E--;-l,-_E PLANT SCIENCE TODAY
- Vol 13(1): 1-9

#; s https://doi.org/10.14719/pst.11513
[LfCE 20

Multi class tea leaf disease classification using feature level and
output level ensemble strategies with Grad-CAM visualization

eISSN 2348-1900

o

N
.‘

Kandarpa Kalita?, Kishore Medhi?, Sanjeet Kumar Borah?, Aniruddha Deka' & Sunandan Baruah'*

'Faculty of Computer Technology, Assam down town University, Guwahati 781 026, Assam, India
2Department of Computer Applications, Assam Don Bosco University, Guwahati 781 017, Assam, India
3Faculty of Agricultural Sciences and Technology, Assam down town University, Guwahati 781 026, Assam, India

*Correspondence email - sunandan.baruah@adtu.in

Received: 28 August 2025; Accepted: 07 December 2025; Available online: Version 1.0: 07 January 2025; Version 2.0: 19 January 2026

Cite this article: Kandarpa K, Kishore M, Sanjeet KB, Aniruddha D, Sunandan B . Multi class tea leaf disease classification using feature level and output
level ensemble strategies with Grad-CAM visualization. Plant Science Today. 2026; 13(1): 1-9. https://doi.org/10.14719/pst.11513

Abstract

Tea is one of the most widely consumed drinks in the world and plays an important role in the economy of tea-growing regions. However, leaf
diseases are a major problem for the tea industry because they lower both yield and quality, directly affecting tea growers’ livelihoods and the
overall supply chain. Therefore, detecting these diseases in their early stages is important for healthy crop growth and good vyield. In
traditional practice, disease identification is carried out through field inspection or laboratory testing by expert farmers and plant
pathologists. However, these methods are slow, require a lot of manual work and may sometimes lead to errors, making them difficult to
adopt for large-scale cultivation. This study presents a novel deep learning-based methodology for eight-class tea leaf disease classification,
exploring feature-level and output-level ensemble strategies. Four widely used convolutional neural networks (CNNs)-ResNet-18, VGG-16,
InceptionV3 and MobileNetV2-pretrained on ImageNet were utilized. In the feature-based approach, deep features extracted from these
models were compressed using principal component analysis (PCA) and classified using a Random Forest classifier, achieving an accuracy of
95.6 %. In the output-based approach, probability predictions from the above CNNs were combined, resulting in a higher accuracy of 98.3 %.
Grad-CAM visualizations confirmed that the models consistently highlighted symptomatic leaf regions, improving interpretability and user
trust.
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discriminative spatial features from leaf images, outperforming
traditional hand-crafted descriptors across a wide variety of
horticultural crops (4). CNNs have also shown strong
generalization performance under field conditions involving
variations in illumination, background noise and environmental
complexity (5). An earlier study proposed a novel deep
convolutional neural network (DCNN) using inverted residuals
and linear bottleneck layers for the automatic detection of grey
blight disease on tea leaves and achieved a test accuracy of 98.99
% (6). Researchers introduced a model called YOLO-tea, which is
an enhanced version of YOLOv5 designed specifically for
detecting multiple tea diseases by improving feature extraction
and small-object recognition capability (7). Previous studies
evaluated several deep learning models for real-time tea leaf
disease detection, focusing on achieving fast and reliable
performance suitable for field applications (8). An earlier study
proposed a deep neural network that uses a hybrid pooling
strategy to improve feature extraction for automatic

Introduction

Tea (Camellia sinensis L), an evergreen plant native to Asia,
thrives in warm and humid climates. India is the world’s second-
largest tea producer, with Assam contributing ap proximately
630-700 million kilograms annually as of 2025, according to the
Tea Board of India (1). Assam alone accounts for more than half
of the total tea-cultivated area in the country. However, the same
climatic conditions that support tea growth also encourage the
spread of diseases. The continuous expansion of tea plantations
in recent years has led to increasing incidences of leaf diseases
such as blister blight, red rust, grey blight and other foliar
infections, all of which negatively affect both yield and quality.
Due to the vast geographical spread of plantations, timely
detection and management of diseases remain challenging,
often resulting in significant economic losses (2). Consequently,
early detection of tea leaf diseases is essential to ensure
sustainable production and minimize crop loss.

