution, it can
produce mixed pixels that reduces field level accuracy. MODIS can
miss short duration crops or phenological stages of the crop
causing miscounting of cropping events. That suggest it is not
reliable for field scale cropping intensity monitoring.

The Landsat mission, a collaborative USGS/NASA program,
has a moderate spatial resolution (30 m) and moderate temporal
resolution (16-day revisit). Its unique long-term archive, dating from
the 1970s, is irreplaceable for historical trend analysis and decadal
scale changes in cropping intensity.

Sentinel-2, which is a European Union Copernicus mission,
has high spatial resolution (10-20 m) and high temporal resolution
(5-day revisit with two satellites). This renders Sentinel-2 data highly
appropriate for intensive field-scale monitoring and recording rapid
crop phenological changes, which is essential for differentiating
several short-duration cropping cycles.

Overview of radar sensors

Sentinel-1, which is part of the Copernicus mission, is a C-band
Synthetic Aperture Radar satellite (50). Its day-night, all-weather
capability to penetrate cloud cover makes it an important data
source where there is persistent cloud cover, especially during
monsoon seasons (51). SAR data is sensitive to crop structure,
biomass and moisture content, providing complementary
information to optical data(52, 53).

RISAT (Radar Imaging Satellite), designed by the Indian
Space Research Organisation (ISRO), includes X-band and C-band
SAR satellites, adding to the extent of SAR data availability
globally for agricultural monitoring,

Advantages and limitations of each sensor for cropping cycle
detection

Optical sensors are superior in offering direct measurements of
vegetation greenness as indices such as NDVI (Normalized
Difference Vegetation Index) and EVI (Enhanced Vegetation
Index). These are direct indications of photosynthetic activity and
biomass and hence are easy to interpret while detecting crop
growth phases. Their greatest shortcoming is their vulnerability to
cloud cover, which is more common in tropical and sub-tropical
latitudes during monsoon months, creating substantial data gaps
that hinder real-time monitoring of crop cycles (53, 54).

SAR sensors, on the other hand, transcend cloud
contamination since they can penetrate clouds and function

without sunlight. They are thus irreplaceable for constant observing
in totally cloudy agricultural regions. However, SAR data processing
is more involved and vegetation signal interpretation is less intuitive
than with optical data, since SAR signals depend not only on crop
structure but also on soil moisture and surface roughness (55).

Emerging sources: PlanetScope, UAVs, Hyperspectral, CubeSats

The remote sensing is evolving at a fast pace with the creation of
new data sources. PlanetScope is a fleet of CubeSats with daily 3-
5m resolution cover, providing temporal and spatial information
for monitoring cropping intensity at micro-scales (56). UAVs
(drones) enable ultra-high resolution data for local, farm-level
analysis, albeit with limited coverage (57). Hyperspectral sensors
yield highly detailed spectral signatures, which enable more
accurate crop type and early stress detection, but at the cost of
high data volume and processing requirements (43). The
abundance of CubeSats, small satellites, provides a cost-effective
and adaptable platform for targeted monitoring requirements,
adding to the variety of data available (58).

One of the serious issues to consider is the "resolution
paradox" in cropping intensity measurement. While high-resolution
observation by sensors like Sentinel-2 and PlanetScope allows
detailed field-level measurement, essential in precision agriculture
and heterogeneity analysis, these data are accompanied by vast
volumes, higher processing cost and often narrower swaths. This
makes global or even regional coverage computationally intensive
and less frequent (58, 59). Coarse-resolution data like MODIS, on the
other hand, are best for global trend identification and broad
patterns but necessarily have no local resolution (60). This paradox
means that there is no "best" sensor; rather, an optimal approach
often involves multi-resolution fusion techniques that increase the
strength of each (61).

