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Introduction 

Cropping intensity (CI) defined as the rate of Gross Cropped Area 

(GCA) to Net Sown Area (NSA). It is represented as a percentage or 

index (1). It is used to measure the extent to which agricultural 

land is utilized in several harvests in a year and it is an important 

indicator of land use efficiency and agricultural productivity (2). It 

is used not only for measurement but also as an important driver 

in addressing global food security, strategic land use planning and 

agricultural sustainability initiatives (3). Higher cropping intensity 

is generally associated with increased food production, which is 

important to compensate the increasing food demand due 

to increasing world population (4). However, it also measures the 

intensive land use, which can lead to problems such as resource 

depletion, soil degradation, increased water demand and higher 

greenhouse gas emissions if not managed sustainably (5). Thus, 

monitoring the cropping intensity should be viewed both as a 

measure of productivity and as an indicator of environmental 

stress. To mitigate negative impacts, sustainability metrics must 

be integrated (6).  

 The importance of spatial and temporal monitoring of 

cropping intensity cannot be overstated. Traditional methods of 

data acquisition are typically time-consuming, labour-intensive 

and lack the spatial and temporal variations to enable effective 

agriculture management and policymaking (7, 8). Understanding 

the changes in cropping intensity across diverse landscapes and 

over time is important for identifying areas with potential for 

intensification, identifying the agricultural stress regions and 

creating targeted interventions (9). In this context, geospatial 

technologies, like remote sensing and Geographic Information 

Systems (GIS), have emerged as necessary tools. Remote sensing 

offers a cost-effective and expandable approach to monitor 

agriculture land use over large areas and over several seasons, 

which enable objective and reproducible observations (10). GIS, 

on the other hand, helps in combining, analysing and portraying 

these complex spatial data sets, allowing to carry out detailed 

evaluations and decision-making on the basis of evidence (11).  

 Despite the improvements, the field faces with several 

issues. There are notable gaps observed in the synthesis of cropping 

intensity studies based on geospatial methods, particularly on 

regional to global scales. While numerous studies provide valuable 

insights, the absence of a general framework limits comparative 

analysis and its application to global agricultural policy (12, 13). 

Furthermore, a continues challenge lies in the lack of consistent 

definitions and measures across various studies. Based on the how 

the cropping intensity defined and measured across various studies 

and geographical areas show difficulty in comparison and also limit 

the development of overall evaluation frameworks (14, 15). 
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Abstract  

Cropping intensity (CI) is an important parameter used for evaluating agricultural land use efficiency, with significant implications for 

global food security, sustainable land management and economic stability. As the world’s population continues to grow, effective 
monitoring of CI is vital for fulfilling the rising food demand and addressing challenges caused by climate change. This review article 

explains the current state of the field, discusses significant advances made possible by remote sensing and geospatial technologies. The 

paper explores the evolution of methodologies, from traditional time-series analysis to modern machine and deep learning algorithms 

and highlights regional applications across different continents. However, persistent and critical challenges were identified that limit the 
full potential of these tools. some of the Key issues and significant data gaps were included. A major research gap remains due to less 

integration of socio-economic and policy data into geospatial models, which limits our ability to understand the complex drivers behind 
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intelligence required for accurate policy decisions and sustainable agriculture worldwide. 
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The real potential of geospatial analysis in global initiatives, such as 

the Sustainable Development Goals (SDGs) and strategies on 

climate change adaptation lies in the ability to uniform, large-scale 

and timely data. Despite technological progress, the application of 

these tools for large-scale impact is still in its infancy, highlighting the 

need for cloud-based platforms and automated workflows (16, 17). 

Conceptual framework of cropping intensity 

The theoretical foundation of cropping intensity is built based on 

basic terms of agricultural land use that quantify the intensity of land 

use over a period, typically a year. Understanding these definitions 

allows for accurate assessment and comparability of studies. 

Basic concepts 

Net Sown Area (NSA) refers to the area of land that has been sown 

with crops at least once during an agricultural year. Gross Cropped 

Area (GCA) is nothing, but the total area cultivated and counting 

the cultivated area multiple times if the cropping done more than 

once in a year (18, 19). The Cropping Intensity (CI) calculates based 

on the ratio of GCA and NSA (Eqn. 1) and expressed as a 

percentage. A Cropping Intensity (CI) of 200 % indicates the land 

cropped twice annually this index measures land use intensity (20)  

 

 

Drivers of cropping intensity 

Cropping intensity is not a single phenomenon but is closely 

related to a multi-faceted association between biophysical and 

socio-economic determinants (21, 22). Irrigation is a major 

facilitator for successive cropping, especially in arid or semi-arid 

areas. The reliability and availability of water resources have a 

direct impact on the viability of successive harvests (23, 24). Soil 

health is important; highly fertile and well-managed soils can 

sustain more than one cropping cycle, but low-quality or 

degraded lands can minimize intensification(25, 26). Climate, 

such as rainfall regimes, temperature conditions and growing 

degree-days, sets the inherent potential for having multiple crop 

cycles. Favourable weather with proper moisture and heat 

conditions favours to enhance the intensity of cropping (27, 28). 

 Apart from these biophysical factors, socio-economic 
factors play an important role in shaping farmers' decisions on 

cropping intensity. Demand from the market for certain 

commodities like labour availability and its price, credit access and 

government policies like subsidies, minimum support prices and 

systems of land tenancy, all of these have major impacts on 

farming operations (29, 30). These human choices are the eventual 

determinants of cropping intensity that is measured. However, a 

recurring problem lies in the inconsistencies in cropping intensity 

definition and measurement between areas and studies. Different 

national or sub-regional data collection practices and conceptual 

frameworks can result in non-comparable findings that complicate 

syntheses at a larger scale (31). 