Early disease diagnosis plays a key role in maintaining
leaf quality, reducing yield decline and preventing excessive or
indiscriminate pesticide use (3). Recent advancements in image-
based disease classification have demonstrated that
convolutional neural networks (CNNs) can efficiently learn

identification of tea leaf diseases (9). Researchers extracted deep
learning features and use a kernelized SVM to improve the
accuracy of tea leaf disease prediction (10). Their hybrid
approach showed better performance than standalone CNN or
SVM models. Another study introduced an improved YOLOVT-
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MobileNeXt model designed for efficient and accurate
classification of multiple tea diseases, particularly optimized for
lightweight deployment (11). Researchers also proposed a
hybrid approach that combines CNN-based feature extraction
with a Random Forest classifier for multiclass tea leaf disease
identification (12).

Despite these advantages, standalone CNN models still
face challenges such as over fitting, inter-class confusion and
domain shifts between laboratory and real-world environments.

Ensemble learning has emerged as a promising solution
to these limitations, offering improved robustness by combining
the complementary strengths of multiple models (13). Two
ensemble paradigms have shown particular effectiveness:
feature-level fusion, which integrates deep feature
representations from different CNNs and output-level fusion,
which aggregates model predictions into a unified decision (14).
Studies in plant disease classification show that ensembles often
surpass single-model approaches, especially when datasets
exhibit overlapping symptoms, subtle inter-class variations and
limited training samples (15).

Previous research presented a multi-model ensemble
methodology named PlantDet, which combines several deep
learning architectures to improve the reliability of plant disease
detection across diverse datasets (16). Researchers proposed a
hybrid deep learning approach for image-based plant disease
detection that combines CNN feature extraction with additional
learning layers to enhance classification performance (17).

Other researchers presented a hybrid deep multistacking
integrated model designed to improve the accuracy and stability
of plant disease detection by combining multiple deep learning
architectures (18). Another study proposed a hybrid model for
leaf disease classification that combines modified deep transfer
learning with an ensemble approach to enhance performance in
agricultural AloT-based monitoring systems (19). An earlier study
presented an ensemble hybrid framework that combines CNN-
based features with various metaheuristic optimization
algorithms for plant disease classification (20). Researchers
proposed a hybrid ensemble model that combines CNN and
RNN features for multimodal cotton plant disease detection,
applying both spatial and sequential information (21).

In addition, explainable Al (XAl) techniques such as
Gradient-weighted class activation mapping (Grad-CAM) provide
visual insights into model decision-making by highlighting the
discriminative regions contributing to classification (22). Such
interpretability frameworks support model transparency and
enable agronomists to assess whether computational
predictions align with biologically meaningful symptom
patterns. While deep learning-based disease detection has been
widely studied for various crops, research focusing on multiclass

Table 1. Number of images per class in the dataset

2

tea leaf disease classification using both feature-level and output
-level ensembles remains limited (23). Furthermore, many
existing approaches rely on single CNN models, lack
interpretability, or are restricted by dataset size and diversity,
limiting their generalizability (24). There is also a shortage of
integrated systems that combine ensemble learning with visual
explanation tools for real-world decision support in tea
plantations (25).

To address these gaps, this paper proposes a hybrid
ensemble framework that com bines feature-level CNN fusion
with output-level probabilistic ensemble decision making. Grad-
CAM visualization is incorporated to highlight disease-specific
lesion regions and enhance interpretability. This comprehensive
approach aims to improve classification ac curacy, transparency
and robustness, ultimately supporting scalable precision
agriculture practices for tea growers. By integrating deep feature
fusion, ensemble strategies and explainable Al, this study
contributes to advancing Al-enabled plant health monitoring
and promoting sustainable crop management through data
driven technologies.

Materials and Methods
Proposed methodology

This study presents two ensemble learning strategies aimed at
enhancing the performance, stability and generalization
capability of tea leaf disease classification systems. Four pre-
trained CNN architectures, namely ResNet-18, VGG-16,
MobileNetV2 and InceptionV3, are employed as base learners
due to their proven effectiveness in extracting diverse and
discriminative feature representations from image data. The first
strategy, referred to as the output-level ensemble, integrates the
SoftMax probability scores generated by each CNN through
element-wise averaging, thereby reducing prediction variance
and overcoming the limitations of individual models. The second
strategy, termed the Feature-Level RF ensemble, aggregates
deep features extracted from the four CNNs, applies PCA to
reduce feature dimensionality and subsequently classifies the
compressed representations using a Random Forest classifier.