Underestimation of the importance of data fusion for
reliable cropping intensity monitoring is a significant bottleneck.
Weather conditions of continuous cloud cover over key agricultural
areas, e.g, Southeast Asia and some areas of Africa during
monsoon periods, directly impedes optical time-series analysis and
accurate Cl mapping is impossible for key growth stages (58). SAR
provides the only feasible solution for uninterrupted monitoring
under such conditions. Inability to integrate optical and SAR data
effectively means that even with complementary data being
available, an exhaustive picture of cropping cycles, particularly in
adverse environments, is not clear. This results in less accurate Cl
estimates in sensitive areas, having a direct impact on food security
estimation and policymaking. Methodological innovation in data
fusion is therefore not an academic pursuit but a necessity for large-
scale global agricultural mapping. It enables comprehensive and
reliable CI measurement, ensuring informed decisions in regions
most sensitive to climate and food supply concerns (62).
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Case studies that demonstrate the effectiveness of data fusion

Adding optical and SAR Data: Optical imagery is best at showing
changes in moisture and chlorophyll content in crop leaves and
highly used in crop classification, whereas Synthetic Aperture
Radar (SAR) is sensitive to morphological structures and growth
stages and can see through clouds (63). This combination is
crucial for persistent monitoring in cloud-contaminated areas. For
instance, a fruit tree mapping study revealed that it significantly
enhanced classification accuracy by merging data from Sentinel-1
(SAR) and Sentinel-2 (optical) (64). In another study on predicting
soybean yield, researchers discovered that combining optical
vegetation indices and SAR imagery enhanced the predictive
performance of the model (R?) from 0.65 to 0.85 (65). Researchers
in Brazil also obtained a 3 % increase in accuracy for in-season
crop mapping through the combination of Sentinel-1, Sentinel-2
and SRTM data (66).

Fusing multi-resolution satellite data: Another usual challenge
is the trade-off between temporal and spatial resolution in
satellite sensors. Researchers are overcoming this problem by
merging data from multiple satellite constellations. For example,
a technique was created to merge Landsat and MODIS data to
produce a dense time series of images with 30 m resolution. This
facilitated the creation of high-resolution cropping cycle maps for
China with overall accuracies up to 92.5 %, which is not
achievable using either sensor individually (67).The AgriFM
architecture follows a similar strategy, taking advantage of
temporally dense data from MODIS, Landsat-8/9 and Sentinel-2
and applying deep learning to dynamically integrate these
representations for applications such as early-season crop
mapping (68).

Fusion of satellite, airborne and ground-based sensors: To get
higher accuracy and maximum information, data fusion goes
beyond satellite-to-satellite combinations. Satellite and drone
data fusion, for instance, takes advantage of the large coverage of
satellites with the high spatial resolution of airborne systems. A
Multi-sensor Machine-Learning Approach use data from different
sensors such as on the ground 10T devices to provide cultivation
recommendations, resulting in high crop yield (69).This multi-
layered analysis offers accurate, localized information that can
validate and calibrate many satellite measurements.

Geospatial methodologies for estimation of cropping
intensity

The accuracy of geospatial techniques for estimation of cropping
intensity relies on different methodologies, from conventional
vegetation index time-series analysis to cutting-edge machine
and deep learning algorithms. Each method uses different unique
aspects of satellite data to identify and quantify the cropping cycle
(Table2).

Time-series NDVI/EVI-based approaches

NDVI and EVI are frequently used because they are simple, widely
available, easy to compute from common satellite bands, enabling
global and long-term records that are useful for phenology, trend
analysis. EVI reduces atmospheric effects and soil background and
to reduce saturation in dense canopies. These techniques identify
different agricultural growth cycles by observing seasonal
variations in vegetation indices like Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) (70, 71).
Peaks in the time-series correspond to periods of peak biomass or
crop maturity (72). These time series are then processed and
analyzed by using methods such as include harmonic analysis
(modelling periodic signals), Savitzky-Golay filtering (which
smooths data and reduces noise while preserving signal features)
and Fourier series analysis (decomposing signals into their
frequency components), which smooth noise and extract
important phenological parameters (71, 73).