 In addition, there is also an obvious need for harmonized 

classification systems within multi-temporal analysis to properly 

monitor changes and compare CI through time and over different 

geographical locations (32, 33). 

 The "hidden" influence of socio-economic drivers on 

geospatial observables is commonly undervalued. Geospatial 

techniques tend to measure mainly biophysical properties such as 

the presence of crops and phenology, whereas the varied socio-

economic contexts that determine farm practices too often are 

behind the variation in definition and measurement (34, 35). For 

example, the broken-up landholding pattern typical of smallholder 

farm systems or the regional market incentives can result in intricate, 

non-standard planting regimes that are hard to reproduce using 

homogenous geospatial models. This implies that geospatial 

analyses, although powerful, can only measure the outcome of 

complex human-environment interactions. To accurately predict 

and understand cropping intensity, models have to go beyond 

strictly biophysical parameters and incorporate socio-economic 

layers, which in turn are usually less available or spatially explicit (36, 

37). For example, a study in Ghana combined remote sensing and 

GIS with census and socio-economic survey data to map the 

"proximate causes" of land use change, including slash-and-burn 

cultivation and intensive cultivation areas  (38). A research on Indian 

smallholder farms revealed that a Landsat threshold approach was 

most accurate, highlighting the need for methods that can handle 

fragmented landscapes and heterogeneous cropping patterns, 

which are socio-economically driven (39). In Malawi and Ethiopia, 

scientists were able to integrated Sentinel-2 imagery with 

georeferenced plot-level data of national household surveys and 

successfully map maize cultivation at 10-meter resolution. This study 

highlighted how gathering complete plot boundaries in surveys 

offers the highest quality data for training such geospatial models 

(40).  Another study in Fiji Islands utilized a geographical method to 

combine maps in a national agricultural census with socio-economic 

drivers such as population and market pressures data (41). Through 

creating "critical maps," the researchers were able to measure 

where high land use intensity overlapped with certain socio-

economic drivers and so unveil significant relationships. These 

example demonstrate that while challenging, the integration of 

geospatial and socio-economic data is feasible and provides strong 

insights that cannot be possible from either data sources alone.     

 A second important factor to take under consideration is 

the difference between "effective" and "observed" cropping 

intensity. Geospatial techniques are particularly good at 

identifying when crops are present and their phenological cycle, 

accurately determining that there are multiple cropping seasons. 

However, they tend to have difficulty in assessing the effectiveness 

or productivity of each cropping cycle (42, 43). A field may be seen 

to be cropped twice, but if the second crop fails to deliver well 

because of drought, pest attack, or market failure, its contribution 

to food security or economic production is negligible (44, 45). This 

points out that there could be a high geospatial cropping intensity 

concealing low productivity or crop failure in particular seasons. 

Therefore, it is an overwhelming necessity to incorporate yield 

estimation and monitoring of crop health with cropping intensity 

measurement to offer a more discriminative and useful insight into 

farm productivity(46, 47).  

Remote sensing platforms and data sources 

The ability to assess the cropping intensity accurately at a global 

scale is highly dependent upon the availability and nature of 

different remote sensing platforms and data sources (Table 1). 

Technology provide varied capabilities in spatial, temporal and 

spectral resolution, each with different advantages and limitations 

in sensing cropping cycles. 

 

Cropping Intensity = 
Gross Cropped Area (CGA) 

Net Sown Area (NSA) 
× 100 

(Eqn.1) 
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Overview of optical sensors 

MODIS (Moderate Resolution Imaging Spectroradiometer) is a 

satellite sensor on board the NASA's Terra and Aqua satellites, 

offers high temporal resolution (daily revisits) but at coarse spatial 

resolution (250-1000m). This renders MODIS data suitable for 

regional to global scale monitoring and the detection of broad 

phenological cycles, like the onset and end of growing seasons 

over continents (48, 49). Due to the coarse spatial resolution, it can 

produce mixed pixels that reduces field level accuracy. MODIS can 

miss short duration crops or phenological stages of the crop 

causing miscounting of cropping events. That suggest it is not 

reliable for field scale cropping intensity monitoring. 

 The Landsat mission, a collaborative USGS/NASA program, 

has a moderate spatial resolution (30 m) and moderate temporal 

resolution (16-day revisit). Its unique long-term archive, dating from 

the 1970s, is irreplaceable for historical trend analysis and decadal 

scale changes in cropping intensity. 

 Sentinel-2, which is a European Union Copernicus mission, 

has high spatial resolution (10-20 m) and high temporal resolution 

(5-day revisit with two satellites). This renders Sentinel-2 data highly 

appropriate for intensive field-scale monitoring and recording rapid 

crop phenological changes, which is essential for differentiating 

several short-duration cropping cycles. 

Overview of radar sensors 

Sentinel-1, which is part of the Copernicus mission, is a C-band 

Synthetic Aperture Radar satellite (50). Its day-night, all-weather 

capability to penetrate cloud cover makes it an important data 

source where there is persistent cloud cover, especially during 

monsoon seasons  (51). SAR data is sensitive to crop structure, 

biomass and moisture content, providing complementary 

information to optical data(52, 53). 