Dataset description

The dataset employed in this study is publicly available on
Mendeley data and comprises a total of 885 high-quality RGB
images of C. sinensis leaves (26). The dataset includes eight
distinct classes, representing seven common tea leaf diseases
along with healthy leaf specimens, with a near-balanced
distribution across categories. The distribution of images in the
dataset is shown in Table 1. This balanced representation is
critical for preventing bias during model training and ensuring
reliable classification performance.

Class name

Image count

Condition type

Algal leaf 113
Gray blight 100
Anthracnose 100
Healthy 74
Bird eye spot 100
Red leaf spot 143
Brown blight 113
White spot 142
Total 885

disease
disease
disease
normal
disease
disease
disease
disease
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Representative samples from a few classes are provided
in Fig. 1, demonstrating the characteristic visual symptoms used
for classification. The healthy class specimens show optimal leaf
morphology without discoloration or textural abnormalities.

Augmentation

To help the models cope with natural variation in field images,
we applied a simple but effective set of image augmentations
(27, 28). Images were randomly rotated, shifted, sheared,
zoomed and flipped to simulate changes in leaf pose and camera
angle; brightness was varied to reflect different lighting; Gaussian
noise was added to mimic sensor disturbances; and random
erasing (50x50 px cutout) was used to increase resilience to
partial occlusion. All images were resized to 224 x 224 pixels and
normalized prior to training. Most transforms were implemented
using Keras’s Image Data Generator, with Gaussian noise and
cutout applied via small custom preprocessing routines,
producing a richer and more varied training set.

Preprocessing

Preprocessing is essential for converting raw images into a
consistent format suitable for deep learning. In this study, three
preprocessing steps were applied: image resizing, pixel
normalization and dataset partitioning. All images were resized
to 224 x 224 pixels to match the input requirements of the CNN
models while maintaining sufficient visual detail. Pixel intensities
were then normalized from the range [0, 255] to [0, 1] to stabilize
training and reduce sensitivity to illumination variations. The
dataset was divided into training (70 %), validation (15 %) and
testing (15 %) subsets. The training set was used to learn model
parameters, the validation set to tune hyperparameters and the
test set to provide an unbiased evaluation of the final
performance. The preprocessing steps are summarized in Fig. 2.

Implementation

Following preprocessing, each of the four pretrained CNN
architectures mentioned above was fine-tuned on the tea leaf
dataset using a transfer learning approach. Transfer learning
enables the convolutional feature extractor pretrained on

Normalization (0—1 Scale)

Dataset Splitting (Train/Val/Test)
70/15/15

Fig. 2. Preprocessing flow chart.

ImageNet to be reused while adapting the final layers to the
target classification task, thereby reducing training time and
minimizing overfitting in limited data scenarios (29).

For each model, the pretrained feature extraction layers
were initialized with ImageNet weights and the original fully
connected layer was replaced with a new classifier
corresponding to the number of tea leaf disease classes (i.e., 8).
During the initial training phase, the early feature extraction
layers were frozen to retain generic visual representations, while
deeper layers were gradually unfrozen for fine-tuning to capture
task-specific patterns.

Model training employed the Adam optimizer with a
learning rate of 1 x 10* and categorical cross-entropy loss. Adam
was selected for its adaptive learning rate mechanism, which
supports stable and efficient convergence. A batch size of 32 was
used and early stopping was applied, halting training if validation
accuracy did not improve for 50 consecutive epochs. This
strategy prevented overfitting and eliminated unnecessary
computation.

Algal Leaf

Gray Blight

Anthracnose

Healthy

Bird Eye Spot

Red Leaf Spot

Fig. 1. Sample tea leaf disease images collected from the source mentioned above.