Phenology-based classification and land use trajectory analysis

Phenology-based classification consists of the extraction of key
phenological measurements from time-series data, including the
beginning of the growing season, season end and growing period
length (71, 72). These are subsequently used to classify various
cropping patterns, by separating single, double, or triple cropping
systems (72, 74). Land use trajectory analysis is an extension of this,
by examining changes in land use and cropping patterns over long
periods, allowing agricultural intensification or abandonment
trendstoidentify (75).

Machine learning and deep learning algorithms

The advent of the latest computational techniques has significantly
improved the performance of cropping intensity estimation.
Machine Learing (ML) models like Support Vector Machines (SVM),
Random Forest and Gradient Boosting are popular for crop type
identification and cropping cycle detection from multitemporal
spectral characteristics (76, 77). The ML models can automatically
address complex, non-linear relationships in remote sensing data
and offer robust classification capabilities (78).

Deep Learning (DL), a subset of machine learning, is also
emerging at the cutting edge of geospatial data processing.
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) networks
are being widely applied for the automatic extraction of features
from time-series satellite imagery in an attempt to classify crops
correctly and identify phenological events (79, 80). DL models
possess the unique ability of learning high-level spatio-temporal
patterns directly from the raw data and, in the process, are
extremely useful in multi-season cropping estimation,
particularly in very complicated agricultural landscapes (81).

Table 2. Overview of methodological approaches for geospatial cropping intensity estimation

Method g Typical Data Strengths for CI T Example Algorithms/

Category Core Principle Requirements Estimation Limitations/Challenges Techniques
Analyze vegetation - . . Intuitive, captures i, . Harmonic analysis,

Egse:glogy— index time-series to Optl(c'\elmlljt}lms\—/sl)e ries seasonality, good for S\/’\i?ﬁ Iég/rer?\t?elj(%s\fe/ Fglgps,iﬁtrlégcgllgs Savitzky-Golay filtering,
detect growth cycles ’ distinct cycles P ppIng cy thresholding

- Classify pixels based Multi-temporal Handles non-linear . .
Machl.ne on multi-temporal optical/SAR, ancillary relationships, good . Requires l.a.beled training datq, Randqm Forest, .SVM’
Learning spectral features data for complex patterns interpretability can be challenging  Gradient Boosting

Learn hierarchical
spatio-temporal
features from raw
data

Dense time-series

Deep Learning optical/SAR

High accuracy,
automated feature
extraction, handles

complexity

Data-hungry, computationally
intensive, black-box nature

CNNs, RNNs, LSTMs,
U-Net

https://plantsciencetoday.online


https://plantsciencetoday.online

Despite the promises of these advanced methodologies,
there are several research gaps were observed. Several methods
used in various agro-ecological zones are not widely benchmarked.
The effectiveness of various approaches can greatly fluctuate based
on the local climate, particular crop varieties and current
agricultural methods (82, 83). The lack of a thorough and
methodical comparison across a broad variety of environmental
circumstances makes it challenging to determine which method
is best for a particular situation. Additionally, it is to be noted that
deep learning models are rarely used explicitly for multi-season
cropping assessment (81). Although it has a lot of promise, its
broad use and thorough validation for recognizing and measuring
the subtleties of multi-season cropping patterns are still emerging.
This suggest that the implementation and evaluation of these
techniques in various real-world agricultural contexts are lagging
behind; the availability of data and algorithms is insufficient (79).
The regular production of comparable, high-quality cropping
intensity data required for regional and international evaluations is
impeded by this problem. In order to promote an open scientific and
code-sharing culture, it suggests that the focus should shift from
creating new algorithms to thoroughly testing and standardizing
currentones under a greater variety of circumstances (84).

Low reproducibility and transparency of methods is
another important challenge. Many of the researches often lack
clear descriptions of algorithms used, specific parameters and
publicly available code, which is making it difficult to have other
researchers replicate the results, build upon the work of others, or
add to cumulative knowledge (85, 86).