 RISAT (Radar Imaging Satellite), designed by the Indian 

Space Research Organisation (ISRO), includes X-band and C-band 

SAR satellites, adding to the extent of SAR data availability 

globally for agricultural monitoring. 

Advantages and limitations of each sensor for cropping cycle 

detection 

Optical sensors are superior in offering direct measurements of 

vegetation greenness as indices such as NDVI (Normalized 

Difference Vegetation Index) and EVI (Enhanced Vegetation 

Index). These are direct indications of photosynthetic activity and 

biomass and hence are easy to interpret while detecting crop 

growth phases. Their greatest shortcoming is their vulnerability to 

cloud cover, which is more common in tropical and sub-tropical 

latitudes during monsoon months, creating substantial data gaps 

that hinder real-time monitoring of crop cycles (53, 54). 

 SAR sensors, on the other hand, transcend cloud 

contamination since they can penetrate clouds and function 

without sunlight. They are thus irreplaceable for constant observing 

in totally cloudy agricultural regions. However, SAR data processing 

is more involved and vegetation signal interpretation is less intuitive 

than with optical data, since SAR signals depend not only on crop 

structure but also on soil moisture and surface roughness (55). 

Emerging sources: PlanetScope, UAVs, Hyperspectral, CubeSats 

The remote sensing is evolving at a fast pace with the creation of 

new data sources. PlanetScope is a fleet of CubeSats with daily 3-

5m resolution cover, providing temporal and spatial information 

for monitoring cropping intensity at micro-scales (56). UAVs 

(drones) enable ultra-high resolution data for local, farm-level 

analysis, albeit with limited coverage (57). Hyperspectral sensors 

yield highly detailed spectral signatures, which enable more 

accurate crop type and early stress detection, but at the cost of 

high data volume and processing requirements (43). The 

abundance of CubeSats, small satellites, provides a cost-effective 

and adaptable platform for targeted monitoring requirements, 

adding to the variety of data available (58).  

 One of the serious issues to consider is the "resolution 
paradox" in cropping intensity measurement. While high-resolution 

observation by sensors like Sentinel-2 and PlanetScope allows 

detailed field-level measurement, essential in precision agriculture 

and heterogeneity analysis, these data are accompanied by vast 

volumes, higher processing cost and often narrower swaths. This 

makes global or even regional coverage computationally intensive 

and less frequent (58, 59). Coarse-resolution data like MODIS, on the 

other hand, are best for global trend identification and broad 

patterns but necessarily have no local resolution  (60). This paradox 

means that there is no "best" sensor; rather, an optimal approach 

often involves multi-resolution fusion techniques that increase the 

strength of each (61). 

 Underestimation of the importance of data fusion for 

reliable cropping intensity monitoring is a significant bottleneck. 

Weather conditions of continuous cloud cover over key agricultural 

areas, e.g., Southeast Asia and some areas of Africa during 

monsoon periods, directly impedes optical time-series analysis and 

accurate CI mapping is impossible for key growth stages (58). SAR 

provides the only feasible solution for uninterrupted monitoring 

under such conditions. Inability to integrate optical and SAR data 

effectively means that even with complementary data being 

available, an exhaustive picture of cropping cycles, particularly in 

adverse environments, is not clear. This results in less accurate CI 

estimates in sensitive areas, having a direct impact on food security 

estimation and policymaking. Methodological innovation in data 

fusion is therefore not an academic pursuit but a necessity for large-

scale global agricultural mapping. It enables comprehensive and 

reliable CI measurement, ensuring informed decisions in regions 

most sensitive to climate and food supply concerns (62). 

 

Sensor Name Type Spatial Resolution Temporal Resolution Key Bands/Frequencies 

MODIS Optical 250-1000m Daily Visible, NIR, SWIR 

Landsat-8/9 Optical 30m 16-day Visible, NIR, SWIR, Thermal 

Sentinel-2 Optical 10-20m 5-day Visible, Red Edge, NIR, SWIR 

Sentinel-1 SAR 5-20m 6-12 days C-band (VV, VH) 

Sensor Name Type Spatial Resolution Temporal Resolution Key Bands/Frequencies 

MODIS Optical 250-1000m Daily Visible, NIR, SWIR 

Table 1. Comparative analysis of key satellite sensors for cropping intensity assessment 
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Case studies that demonstrate the effectiveness of data fusion 

Adding optical and SAR Data:  Optical imagery is best at showing 

changes in moisture and chlorophyll content in crop leaves and 

highly used in crop classification, whereas Synthetic Aperture 

Radar (SAR) is sensitive to morphological structures and growth 

stages and can see through clouds (63). This combination is 

crucial for persistent monitoring in cloud-contaminated areas. For 

instance, a fruit tree mapping study revealed that it significantly 

enhanced classification accuracy by merging data from Sentinel-1 

(SAR) and Sentinel-2 (optical) (64).  In another study on predicting 

soybean yield, researchers discovered that combining optical 

vegetation indices and SAR imagery enhanced the predictive 

performance of the model (R²) from 0.65 to 0.85 (65). Researchers 

in Brazil also obtained a 3 % increase in accuracy for in-season 

crop mapping through the combination of Sentinel-1, Sentinel-2 

and SRTM data (66). 