Plant Science Today, ISSN 2348-1900 (online)


file:///C:/Users/user/Downloads/Empirion%20Publishers%20Private%20Limited/December/21/11513/Corrected_PST11513-Updated_Manuscript_without_highlight.docx#_bookmark0#_bookmark0
file:///C:/Users/user/Downloads/Empirion%20Publishers%20Private%20Limited/December/21/11513/Corrected_PST11513-Updated_Manuscript_without_highlight.docx#_bookmark39#_bookmark39
file:///C:/Users/user/Downloads/Empirion%20Publishers%20Private%20Limited/December/21/11513/Corrected_PST11513-Updated_Manuscript_without_highlight.docx#_bookmark40#_bookmark40
file:///C:/Users/user/Downloads/Empirion%20Publishers%20Private%20Limited/December/21/11513/Corrected_PST11513-Updated_Manuscript_without_highlight.docx#_bookmark1#_bookmark1

KANDARPA ET AL

Output-level ensemble with SoftMax classification

In the output-level ensemble strategy, each CNN model
independently processes the input image and produces a
probability distribution over all disease classes through the
SoftMax activation in its final classification layer. For a model
output logit vector Z = (zy, z,, . . . , k), the SoftMax probability
assigned to class cis given by

exp(z.)

PO)=—¢—— (1)
2, eXP(2,)

where, Kdenotes the total number of disease classes.
Thus, each CNN generates a probability vector.
Pi= [ Pl(l)’ Pl(2)’ ey PI(K) ]’ (2)
where i€ {1, 2, 3,4} corresponds to the four base models
(ResNet-18, VGG-16, Mo- bileNetV2 and InceptionV3).

To obtain a unified prediction, the probability vectors
from all models are fused using element-wise averaging:

1 N
Paa@ =3 ) P@ )

where N= 4 is the number of CNN models and Pina(c) is
the aggregated probability for class c. The final predicted label is
then selected as the class with the highest fused probability:

Yored = arg m‘g‘x Pﬁrml(c) 4
By averaging the probability distributions from multiple
models, this ensemble approach reduces the impact of
misclassification by any single network, compensates for
individual model biases and improves the overall stability and

robustness of the classification system. The workflow is
summarized in the Fig. 3 and the Algorithm 1.
Algorithm 1: Probability averaging ensemble
1: Input: Pre-trained models M ={M;M,M;M}; test dataset
D = {x;}i,
2: Output: Predicted labels
3: Preprocessing: Resize and normalize all input images.
4: for each samplexie D do
5. Obtain class probability vectors Pk (xi) from each model M.
6: Compute the averaged probability: A..(x) = 12X, P, (x)
T Assign the predicted label: 9 = argmax P, (x)

8: end for

Feature-level RF ensemble with deep feature extraction and
PCA

In the feature-level Random Forest (RF) ensemble, deep features
were extracted from the final fully connected layer of each CNN
model-ResNet-18 (512), VGG-16 (4096), MobileNetV2 (1280) and
InceptionV3 (2048)-and these feature vectors were concatenated
to form a single high-dimensional representation.

F=AIE(I6]|f] (5)
Before dimensionality reduction, each feature block was

standardized using the training-set mean and standard deviation
to ensure uniform scaling across the different architectures.

Parallel Inference: ResNet-18, VGG-16,
MobileNetV2, Inception V3

Fig. 3. Workflow of probability averaging ensemble.

PCA was then applied to remove redundant information
and reduce noise. PCA was implemented using the SVD solver
With Neomponents = 300, selected based on achieving more than 90 %
cumulative explained variance. Whitening was disabled
(whiten=False) to preserve the natural variance structure and a
fixed random state=42 ensured reproducibility. The resulting
compressed feature representation is denoted as FPCA € R300,

which served as the input to the RF classifier.

The Random Forest model was optimized using stratified
5-fold cross-validation on the training set. The hyperparameter
search space included: n estimators € {100, 200, 300, 500}, max
depth € {None, 10, 20, 30, 50}, min samples split € {2, 5,10}, min
samples leaf € {1, 2, 4}, max features € {‘sqrt, ‘log2’} and
bootstrap = True. Balanced accuracy and macro-F1 were used as
the selection metrics to address potential class imbalance and
out-of-bag (OOB) estimates (oob score=True) provided an
internal generalization check. The best configuration was found
to be n estimators = 300, max depth = 30, min samples split = 2,
min samples leaf = 1, max features = ‘sqrt’ and bootstrap=True,
with random state = 42. The final RF model was trained on the
complete training set using these hyperparameters and
predictions for the test images were generated through majority
voting across the trees:

Yored= Mode{Trees(Feca), Treex(Feca), . . ., Treer (Feca)}  (6)
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where T= 300. By integrating complementary deep
features, PCA-based compression and a robust ensemble
classifier, the feature-level RF approach enhances both accuracy
and generalization performance. The workflow is summarized in

Fig. 4 and Algorithm 2.