The lack of deep learning application to multi-season
cropping estimation, where in theory it is ideal and matched to
systems that are complex (e.g., mixed pixels in smallholder farms,
intercropping, staggered planting), is a vast untapped potential
(79, 81). Deep learning's ability to learn hierarchical features and
spatio-temporal interactions can unravel such complexities,
unleashing breakthroughs in accurately mapping highly dynamic
and complex cropping patterns, particularly in data-scarce or
challenging areas. This necessitates for more work on transfer
learning, explainable Al and producing strong training datasets
optimized for deep learning application in cropping intensity
estimation (84) (Table 3).

Regional and Global applications

The given geospatial analysis of cropping intensity has been used
in various applications. For different scales of geographical and
environmental studies. It offers significant information on

Table 3. Accuracy metric of algorithms used for Cl estimation

agricultural productivity, land use changes and their impacts on
food security and environmental sustainability.

Case studies from India, Southeast Asia, Sub-Saharan Africa
and global syntheses

India is a typical example in which geospatial methods are applied
intensively to monitor cropping intensity, driven by factors such as
large-scale irrigation and supportive policies for agricultural
development (83, 90). In India satellite imagery has been used in
studies to identify yield gaps, examine intensification trends and
inform water resource management (91). In Southeast Asia, where
cropping systems are diverse (e.g., rice-rice, rice-other crops) and
cloud cover is asignificant issue, SAR data has been essential to the
consistent Cl evaluation (92). Sub-Saharan Africa, with smallholder
agriculture, predominantly rainfed agriculture and highly sensitive
to climate variability, which leads to a special requirement for
accurate Cl assessment in order to allow food security concerns to
be considered (93). However, this region is commonly afflicted by
severe data and methodology problems. At the global level, global
syntheses attempt to map cropping intensity at the continental
level, frequently employing coarse resolution data like MODIS or
aggregated higher-resolution data (94), to differentiate global food
production regimes and land use change at coarse. In Latin America,
the major driver force of agricultural intensification and
transformation is the mounting world demand for oilseeds and
grains. This has caused a phenomenal increase in the use of land for
soybean production, which rose more than two-fold from 2000 to
2019. Many of these increases have been by the reclamation of
pastures, which themselves were reclaimed from natural vegetation
(95). In the Amazon region of Brazil, the cultivated area under
soybeans expanded over ten times during this time. The expansion
has been sustained by principal drivers such as economic and policy
reforms (96), in addition to agricultural research that has brought
about new, high-productive crop varieties and farming methods
such as no-till agriculture. In addition, most countries in the region,
such as Argentina, Chile, Colombia and Brazil, are experiencing a
large "cropping intensity gap," which implies there is a theoretical
potential for a extra harvest every two years.

Role of cropping intensity in yield gap analysis, land degradation
monitoring

Cropping intensity data plays an important role in yield gap analysis,
itis an activity that calculates the gap between observed crop yields
and the potentially achievable yields under ideal conditions (97). By
combining the Cl data and yield data, researchers can identify areas
where vyields are below potential, revealing opportunities for

Model/Method Source Accuracy Metric Value Context/Notes
Landsat threshold method (39) R? >0.71 Most accurate for smallholder farms in India
RMSE <0.14
R (after spatial up to 0.97 R? increased with spatial aggregation (=5 x 5 km)
aggregation) ) -
Stacking2 ensemble model (87) R? 0.923 Highest estimation accuracy for crop residue estimation
RMSE 3.32%
XGBoost (87) R? 0.884 Highest performance among base models
Random Forest (RF) (87) R? 0.865 Base model performance
(SsquRp;ort Vector Regression (87) R? 0.859 Base model performance
Back Propagation Neural 2
Network (BPNN) (87) R 0.842 Base model performance
Random Forest (RF) (88) Overall Accuracy 0.77-0.95 Varied across season;(as;;iwnrger vs. winter) for crop
Phenology-based (MODIS) (68) Overall Accuracy 89 % National maps of various cropping systems in China
Phenology-based (Sentinel-2) (68). Overall Accuracy >76% Differentiation of wheat and barley
Bayes Net (89) Classification Accuracy 99.59 % Crop classification
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agriculturalintensification orimproved management practices (98).
Moreover, changes in cropping intensity, for example, a decline in
multi-cropping, can be a sign of land degradation, resource
depletion, or underlying socio-economic stress (99). However,
sustainable intensification, which is often quantified in terms of
improving Cl, can mitigate degradation and promote improved land
use efficiency (100).