Fusing multi-resolution satellite data: Another usual challenge 

is the trade-off between temporal and spatial resolution in 

satellite sensors. Researchers are overcoming this problem by 

merging data from multiple satellite constellations. For example, 

a technique was created to merge Landsat and MODIS data to 

produce a dense time series of images with 30 m resolution. This 

facilitated the creation of high-resolution cropping cycle maps for 

China with overall accuracies up to 92.5 %, which is not 

achievable using either sensor individually (67).The AgriFM 

architecture follows a similar strategy, taking advantage of 

temporally dense data from MODIS, Landsat-8/9 and Sentinel-2 

and applying deep learning to dynamically integrate these 

representations for applications such as early-season crop 

mapping (68). 

Fusion of satellite, airborne and ground-based sensors: To get 

higher accuracy and maximum information, data fusion goes 

beyond satellite-to-satellite combinations. Satellite and drone 

data fusion, for instance, takes advantage of the large coverage of 

satellites with the high spatial resolution of airborne systems. A 

Multi-sensor Machine-Learning Approach use data from different 

sensors such as on the ground IoT devices to provide cultivation 

recommendations, resulting in high crop yield (69).This multi-

layered analysis offers accurate, localized information that can 

validate and calibrate many satellite measurements. 

Geospatial methodologies for estimation of cropping 

intensity 

The accuracy of geospatial techniques for estimation of cropping 
intensity relies on different methodologies, from conventional 

vegetation index time-series analysis to cutting-edge machine 

and deep learning algorithms. Each method uses different unique 

aspects of satellite data to identify and quantify the cropping cycle 

(Table 2). 

Time-series NDVI/EVI-based approaches 

NDVI and EVI are frequently used because they are simple, widely 

available, easy to compute from common satellite bands, enabling 

global and long-term records that are useful for phenology, trend 

analysis.  EVI reduces atmospheric effects and soil background and 

to reduce saturation in dense canopies. These techniques identify 

different agricultural growth cycles by observing seasonal 

variations in vegetation indices like Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) (70, 71). 

Peaks in the time-series correspond to periods of peak biomass or 

crop maturity (72). These time series are then processed and 

analyzed by using methods such as include harmonic analysis 

(modelling periodic signals), Savitzky-Golay filtering (which 

smooths data and reduces noise while preserving signal features) 

and Fourier series analysis (decomposing signals into their 

frequency components), which smooth noise and extract 

important phenological parameters (71, 73). 

Phenology-based classification and land use trajectory analysis 

Phenology-based classification consists of the extraction of key 

phenological measurements from time-series data, including the 

beginning of the growing season, season end and growing period 

length (71, 72). These are subsequently used to classify various 

cropping patterns, by separating single, double, or triple cropping 

systems (72, 74). Land use trajectory analysis is an extension of this, 

by examining changes in land use and cropping patterns over long 

periods, allowing agricultural intensification or abandonment 

trends to identify  (75). 

Machine learning and deep learning algorithms 

The advent of the latest computational techniques has significantly 

improved the performance of cropping intensity estimation. 

Machine Learning (ML) models like Support Vector Machines (SVM), 

Random Forest and Gradient Boosting are popular for crop type 

identification and cropping cycle detection from multi-temporal 

spectral characteristics (76, 77). The ML models can automatically 

address complex, non-linear relationships in remote sensing data 

and offer robust classification capabilities (78). 

 Deep Learning (DL), a subset of machine learning, is also 

emerging at the cutting edge of geospatial data processing. 

Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) networks 

are being widely applied for the automatic extraction of features 

from time-series satellite imagery in an attempt to classify crops 

correctly and identify phenological events (79, 80). DL models 

possess the unique ability of learning high-level spatio-temporal 

patterns directly from the raw data and, in the process, are 

extremely useful in multi-season cropping estimation,  

particularly in very complicated agricultural landscapes (81). 

Method 
Category 

Core Principle Typical Data 
Requirements 

Strengths for CI 
Estimation 

Limitations/Challenges Example Algorithms/
Techniques 

Phenology-
based 

Analyze vegetation 
index time-series to 
detect growth cycles 

Optical time-series 
(NDVI, EVI) 

Intuitive, captures 
seasonality, good for 

distinct cycles 

Sensitive to noise/gaps, struggles 
with complex/overlapping cycles 

Harmonic analysis, 
Savitzky-Golay filtering, 

thresholding 

Machine 
Learning 

Classify pixels based 
on multi-temporal 
spectral features 

Multi-temporal 
optical/SAR, ancillary 

data 

Handles non-linear 
relationships, good 

for complex patterns 

Requires labeled training data, 
interpretability can be challenging 

Random Forest, SVM, 
Gradient Boosting 

Deep Learning 

Learn hierarchical 
spatio-temporal 

features from raw 
data 

Dense time-series 
optical/SAR 

High accuracy, 
automated feature 
extraction, handles 

complexity 

Data-hungry, computationally 
intensive, black-box nature 

CNNs, RNNs, LSTMs,                 
U-Net 

Table 2. Overview of methodological approaches for geospatial cropping intensity estimation 
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 Despite the promises of these advanced methodologies, 

there are several research gaps were observed. Several methods 

used in various agro-ecological zones are not widely benchmarked. 

The effectiveness of various approaches can greatly fluctuate based 

on the local climate, particular crop varieties and current 

agricultural methods (82, 83). The lack of a thorough and 

methodical comparison across a broad variety of environmental 

circumstances makes it challenging to determine which method 

is best for a particular situation. Additionally, it is to be noted that 

deep learning models are rarely used explicitly for multi-season 

cropping assessment (81). Although it has a lot of promise, its 

broad use and thorough validation for recognizing and measuring 

the subtleties of multi-season cropping patterns are still emerging. 

