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Introduction 

Tea (Camellia sinensis L.), an evergreen plant native to Asia, 

thrives in warm and humid climates. India is the world’s second-

largest tea producer, with Assam contributing ap proximately 

630–700 million kilograms annually as of 2025, according to the 

Tea Board of India (1). Assam alone accounts for more than half 

of the total tea-cultivated area in the country. However, the same 

climatic conditions that support tea growth also encourage the 

spread of diseases. The continuous expansion of tea plantations 

in recent years has led to increasing incidences of leaf diseases 

such as blister blight, red rust, grey blight and other foliar 

infections, all of which negatively affect both yield and quality. 

Due to the vast geographical spread of plantations, timely 

detection and management of diseases remain challenging, 

often resulting in significant economic losses (2). Consequently, 

early detection of tea leaf diseases is essential to ensure 

sustainable production and minimize crop loss. 

 Early disease diagnosis plays a key role in maintaining 

leaf quality, reducing yield decline and preventing excessive or 

indiscriminate pesticide use (3). Recent advancements in image-

based disease classification have demonstrated that 

convolutional neural networks (CNNs) can efficiently learn 

discriminative spatial features from leaf images, outperforming 

traditional hand-crafted descriptors across a wide variety of 

horticultural crops (4). CNNs have also shown strong 

generalization performance under field conditions involving 

variations in illumination, background noise and environmental 

complexity (5). An earlier study proposed a novel deep 

convolutional neural network (DCNN) using inverted residuals 

and linear bottleneck layers for the automatic detection of grey 

blight disease on tea leaves and achieved a test accuracy of 98.99 

% (6). Researchers introduced a model called YOLO-tea, which is 

an enhanced version of YOLOv5 designed specifically for 

detecting multiple tea diseases by improving feature extraction 

and small-object recognition capability (7). Previous studies 

evaluated several deep learning models for real-time tea leaf 

disease detection, focusing on achieving fast and reliable 

performance suitable for field applications (8). An earlier study 

proposed a deep neural network that uses a hybrid pooling 

strategy to improve feature extraction for automatic 

identification of tea leaf diseases (9). Researchers extracted deep 

learning features and use a kernelized SVM to improve the 

accuracy of tea leaf disease prediction (10). Their hybrid 

approach showed better performance than standalone CNN or 

SVM models. Another study introduced an improved YOLOv7-
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Abstract  

Tea is one of the most widely consumed drinks in the world and plays an important role in the economy of tea-growing regions. However, leaf 

diseases are a major problem for the tea industry because they lower both yield and quality, directly affecting tea growers’ livelihoods and the 
overall supply chain. Therefore, detecting these diseases in their early stages is important for healthy crop growth and good yield. In 

traditional practice, disease identification is carried out through field inspection or laboratory testing by expert farmers and plant 

pathologists. However, these methods are slow, require a lot of manual work and may sometimes lead to errors,  making them difficult to 

adopt for large-scale cultivation. This study presents a novel deep learning-based methodology for eight-class tea leaf disease classification, 
exploring feature-level and output-level ensemble strategies. Four widely used convolutional neural networks (CNNs)-ResNet-18, VGG-16, 

InceptionV3 and MobileNetV2-pretrained on ImageNet were utilized. In the feature-based approach, deep features extracted from these 

models were compressed using principal component analysis (PCA) and classified using a Random Forest classifier, achieving an accuracy of 

95.6 %. In the output-based approach, probability predictions from the above CNNs were combined, resulting in a higher accuracy of 98.3 %. 
Grad-CAM visualizations confirmed that the models consistently highlighted symptomatic leaf regions, improving interpretability and user 

trust.   

Keywords: convolutional neural networks; deep learning; ensemble learning; Grad-CAM; precision agriculture; tea leaf disease detection    
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MobileNeXt model designed for efficient and accurate 

classification of multiple tea diseases, particularly optimized for 

lightweight deployment (11). Researchers also proposed a 

hybrid approach that combines CNN-based feature extraction 

with a Random Forest classifier for multiclass tea leaf disease 

identification (12).  

 Despite these advantages, standalone CNN models still 
face challenges such as over fitting, inter-class confusion and 

domain shifts between laboratory and real-world environments.  

 Ensemble learning has emerged as a promising solution 

to these limitations, offering improved robustness by combining 

the complementary strengths of multiple models (13). Two 

ensemble paradigms have shown particular effectiveness: 

feature-level fusion, which integrates deep feature 

representations from different CNNs and output-level fusion, 

which aggregates model predictions into a unified decision (14). 

Studies in plant disease classification show that ensembles often 

surpass single-model approaches, especially when datasets 

exhibit overlapping symptoms, subtle inter-class variations and 

limited training samples (15).  

 Previous research presented a multi-model ensemble 
methodology named PlantDet, which combines several deep 

learning architectures to improve the reliability of plant disease 

detection across diverse datasets (16). Researchers proposed a 

hybrid deep learning approach for image-based plant disease 

detection that combines CNN feature extraction with additional 

learning layers to enhance classification performance (17).  