Despite these applications, significant research gaps still
exist. There is a glaring lack of Representation of African and
marginal areas in cropping intensity analysis. Despite their extreme
vulnerability to food insecurity and climate change, these areas are
underserved with appropriate high-resolution Cl research due to
data constraints, common cloud cover and limited infrastructure to
carry out the research (93, 101). This gap makes the areas that is in
need of accurate agricultural monitoring data often are the least
served, generating a self-reinforcing cycle of data poverty that
prevents effective policy intervention, resource allocation and
humanitarian response (102). This reveals a severe equity issue
with global agricultural research since it means global food
security models and agricultural development programs are
making decisions based on incomplete data, risking poorly
informed strategies and perpetuating existing inequities (103).

Another important gap is the absence of harmonized high
-resolution global datasets (less than 30 m). While there are some
global datasets available like MODIS, Sentinel-1, etc. they are
mostly at coarse resolutions, which limits their application in
performing detailed, localized analysis (94). A high-resolution,
global cropping intensity dataset is required to perform robust,
comparable analysis of all agriculture areas across the world. This
gap is directly connect to the "lack of standardized definitions"
and "limited benchmarking of methods" (104). In the absence of
harmonized, high-resolution global datasets, it is impossible to
conduct robust, comparable analysis of Cl trends across the
world. This severely limits international organizations and
national governments from accurately estimating global food
production potential, identifying hotspots of agricultural stress or
opportunity and performing evidence-based policy for
sustainable intensification or climate adaptation worldwide.
Absence of such a dataset is a key to the attainment of global food
security targets and knowledge of planetary boundaries (105).

Challenges and uncertainties

Despite considerable advances in geospatial technologies, there are
certain inherent complications and uncertainties that are still
obstacles to get accurate and consistent assessment of cropping
intensity at large scale or in highly intricate agricultural
environments.

Spectral confusion between crops and natural vegetation

One of the fundamental problems seen in spectral signatures
confusion between agriculture crop lands and natural cover. It is
difficult to distinguish between natural grassland, weeds, or even
some forest covers from cropped fields, especially during off-peak
growing seasons or in highly heterogeneous environments (106).
This ambiguity can lead to misclassification, where cropped or
non-cropped lands are being classified as either cropped or non-
cropped, respectively and thus providing inaccurate estimation of
cropping intensity (107).

Cloud contamination in optical imagery

Persistent cloud contamination of optical images remains a
common and significant challenge, particularly in monsoon-
dominated and tropical regions (108). Clouds obscure the land
surface, creating enormous data gaps in optical time series. These
gaps make it extremely difficult to track entire crop cycles,
accurately count the number of harvests and track phenological
evolution, producing incomplete or unsound cropping intensity
maps (109).

Temporal mismatch in satellite revisit times vs. cropping patterns

Even with the increased revisit rates of modern satellite
constellations (e.g., Sentinel-2 5-day revisit), temporal mismatch
between satellite observation period and intensive cropping
schedules is a viable risk. Short-season crops, e.g, certain
vegetables with 60-day cycles, or planting and harvesting rotations
in smallholder systems, may be missed or under sampled by
satellite overpasses. This can lead to underestimation of real
cropping intensity (110).