This suggest that the implementation and evaluation of these 

techniques in various real-world agricultural contexts are lagging 

behind; the availability of data and algorithms is insufficient (79). 

The regular production of comparable, high-quality cropping 

intensity data required for regional and international evaluations is 

impeded by this problem. In order to promote an open scientific and 

code-sharing culture, it suggests that the focus should shift from 

creating new algorithms to thoroughly testing and standardizing 

current ones under a greater variety of circumstances (84). 

 Low reproducibility and transparency of methods is 

another important challenge. Many of the researches often lack 

clear descriptions of algorithms used, specific parameters and 

publicly available code, which is making it difficult to have other 

researchers replicate the results, build upon the work of others, or 

add to cumulative knowledge (85, 86). 

 The lack of deep learning application to multi-season 
cropping estimation, where in theory it is ideal and matched to 

systems that are complex (e.g., mixed pixels in smallholder farms, 

intercropping, staggered planting), is a vast untapped potential 

(79, 81). Deep learning's ability to learn hierarchical features and 

spatio-temporal interactions can unravel such complexities, 

unleashing breakthroughs in accurately mapping highly dynamic 

and complex cropping patterns, particularly in data-scarce or 

challenging areas. This necessitates for more work on transfer 

learning, explainable AI and producing strong training datasets 

optimized for deep learning application in cropping intensity 

estimation (84) (Table 3). 

Regional and Global applications 

The given geospatial analysis of cropping intensity has been used 

in various applications. For different scales of geographical and 

environmental studies. It offers significant information on 

agricultural productivity, land use changes and their impacts on 

food security and environmental sustainability. 

Case studies from India, Southeast Asia, Sub-Saharan Africa 
and global syntheses 

India is a typical example in which geospatial methods are applied 

intensively to monitor cropping intensity, driven by factors such as 

large-scale irrigation and supportive policies for agricultural 

development (83, 90). In India satellite imagery has been used in 

studies to identify yield gaps, examine intensification trends and 

inform water resource management (91). In Southeast Asia, where 

cropping systems are diverse (e.g., rice-rice, rice-other crops) and 

cloud cover is a significant issue, SAR data has been essential to the 

consistent CI evaluation (92). Sub-Saharan Africa, with smallholder 

agriculture, predominantly rainfed agriculture and highly sensitive 

to climate variability, which leads to a special requirement for 

accurate CI assessment in order to allow food security concerns to 

be considered (93). However, this region is commonly afflicted by 

severe data and methodology problems. At the global level, global 

syntheses attempt to map cropping intensity at the continental 

level, frequently employing coarse resolution data like MODIS or 

aggregated higher-resolution data (94),  to differentiate global food 

production regimes and land use change at coarse.  In Latin America, 

the major driver force of agricultural intensification and 

transformation is the mounting world demand for oilseeds and 

grains. This has caused a phenomenal increase in the use of land for 

soybean production, which rose more than two-fold from 2000 to 

2019. Many of these increases have been by the reclamation of 

pastures, which themselves were reclaimed from natural vegetation 

(95). In the Amazon region of Brazil, the cultivated area under 

soybeans expanded over ten times during this time. The expansion 

has been sustained by principal drivers such as economic and policy 

reforms (96), in addition to agricultural research that has brought 

about new, high-productive crop varieties and farming methods 

such as no-till agriculture. In addition, most countries in the region, 

such as Argentina, Chile, Colombia and Brazil, are experiencing a 

large "cropping intensity gap," which implies there is a theoretical 

potential for a extra harvest every two years. 

Role of cropping intensity in yield gap analysis, land degradation 
monitoring 

Cropping intensity data plays an important role in yield gap analysis, 

it is an activity that calculates the gap between observed  crop yields 

and the potentially achievable yields under ideal conditions (97). By 

combining the CI data and yield data, researchers can identify areas 

where yields are below potential, revealing opportunities for 

Model/Method Source Accuracy Metric Value Context/Notes 
Landsat threshold method (39) R² ≥ 0.71 Most accurate for smallholder farms in India   
  RMSE ≤ 0.14  

  R² (after spatial 
aggregation) 

up to 0.97 R² increased with spatial aggregation (≥ 5 x 5 km)   

Stacking2 ensemble model (87) R² 0.923 Highest estimation accuracy for crop residue estimation   
  RMSE 3.32 %  
XGBoost (87) R² 0.884 Highest performance among base models   
Random Forest (RF) (87) R² 0.865 Base model performance   
Support Vector Regression 
(SVR) 

(87) R² 0.859 Base model performance   

Back Propagation Neural 
Network (BPNN) 

(87) R² 0.842 Base model performance   

Random Forest (RF) (88) Overall Accuracy 0.77 - 0.95 Varied across seasons (summer vs. winter) for crop 
mapping   

Phenology-based (MODIS) (68) Overall Accuracy 89 % National maps of various cropping systems in China   
Phenology-based (Sentinel-2) (68). Overall Accuracy > 76 % Differentiation of wheat and barley   
Bayes Net (89) Classification Accuracy 99.59 % Crop classification   

Table 3. Accuracy metric of algorithms used for CI estimation 
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agricultural intensification  or improved management practices  (98). 

Moreover, changes in cropping intensity, for example, a decline in 

multi-cropping, can be a sign of land degradation, resource 

depletion, or underlying socio-economic stress (99). However, 

sustainable intensification, which is often quantified in terms of 

improving CI, can mitigate degradation and promote improved land 

use efficiency (100). 