Feature Extraction: ResNet-18, VGG-16,
MobileNetfV2, Inception V3

Fig. 4. Workflow of the feature-level RF ensemble.
Performance evaluation metrics

The proposed dual-strategy tea leaf disease classification
framework, comprising an output- level ensemble and a feature-
level RF ensemble, was comprehensively evaluated to measure
its effectiveness in accurately identifying eight tea leaf categories
(seven diseases and one healthy class).

Given the multi-class nature of the problem, the
evaluation metrics were calculated using macro-averaging,
ensuring that all classes contributed equally to the overall
performance regardless of the number of samples in each class.
This prevents dominant classes from disproportionately
influencing the evaluation and allows for a fair assessment
across all disease categories.

Algorithm 2. Feature-Level ensemble with PCA and random
forest

1. Input: Pre-trained models M= {M, My, M3, Ma}; training
dataset D={(x; yi)}"i=1; PCA target dimension d =300

1. Output: Predicted labels y";
2. Feature Extraction:

4.foreachx.€ Ddo

5. Extract deep features f¥ € R from M; (ResNet-18)

6. Extract deep features f@ € R*% from M, (VGG-16)

7. Extract deep features f® € R®® from M (MobileNet V2)

8. Extract deep features f* € R from M, (Inception V3)

10. Concatenate features: Fi= [f¥]|f?||f/]| f*|]] e R7936

11. end for

12. Dimensionality Reduction:

13. Apply PCA: F*“= PCA (F; d), where d =300

14. Training:

15. Train Random Forest classifier RF on reduced features F°
16. Inference:

17. Predict labels y i for test samples using trained RF

To obtain a comprehensive performance matrix of the
proposed classification procedure, a combination of standard and
diagnostic evaluation metrics was used. Accuracy provides a
global measure of correct predictions, while Precision, Recall and
F1-Score offer deeper insights into the trade-offs between false
positives and false negatives for each category. In addition, an
analysis of the confusion matrix was performed to visually inspect
class-level prediction patterns, allowing the identification of
specific misclassifications trends, particularly between diseases
with similar visual symptoms. This multifaceted evaluation
approach ensures that the reported performance reflects not only
the overall accuracy of the model’s predictions but also its
reliability in classifying all eight tea leaf categories with balanced
sensitivity and specificity.

Quantitative classification metrics - accuracy, precision,
recall and F1-score
Accuracy quantifies the proportion of correctly classified samples
out of the total.

TP+TN

Accuracy = ——— (1)
TP+TN+FP+FN

where, TP, TN, FP and FN denote true positives, true
negatives, false positives and false negatives respectively.

Precision measures the fraction of predicted positive
cases that are actually correct:

TP
TP+FP

Precision =

(8)

Recall (or sensitivity) indicates the proportion of actual
positive cases that are correctly identified:
TP

9
TP+FN ©)

Recall =

F1-Score, the harmonic mean of precision and recall, balances
both metrics:

Precesio xRecall
F1-Score=2x ——M
(10)

Precesio +Recall

For the four-class classification task, the macro-averaged
versions of these measures are expressed as:

Macro_Precision = % X, Precision, (11)
(12)
Macro_F1 = % »¢  F1—Score;, (13)

Macro_Recall = = ¢ | Recall,
c

where C =8 is the total number of classes in the dataset.
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The comparative performance of individual CNN
architectures and the two proposed ensemble strategies was
quantitatively assessed using macro-averaged accuracy, precision,
recall and F1-score (Table 2).

From the results, it is evident that the ensemble strategies
significantly outperform individual base learners. The output-level
ensemble achieved the highest overall performance, with a macro-
accuracy of 98.3 %, macro-precision of 98.1 %, macro-recall of 98.2
% and macro Fl-score of 98.2 %. The feature-level RF ensemble
also delivered strong results, surpassing all single CNN models.