Insufficient ground truth data for validation

One of the basic and widely known challenges is the inadequate
access to ground truth data that required for validation. Accurate
validation of geospatial cropping intensity maps requires large,
high-quality field surveys, such as farmer interviews, for
verification of observed cropping patterns (42). Such data are
usually expensive, have logistic limitations and are geographically
limited to collect, which limits strict checks of model accuracy,
generalizability and uncertainty estimation. The lack of ground
truth data is a systemic limit that does not allow complete use of
satellite data and advanced algorithms. It limits the use of
different methods, introduces uncertainty into cropping intensity
estimation (111) and ultimately prevents the development of truly
operational and reliable agricultural monitoring systems. This
requires coordinated global efforts towards the creation of open-
access ground truth networks as well as the development of
citizen science initiatives.

Lack of long-term continuous records to study trends over
decades

While mission-driven platforms like Landsat offer a valuable long-
term history, having steady, fine-resolution data to track
continuously over decades remains challenging. The problem is
due to numerous reasons such as evolution of sensor technology,
temporal change of data processing methods and the inevitable
need for harmonization of different satellite missions (112).
Absence of continuous, harmonized datasets limits the ability to
perform systematic analysis of long-term patterns of cropping
intensity and their causes, which are essential in elucidating the
effect of climate change and agricultural sustainability over
extended periods.

These problems are not isolated; they have a cascading
impact on the reliability of policy choice. Cloud cover creates data
gaps, requiring interpolation or the use of less than optimal data.
Spectral ambiguity causes classification error. Both have a direct
impact on the accuracy of cropping intensity maps. If the
underlying Cl maps are not accurate or of high uncertainty, any
resultant policy choices or resource allocations based on them,
e.g., food aid distribution, irrigation planning, or agricultural
subsidies will be deficient (113). This highlights that the "challenges
and uncertainties" are not technical impediments to researchers
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but they represent the basic limitations on the reliability and
trustworthiness of geospatial cropping intensity data for actual
policy and management. This underscores the imperative need for
many uncertainty quantification and transparent reporting of data
quality in all cropping intensity products.

Integration with climate and socio-economic data

A complete explanation of cropping intensity requires going
beyond purely biophysical data to include climatic and socio-
economic determinants. The general method provides more
information about causes of agricultural land use and broader
implications.

Assessing drivers: Rainfall variability, irrigation access, market
influences

Rainfall variability is a significant and important driver, particularly
in rainfed agriculture. Drought or extreme rainfall events have the
potential to severely limit or obliterate crops, thus reducing the
number of harvests in a single year and hence reducing cropping
intensity. The availability of irrigation is a significant counter measure
that enables farmers to get over the rainfall variability and initiate
multiple cropping seasons even in semi-arid or arid regions.
Geospatial assessments can improve by inclusion of data on
irrigation facilities, such as the spatial distribution of canals, wells and
other water resources (114). In addition to environmental
conditions, the market also influences farmers' choices. Commodity
prices, consumer demand for specific crops and availability of local
and export markets directly influence what farmers choose to crop
to cultivate and how frequently they invest in improving farm
practices and how do they intensify their cultivation.

Linking cropping intensity to food security and poverty indices

The measurement of cropping intensity has a significant role in
overall societal well-being. High cropping intensity tends to
enhance the availability of food, which is a fundamental
component of food security (115). Geospatial cropping intensity
maps can clearly distinguish high or low intensification areas and
easily correlate with food surplus or deficit areas. Cropping
intensity in agricultural economies can be easily related to
household income and poverty, as frequent harvests tend to
bring better economic returns to farmers and potentially lead the
communities out of poverty (116, 117).