 Despite these applications, significant research gaps still 

exist. There is a glaring lack of Representation of African and 

marginal areas in cropping intensity analysis. Despite their extreme 

vulnerability to food insecurity and climate change, these areas are 

underserved with appropriate high-resolution CI research due to 

data constraints, common cloud cover and limited infrastructure to 

carry out the research (93, 101). This gap makes the areas that is in 

need of  accurate agricultural monitoring data often are the least 

served, generating a self-reinforcing cycle of data poverty that 

prevents effective policy intervention, resource allocation and 

humanitarian response (102). This reveals a severe equity issue 

with global agricultural research since it means global food 

security models and agricultural development programs are 

making decisions based on incomplete data, risking poorly 

informed strategies and perpetuating existing inequities (103). 

 Another important gap is the absence of harmonized high
-resolution global datasets (less than 30 m). While there are some 

global datasets available like MODIS, Sentinel-1, etc. they are 

mostly at coarse resolutions, which limits their application in 

performing detailed, localized analysis (94). A high-resolution, 

global cropping intensity dataset is required to perform robust, 

comparable analysis of all agriculture areas across the world. This 

gap is directly connect to the "lack of standardized definitions" 

and "limited benchmarking of methods" (104). In the absence of 

harmonized, high-resolution global datasets, it is impossible to 

conduct robust, comparable analysis of CI trends across the 

world. This severely limits international organizations and 

national governments from accurately estimating global food 

production potential, identifying hotspots of agricultural stress or 

opportunity and performing evidence-based policy for 

sustainable intensification or climate adaptation worldwide. 

Absence of such a dataset is a key to the attainment of global food 

security targets and knowledge of planetary boundaries  (105). 

Challenges and uncertainties 

Despite considerable advances in geospatial technologies, there are 

certain inherent complications and uncertainties that are still 

obstacles to get accurate and consistent assessment of cropping 

intensity at large scale or in highly intricate agricultural 

environments. 

Spectral confusion between crops and natural vegetation 

One of the fundamental problems seen in spectral signatures 

confusion between agriculture crop lands and natural cover. It is 

difficult to distinguish between natural grassland, weeds, or even 

some forest covers from cropped fields, especially during off-peak 

growing seasons or in highly heterogeneous environments (106). 

This ambiguity can lead to misclassification, where cropped or 

non-cropped lands are being classified as either cropped or non-

cropped, respectively and thus providing inaccurate estimation of 

cropping intensity (107). 

 

Cloud contamination in optical imagery 

Persistent cloud contamination of optical images remains a 

common and significant challenge, particularly in monsoon-

dominated and tropical regions (108). Clouds obscure the land 

surface, creating enormous data gaps in optical time series. These 

gaps make it extremely difficult to track entire crop cycles, 

accurately count the number of harvests and track phenological 

evolution, producing incomplete or unsound cropping intensity 

maps (109). 

Temporal mismatch in satellite revisit times vs. cropping patterns 

Even with the increased revisit rates of modern satellite 

constellations (e.g., Sentinel-2 5-day revisit), temporal mismatch 

between satellite observation period and intensive cropping 

schedules is a viable risk. Short-season crops, e.g., certain 

vegetables with 60-day cycles, or planting and harvesting rotations 

in smallholder systems, may be missed or under sampled by 

satellite overpasses. This can lead to underestimation of real 

cropping intensity (110). 

Insufficient ground truth data for validation 

One of the basic and widely known challenges is the inadequate 

access to ground truth data that required for validation. Accurate 

validation of geospatial cropping intensity maps requires large, 

high-quality field surveys, such as farmer interviews, for 

verification of observed cropping patterns (42). Such data are 

usually expensive, have logistic limitations and are geographically 

limited to collect, which limits strict checks of model accuracy, 

generalizability and uncertainty estimation. The lack of ground 

truth data is a systemic limit that does not allow complete use of 

satellite data and advanced algorithms. It limits the use of 

different methods, introduces uncertainty into cropping intensity 

estimation (111) and ultimately prevents the development of truly 

operational and reliable agricultural monitoring systems. This 

requires coordinated global efforts towards the creation of open-

access ground truth networks as well as the development of 

citizen science initiatives. 

Lack of long-term continuous records to study trends over 
decades 

While mission-driven platforms like Landsat offer a valuable long-

term history, having steady, fine-resolution data to track 

continuously over decades remains challenging. The problem is 

due to numerous reasons such as evolution of sensor technology, 

temporal change of data processing methods and the inevitable 

need for harmonization of different satellite missions (112). 

Absence of continuous, harmonized datasets limits the ability to 

perform systematic analysis of long-term patterns of cropping 

intensity and their causes, which are essential in elucidating the 

effect of climate change and agricultural sustainability over 

extended periods. 

 These problems are not isolated; they have a cascading 

impact on the reliability of policy choice. Cloud cover creates data 

gaps, requiring interpolation or the use of less than optimal data. 

Spectral ambiguity causes classification error. Both have a direct 

impact on the accuracy of cropping intensity maps. If the 

underlying CI maps are not accurate or of high uncertainty, any 

resultant policy choices or resource allocations based on them, 

e.g., food aid distribution, irrigation planning, or agricultural 

subsidies will be deficient (113). This highlights that the "challenges 

and uncertainties" are not technical impediments to researchers 
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but they represent the basic limitations on the reliability and 

trustworthiness of geospatial cropping intensity data for actual 

policy and management. This underscores the imperative need for 

many uncertainty quantification and transparent reporting of data 

quality in all cropping intensity products. 