Confusion matrix analysis

Fig. 5(@) and 5(b) show that the output-level ensemble
consistently outperforms the feature-level RF ensemble across
all eight disease categories, with the largest gains in Red Leaf
Spot and White Spot and at least a +2 improvement for Healthy.
class-wise accuracy remains 2-3 % higher for the Output-Level
model in most cases. The confusion matrices illustrate this
advantage: predictions from the output-level ensemble are
concentrated along the diagonal, indicating strong classification
confidence, whereas the feature-level ensemble shows more off-
diagonal errors, especially between visually similar diseases such
as Gray Blight and Anthracnose.

Results and Discussion
Comparative analysis of ensemble strategies

In this study, two ensemble strategies were evaluated for the 8-
class tea leaf disease classification task: Feature-level fusion using a
RF classifier and output- level fusion by probability averaging of

individual CNN model predictions. The goal was to identify the
approach that delivers the best trade-off between precision,
robustness and computational efficiency for agricultural disease
detection.

The results revealed that the output-level ensemble
approach consistently outperformed the feature-level RF method
across all performance metrics. Specifically, accuracy increased
from 95.6 % t0 98.3 % (+2.7 %), with corresponding improvements
in precision (+2.9 %), recall (+2.8 %) and F1-score (+2.9 %). These
gains indicate a stronger ability to generalize to unseen data,
attributed to the averaging mechanism’s capacity to reduce
individual model bias and prediction variance.

As shown in Table 3, the output-level ensemble achieves
the highest performance across all evaluation metrics.

The findings highlight that the output-level ensemble is the
most effective strategy, offering higher predictive accuracy, greater
robustness and lower computational complexity. While feature-
level RF can be valuable for feature interpretability, its lower recall
and higher processing requirements make it less suitable for real-
time or embedded agricultural applications. In contrast,
probability averaging provides an optimal combination of
performance and efficiency, making it ideal for mobile-based or on
-field disease detection systems.

Fig. 6 shows a grouped bar chart comparing accuracy,
precision, recall and F1- score for all individual CNN base models as
well as the two ensemble strategies. It clearly illustrates the
performance advantage of the output-Level probability averaging,
demonstrating consistently superior performance across all four
evaluation metrics.

Table 2. Performance comparison of individual CNN models and the proposed ensemble methods based on macro-averaged metrics

Precision (%)

Recall (%) Fl-score (%)

Method Accuracy (%)
ResNet-18 88.0
VGG-16 84.5
MobileNetV2 86.1
Inception V3 87.3
Feature-level ensemble (RF) 95.6
Output-level ensemble (Avg) 98.3

87.5 87.9 87.7
83.2 83.7 83.4
85.7 85.4 85.6
86.9 87.0 87.0
95.2 95.4 95.3
98.1 98.2 98.2

Confusion Matrix for Dutput-Level Ensembling
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Fig. 5. Performance comparison of the proposed ensembles: (a) Confusion matrix for Output-Level Ensemble, (b) Confusion matrix for Feature-Level

Ensemble.
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Table 3. Performance comparison between ensemble strategies

Metric Feature-level RF Output-level Avg Absolute Gain
Accuracy 95.6 98.3 +2.7
Precision 95.2 98.1 +2.9
Recall 95.4 98.2 +2.8
F1-score 95.3 98.2 +2.9

100 Performance Comparison Across Models and Ensemble Strategies
B ACCUracy
B Precision
. Recall
i I Fl-score
2
&
E
@
=
&

> o
ev_;@ﬁ" e
o

&

of
‘Dﬁe‘ ol o
w;p E‘.\.

Fig. 6. Grouped bar chart comparing Accuracy, Precision, Recall and F1-score across base models and ensemble strategies.

Ablation study and model interpretability

To evaluate the impact of different combinations of models in the
probability averaging ensemble, an ablation study was conducted.
Table 4 summarizes the accuracy achieved by different ensemble
combinations. Results showed that while two-model ensembles
achieved accuracies above 91 %, performance consistently
improved with the addition of more models. The best result of 98.3
% accuracy was obtained by combining all four models-ResNet-18,
VGG-16, MobileNetv2 and  InceptionV3-highlighting  the
complementary strengths of each architecture. This indicates that a
diversified ensemble significantly boosts classification performance.