In spite the identification of the significance of these drivers
and linkages, important research gaps exist in their integration.
There is minimal integration of socio-economic layers into spatial
models. While the impact of socio-economic factors is recognized,
there is minimal effective and scalable integration of these factors
into geospatial cropping intensity models. This is a critical oversight
here since farmers' decisions to intensify the crop are complicated
and influenced by factors such as labour availability, access to
markets, government policies and perceived risks of climate
variability. These human choices are the final determinant of
cropping intensity. Without effective integration of socio-economic
and climate data, geospatial cropping intensity measurements
remain mostly descriptive (what is happening) and not explanatory
or predictive (why it is happening, what happens next). This limits
the utility of their active policy interventions to aim at sustainable
intensification or climate resilience, since the "human dimension" is
frequently the missing link for moving from passive monitoring to
genuine insight and forecasting,

In addition, there is limited spatio-temporal modeling of
cropping-climate relationships. It is little understood how
accurately climate variability, e.g., El Nifio-Southern Oscillation
(ENSO) events or long-term temperature trends, affects cropping
intensity over time and parameterizing this in spatio-temporal
models, which are not yet in widespread development and use
(118). Most analyses detect correlations between the variables,
but correlation does not equal causation. For instance, whereas
high cropping intensity may correlate with decreased poverty,
one needs to establish whether Cl causes reduced poverty
directly, or whether other underlying causes (e.g., access to
infrastructure, education) facilitate high Cl and enhanced socio-
economic status. Unless one understands such causal pathways,
policy interventions may be misdirected. Promoting greater
cropping intensity without removing underlying socio-economic
or climatic constraints may not deliver the food security benefits
hoped for. Future research must therefore break away from
descriptive mapping and correlational analysis towards strong
spatio-temporal causal inference models that can untangle the
intricate interaction of biophysical, climatic and socio-economic
drivers of cropping intensity and its effects. This necessitates
sophisticated statistical and machine learning methods with the
ability to deal with complicated dependencies.

Future directions and recommendations

The future of measuring geospatial cropping intensity is predicted
to be shaped by enhanced access to information, advanced
analytical methods and more collaborative efforts. In order to
address the current challenges, one must take a concerted effort
in several key areas.

Promoting open-access datasets and cloud-based platforms

The general availability of open-access satellite imagery, such as
the Landsat and Sentinel data collections and the emergence of
powerful cloud computing platforms like Google Earth Engine
(GEE) have made the geospatial data and computational
infrastructure available more broadly for wider use. This has
greatly reduced computational constraints and enabled
collaborative research on an unprecedented scale. It is
recommended that we further develop and encourage such
platforms to enable scalable and consistent cropping intensity
assessments at the global scale. Concrete activities involve the
creation of harmonized, high-resolution datasets, e.g., the Global
Cropping Intensity Dataset (GCI30), a 30 m resolution product
derived from Landsat, Sentinel-2 and MODIS data. Others are the
GMIE dataset, a global map of irrigated croplands at 100 m
resolution and GGCP10, a global crop production dataset at 10
km resolution (119). This shift means that the primary challenge is
no longer data acquisition; instead, it is the processing of large,
complex and noisy datasets into reliable, valid and actionable
information for policymakers. This requires the establishment of
many processing techniques, rigorous quality control and proper
communication of uncertainties. Therefore, the challenges have
shifted from data acquisition into the areas of data processing,
validation and interpretation.

Development of automated, scalable algorithms

In the framework of large-scale areas, continuous monitoring of
cropping intensity, manual or semi-automatic techniques become
irrelevant. Future progress requires establishing automated,
scalable algorithms that are particularly suitable to handle the
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growing volumes of satellite image data. It is necessary to focus on
creating robust, generalizable and computationally effective
algorithms that can handle different agro-ecological conditions and
integrate different types of data. For example, researchers are
developing and implementing particular deep learning models,
such as the U-Net model, for the purpose of tasks such as the
segmentation of lavender fields with Sentinel-2 imagery (120) and
the classification of ice-water areas to enhance training data for
other models. Further examples include a phenology-based
algorithm that employs time-series Landsat and Sentinel-2
imagery to precisely map 30 m cropping intensity in a complex
basinin China (121).