Integration with climate and socio-economic data 

A complete explanation of cropping intensity requires going 

beyond purely biophysical data to include climatic and socio-

economic determinants. The general method provides more 

information about causes of agricultural land use and broader 

implications. 

Assessing drivers: Rainfall variability, irrigation access, market 

influences 

Rainfall variability is a significant and important driver, particularly 

in rainfed agriculture. Drought or extreme rainfall events have the 

potential to severely limit or obliterate crops, thus reducing the 

number of harvests in a single year and hence reducing cropping 

intensity. The availability of irrigation is a significant counter measure 

that enables farmers to get over the rainfall variability and initiate 

multiple cropping seasons even in semi-arid or arid regions. 

Geospatial assessments can improve by inclusion of data on 

irrigation facilities, such as the spatial distribution of canals, wells and 

other water resources (114). In addition to environmental 

conditions, the market also influences farmers' choices. Commodity 

prices, consumer demand for specific crops and availability of local 

and export markets directly influence what farmers choose to crop 

to cultivate and how frequently they invest in improving farm 

practices and how do they intensify their cultivation. 

Linking cropping intensity to food security and poverty indices 

The measurement of cropping intensity has a significant role in 

overall societal well-being. High cropping intensity tends to 

enhance the availability of food, which is a fundamental 

component of food security (115). Geospatial cropping intensity 

maps can clearly distinguish high or low intensification areas and 

easily correlate with food surplus or deficit areas. Cropping 

intensity in agricultural economies can be easily related to 

household income and poverty, as frequent harvests tend to 

bring better economic returns to farmers and potentially lead the 

communities out of poverty (116, 117). 

 In spite the identification of the significance of these drivers 

and linkages, important research gaps exist in their integration. 

There is minimal integration of socio-economic layers into spatial 

models. While the impact of socio-economic factors is recognized, 

there is minimal effective and scalable integration of these factors 

into geospatial cropping intensity models. This is a critical oversight 

here since farmers' decisions to intensify the crop are complicated 

and influenced by factors such as labour availability, access to 

markets, government policies and perceived risks of climate 

variability. These human choices are the final determinant of 

cropping intensity. Without effective integration of socio-economic 

and climate data, geospatial cropping intensity measurements 

remain mostly descriptive (what is happening) and not explanatory 

or predictive (why it is happening, what happens next). This limits 

the utility of their active policy interventions to aim at sustainable 

intensification or climate resilience, since the "human dimension" is 

frequently the missing link for moving from passive monitoring to 

genuine insight and forecasting. 

  

 In addition, there is limited spatio-temporal modeling of 

cropping-climate relationships. It is little understood how 

accurately climate variability, e.g., El Niño-Southern Oscillation 

(ENSO) events or long-term temperature trends, affects cropping 

intensity over time and parameterizing this in spatio-temporal 

models, which are not yet in widespread development and use 

(118). Most analyses detect correlations between the variables, 

but correlation does not equal causation. For instance, whereas 

high cropping intensity may correlate with decreased poverty, 

one needs to establish whether CI causes reduced poverty 

directly, or whether other underlying causes (e.g., access to 

infrastructure, education) facilitate high CI and enhanced socio-

economic status. Unless one understands such causal pathways, 

policy interventions may be misdirected. Promoting greater 

cropping intensity without removing underlying socio-economic 

or climatic constraints may not deliver the food security benefits 

hoped for. Future research must therefore break away from 

descriptive mapping and correlational analysis towards strong 

spatio-temporal causal inference models that can untangle the 

intricate interaction of biophysical, climatic and socio-economic 

drivers of cropping intensity and its effects. This necessitates 

sophisticated statistical and machine learning methods with the 

ability to deal with complicated dependencies. 

Future directions and recommendations 

The future of measuring geospatial cropping intensity is predicted 

to be shaped by enhanced access to information, advanced 

analytical methods and more collaborative efforts. In order to 

address the current challenges, one must take a concerted effort 

in several key areas. 

Promoting open-access datasets and cloud-based platforms 

The general availability of open-access satellite imagery, such as 

the Landsat and Sentinel data collections and the emergence of 

powerful cloud computing platforms like Google Earth Engine 

(GEE) have made the geospatial data and computational 

infrastructure available more broadly for wider use. This has 

greatly reduced computational constraints and enabled 

collaborative research on an unprecedented scale. It is 

recommended that we further develop and encourage such 

platforms to enable scalable and consistent cropping intensity 

assessments at the global scale. Concrete activities involve the 

creation of harmonized, high-resolution datasets, e.g., the Global 

Cropping Intensity Dataset (GCI30), a 30 m resolution product 

derived from Landsat, Sentinel-2 and MODIS data. Others are the 

GMIE dataset, a global map of irrigated croplands at 100 m 

resolution and GGCP10, a global crop production dataset at 10 

km resolution (119). This shift means that the primary challenge is 

no longer data acquisition; instead, it is the processing of large, 

complex and noisy datasets into reliable, valid and actionable 

information for policymakers. This requires the establishment of 

many processing techniques, rigorous quality control and proper 

communication of uncertainties. Therefore, the challenges have 

shifted from data acquisition into the areas of data processing, 

validation and interpretation. 