Table 4. Ablation study of probability averaging ensemble with
different model combinations

Model combination No. of models Accuracy (%)

ResNet-18 + VGG-16 2 91.2
ResNet-18 + MobileNetV2 2 92.5
ResNet-18 + InceptionV3 2 92.0
VGG-16 + MobileNetV2 + InceptionV3 3 94.6
ResNet-18 + VGG-16 + MobileNetV2 3 95.1
ResNet-18 + MobileNetV2 +

InceptionV3 3 9.2
ResNet-18 + VGG-16 + MobileNetV2 + 4 98.3
InceptionV3 .

Visualization of model decisions

In addition to performance evaluation, interpretability was
enhanced through Grad-CAM visualizations (30, 31). Fig. 7 presents
the heatmaps generated using Grad-CAM implementation. These
heatmaps revealed that the model consistently focuses on the
diseased areas of the leaf, with red regions indicating the most
critical features for decision-making. Correct classifications show
clear alignment between the highlighted zones and visible
symptoms, while even in misclassified cases, the model’s attention
remains on relevant leaf areas. This interpretability not only
increases trust in the model but also supports its practical
deployment in tea plantations for real-time disease monitoring,

Performance comparison with existing work

Table 5 compares the proposed model with recent approaches for
tea leaf disease classification. An earlier study reported an accuracy
of 96 % using an ensemble approach on the Tea Sickness dataset
(23). Another study achieved 92.47 % with a hybrid pooling-based
CNN strategy (9), while a separate work obtained 97 % using a
transfer learning approach (30). Other researchers used a hybrid
CNN-RF methodology and reported 96 % accuracy (12).
Additionally, 96.67 % accuracy was achieved using an SVM classifier
with VGG-16 deep features (10). In comparison, the proposed model
using output-level ensemble attained an accuracy of 98.30 %,
outperforming the existing methods, as summarized in Table5.

Conclusion

The tea leaf disease classification system developed in this work
shows that combining deep learning models with feature
reduction techniques can offer practical and reliable results. By
aligning features extracted from different CNN models, applying
PCA to remove redundant information and using a Random
Forest classifier, the system achieved an accuracy of 95.6 %. This
performance further improved to 98.3 % when a probability-
based ensemble was applied. Such high accuracy is valuable in
real agricultural settings, where early and accurate disease
detection can help prevent crop losses and support tea growers
in taking timely and effective actions. The outcomes also
highlight the potential of the system to support precision
agriculture by assisting farmers and field experts in monitoring
large tea estates and reducing dependence on manual
inspection. This, in turn, lowers the time and cost associated with
traditional disease diagnosis procedures. The interpretability
provided by Grad-CAM further enhances the trust and usability of
the system, making it suitable for integration into mobile-based
tools, drone-surveillance applications and other plantation-
monitoring platforms.
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Fig. 7. Grad-CAM visualizations highlighting key regions influencing classification decisions. Red areas indicate high importance, while blue

areas are less influential.

Table 5. Comparison of the proposed model with recent tea leaf
disease classification approaches

Sl. No.  Authors & Ref model Acc(:l/:)acy
1 Ozturk et al. (23) Ensemble 96
2 Hengetal.(9) Hybrid Pooling-based CNN 92.47
3 Dipti et al. (30) Transfer Learning 97
4 Raj et al. (12) CNN +RF 96
5 Bhagat et al. (10) SVM +VGG16 96.67
6 Proposed Model  Output-Level Ensemble 98.30

However, some challenges remain. The dataset lacked
balance, as certain disease categories had fewer samples, which
was addressed through targeted augmentation techniques.
Training and fine-tuning multiple deep learning models in
parallel also required high computational resources, but efficient
scheduling and resource management helped manage the
process. Additionally, adapting the proposed methodology to
other crops will require adjustments to account for variations in
leaf morphology and disease characteristics.

Future work will focus on expanding and diversifying the
dataset, developing lightweight models suited for field
deployment and extending the methodology for multi-crop
disease diagnosis. These efforts aim to improve scalability and
make the system more practical, field-ready and robust as a
digital decision-support tool for modern agriculture.
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