Leveraging Al (Deep Learning) and Citizen science

As previously highlighted, Artificial Intelligence (Al) and deep
learning in particular, have great potential for accurate and
automated intensification mapping, especially for heterogenous
and complex agriculture systems. Continuous research and
application of deep learning tools are important. Citizen science
initiatives, however, offer a promising solution to address the
ground truth data gaps. Engaging local communities in the
process of acquiring data, possibly through mobile applications,
can provide highly validation data, thereby making geospatial
products more reliable and accurate. Concrete example for this
approach is the "Mission LQ" smart grass application, a
crowdsourced ground truth data-gathering app for precision
agriculture on particular weeds (122).

Need for collaborative efforts in dataset generation and model
validation

Addressing challenges such as data harmonization, non-availability
of ground truth data and method benchmarking fundamentally
which require collaboration among several institutions and nations.
Interdisciplinary partnership is required among remote sensing,
agronomy, socio-economic and policy-formulation specialists.
Such collaboration can enable the development of standard
datasets, methodology development with universal applicability
and validation of models in various context.

Underutilization of big data and loT for near real-time monitoring

The possibility of merging real-time sensor readings of the
Internet of Things (loT) with satellite observations and other big
data sources like weather forecasts and market prices is not used
in the estimation of cropping intensity. Such merging has the
potential to enable highly dynamic, near real-time monitoring
and forecasting of cropping patterns. Synergies between these
heterogeneous data streams have to be investigated to reach a
more complete and timely understanding of food crop dynamics.

The intersection of these isolated developments promises a
revolution in the approaches used to monitor and manage
agriculture. Near real-time cropping intensity measurements,
together with climate forecasts and market information, have the
potential to improve precision agriculture, give early warnings of
food insecurity and guide adaptive policy adjustments. This shows
a increase beyond static mapping to dynamic, predictive and
possibly prescriptive agricultural intelligence. The future of
geospatial cropping intensity estimation goes beyond the
observation of past events; it is a prediction of future trends and the
way of best interventions, thus making an important contribution
to food security globally and sustainable use of resources. This is a
paradigm shift towards "smart agriculture" (Table 4).

Conclusion

The geospatial assessment of cropping intensity has undergone
significant advancements, evolving from basic mapping to
sophisticated analysis with the help of modern satellite platforms
and advanced algorithms. Despite these advancements,
persistent challenges remain, including data gaps from spectral
confusion, cloud contamination and a critical lack of ground truth
data for validation. Furthermore, there is a need to better
integrate socio-economic factors into spatial models to go
beyond simple description. The path forward requires a
concerted, interdisciplinary approach. By utilizing the potential of
Al, vast datasets and by fostering great collaborations, the
disciplined field can transition from a descriptive to a predictive
one, providing the relevant information necessary to address
global food security and sustainable agriculture.
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Table 4. Identified research gaps and corresponding future directions/recommendations

Research Gap Recommendation

Corresponding Future Direction/

Rationale/Expected Impact

Limited synthesis of Cl studies at

regional to global scales platforms (e.g., GEE)

Lack of standardized definitions and
metrics

Inadequate exploitation of SAR data
in cloudy regions

Limited benchmarking of methods
across agro-ecological zones

Scarce use of deep learning models
for multi-season ClI

Low transparency and reproducibility
of methods

Promote open-access data and cloud-based

Develop unified classification schemes and
standardized methodologies

Enhance integration of multi-source data
(optical + radar + ancillary)

Conduct systematic, interdisciplinary
method benchmarking studies

Promote open science practices: code
sharing, detailed methodology descriptions

Enables scalable, consistent analysis across regions,
reduces computational barriers.

Ensures comparability across studies, facilitates global
dataset generation.

Provides continuous monitoring in cloud-prone areas,
improves robustness of Cl estimates.

Identifies optimal methods for diverse conditions, increases
reliability and generalizability.

Invest more in deep learning research and  Unlocks potential for highly accurate, automated mapping
application for complex cropping systems

in dynamic environments.

Fosters collaboration, accelerates research progress, builds
trustin results.
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