Development of automated, scalable algorithms 

In the framework of large-scale areas, continuous monitoring of 

cropping intensity, manual or semi-automatic techniques become 

irrelevant. Future progress requires establishing automated, 

scalable algorithms that are particularly suitable to handle the 
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growing volumes of satellite image data.  It is necessary to focus on 

creating robust, generalizable and computationally effective 

algorithms that can handle different agro-ecological conditions and 

integrate different types of data. For example, researchers are 

developing and implementing particular deep learning models, 

such as the U-Net model, for the purpose of tasks such as the 

segmentation of lavender fields with Sentinel-2 imagery (120) and 

the classification of ice-water areas to enhance training data for 

other models. Further examples include a phenology-based 

algorithm that employs time-series Landsat and Sentinel-2 

imagery to precisely map 30 m cropping intensity in a complex 

basin in China (121). 

Leveraging AI (Deep Learning) and Citizen science 

As previously highlighted, Artificial Intelligence (AI) and deep 

learning in particular, have great potential for accurate and 

automated intensification mapping, especially for heterogenous 

and complex agriculture systems. Continuous research and 

application of deep learning tools are important. Citizen science 

initiatives, however, offer a promising solution to address the 

ground truth data gaps. Engaging local communities in the 

process of acquiring data, possibly through mobile applications, 

can provide highly validation data, thereby making geospatial 

products more reliable and accurate. Concrete example for this 

approach is the "Mission LQ" smart grass application, a 

crowdsourced ground truth data-gathering app for precision 

agriculture on particular weeds (122). 

Need for collaborative efforts in dataset generation and model 

validation 

Addressing challenges such as data harmonization, non-availability 

of ground truth data and method benchmarking fundamentally 

which require collaboration among several institutions and nations. 

Interdisciplinary partnership is required among remote sensing, 

agronomy, socio-economic and policy-formulation specialists. 

Such collaboration can enable the development of standard 

datasets, methodology development with universal applicability 

and validation of models in various context. 

Underutilization of big data and IoT for near real-time monitoring 

The possibility of merging real-time sensor readings of the 

Internet of Things (IoT) with satellite observations and other big 

data sources like weather forecasts and market prices is not used 

in the estimation of cropping intensity. Such merging has the 

potential to enable highly dynamic, near real-time monitoring 

and forecasting of cropping patterns. Synergies between these 

heterogeneous data streams have to be investigated to reach a 

more complete and timely understanding of food crop dynamics. 

The intersection of these isolated developments promises a 

revolution in the approaches used to monitor and manage 

agriculture. Near real-time cropping intensity measurements, 

together with climate forecasts and market information, have the 

potential to improve precision agriculture, give early warnings of 

food insecurity and guide adaptive policy adjustments. This shows 

a increase beyond static mapping to dynamic, predictive and 

possibly prescriptive agricultural intelligence. The future of 

geospatial cropping intensity estimation goes beyond the 

observation of past events; it is a prediction of future trends and the 

way of best interventions, thus making an important contribution 

to food security globally and sustainable use of resources. This is a 

paradigm shift towards "smart agriculture" (Table 4).  

 

Conclusion 

The geospatial assessment of cropping intensity has undergone 

significant advancements, evolving from basic mapping to 

sophisticated analysis with the help of modern satellite platforms 

and advanced algorithms. Despite these advancements, 

persistent challenges remain, including data gaps from spectral 

confusion, cloud contamination and a critical lack of ground truth 

data for validation. Furthermore, there is a need to better 

integrate socio-economic factors into spatial models to go 

beyond simple description. The path forward requires a 

concerted, interdisciplinary approach. By utilizing the potential of 

AI, vast datasets and by fostering great collaborations, the 

disciplined field can transition from a descriptive to a predictive 

one, providing the relevant information necessary to address 

global food security and sustainable agriculture. 

 

Acknowledgements  

I would like to thank the Department of Remote Sensing & GIS 

and Centre for Water and Geospatial Studies for their support 

and for funding this research. 

 

Authors' contributions 

PI and KPR conceptualized the study. PI, KPR involved in data 
collection and data curation. The original draft was written by 

PI, KPR. PI, KPR, PS, RKP, SS and APS contributed to writing the 

review and editing of the manuscript. PI, KPR, PS, RKP, SS and 

APS provided supervision. All authors read and approved the 

final manuscript. 

 

Research Gap 
Corresponding Future Direction/

Recommendation Rationale/Expected Impact 

Limited synthesis of CI studies at 
regional to global scales 

Promote open-access data and cloud-based 
platforms (e.g., GEE) 

Enables scalable, consistent analysis across regions, 
reduces computational barriers. 

Lack of standardized definitions and 
metrics 

Develop unified classification schemes and 
standardized methodologies 

Ensures comparability across studies, facilitates global 
dataset generation. 

Inadequate exploitation of SAR data 
in cloudy regions 

Enhance integration of multi-source data 
(optical + radar + ancillary) 

Provides continuous monitoring in cloud-prone areas, 
improves robustness of CI estimates. 

Limited benchmarking of methods 
across agro-ecological zones 

Conduct systematic, interdisciplinary 
method benchmarking studies 

Identifies optimal methods for diverse conditions, increases 
reliability and generalizability. 

Scarce use of deep learning models 
for multi-season CI 

Invest more in deep learning research and 
application for complex cropping systems 

Unlocks potential for highly accurate, automated mapping 
in dynamic environments. 

Low transparency and reproducibility 
of methods 

Promote open science practices: code 
sharing, detailed methodology descriptions 

Fosters collaboration, accelerates research progress, builds 
trust in results. 

Table 4. Identified research gaps and corresponding future directions/recommendations  
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