 Other researchers presented a hybrid deep multistacking 

integrated model designed to improve the accuracy and stability 

of plant disease detection by combining multiple deep learning 

architectures (18). Another study proposed a hybrid model for 

leaf disease classification that combines modified deep transfer 

learning with an ensemble approach to enhance performance in 

agricultural AIoT-based monitoring systems (19). An earlier study 

presented an ensemble hybrid framework that combines CNN-

based features with various metaheuristic optimization 

algorithms for plant disease classification (20).  Researchers 

proposed a hybrid ensemble model that combines CNN and 

RNN features for multimodal cotton plant disease detection, 

applying both spatial and sequential information (21).  

 In addition, explainable AI (XAI) techniques such as 
Gradient-weighted class activation mapping (Grad-CAM) provide 

visual insights into model decision-making by highlighting the 

discriminative regions contributing to classification (22). Such 

interpretability frameworks support model transparency and 

enable agronomists to assess whether computational 

predictions align with biologically meaningful symptom 

patterns. While deep learning-based disease detection has been 

widely studied for various crops, research focusing on multiclass 

tea leaf disease classification using both feature-level and output

-level ensembles remains limited (23). Furthermore, many 

existing approaches rely on single CNN models, lack 

interpretability, or are restricted by dataset size and diversity, 

limiting their generalizability (24). There is also a shortage of 

integrated systems that combine ensemble learning with visual 

explanation tools for real-world decision support in tea 

plantations (25). 

 To address these gaps, this paper proposes a hybrid 

ensemble framework that com bines feature-level CNN fusion 

with output-level probabilistic ensemble decision making. Grad-

CAM visualization is incorporated to highlight disease-specific 

lesion regions and enhance interpretability. This comprehensive 

approach aims to improve classification ac curacy, transparency 

and robustness, ultimately supporting scalable precision 

agriculture practices for tea growers. By integrating deep feature 

fusion, ensemble strategies and explainable AI, this study 

contributes to advancing AI-enabled plant health monitoring 

and promoting sustainable crop management through data-

driven technologies.   

 

Materials and Methods  

Proposed methodology 

This study presents two ensemble learning strategies aimed at 
enhancing the performance, stability and generalization 

capability of tea leaf disease classification systems. Four pre- 

trained CNN architectures, namely ResNet-18, VGG-16, 

MobileNetV2 and InceptionV3, are employed as base learners 

due to their proven effectiveness in extracting diverse and 

discriminative feature representations from image data. The first 

strategy, referred to as the output-level ensemble, integrates the 

SoftMax probability scores generated by each CNN through 

element-wise averaging, thereby reducing prediction variance 

and overcoming the limitations of individual models. The second 

strategy, termed the Feature-Level RF ensemble, aggregates 

deep features extracted from the four CNNs, applies PCA to 

reduce feature dimensionality and subsequently classifies the 

compressed representations using a Random Forest classifier. 

Dataset description 

The dataset employed in this study is publicly available on 

Mendeley data and comprises a total of 885 high-quality RGB 

images of C. sinensis leaves (26). The dataset includes eight 

distinct classes, representing seven common tea leaf diseases 

along with healthy leaf specimens, with a near-balanced 

distribution across categories. The distribution of images in the 

dataset is shown in Table 1. This balanced representation is 

critical for preventing bias during model training and ensuring 

reliable classification performance. 

   
 113 disease 

 100 disease 
 100 disease 

 74  
 100 disease 

 143 disease 
 113 disease 

 142 disease 
Total  885  

Table 1. Number of images per class in the dataset 
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 Representative samples from a few classes are provided 

in Fig. 1, demonstrating the characteristic visual symptoms used 

for classification. The healthy class specimens show optimal leaf 

morphology without discoloration or textural abnormalities. 

Augmentation 

To help the models cope with natural variation in field images, 

we applied a simple but effective set of image augmentations 

(27, 28). Images were randomly rotated, shifted, sheared, 

zoomed and flipped to simulate changes in leaf pose and camera 

angle; brightness was varied to reflect different lighting; Gaussian 

noise was added to mimic sensor disturbances; and random 

erasing (50×50 px cutout) was used to increase resilience to 

partial occlusion. All images were resized to 224 × 224 pixels and 

normalized prior to training. Most transforms were implemented 

using Keras’s Image Data Generator, with Gaussian noise and 

cutout applied via small custom preprocessing routines, 

producing a richer and more varied training set. 

Preprocessing 

Preprocessing is essential for converting raw images into a 
consistent format suitable for deep learning. In this study, three 

preprocessing steps were applied: image resizing, pixel 

normalization and dataset partitioning.  All images were resized 

to 224 × 224 pixels to match the input requirements of the CNN 

models while maintaining sufficient visual detail. Pixel intensities 

were then normalized from the range [0, 255] to [0, 1] to stabilize 

training and reduce sensitivity to illumination variations. The 

dataset was divided into training (70 %), validation (15 %) and 

testing (15 %) subsets. The training set was used to learn model 

parameters, the validation set to tune hyperparameters and the 

test set to provide an unbiased evaluation of the final 

performance. The preprocessing steps are summarized in Fig. 2.   

Implementation 

Following preprocessing, each of the four pretrained CNN 
architectures mentioned above was fine-tuned on the tea leaf 

dataset using a transfer learning approach. Transfer learning 

enables the convolutional feature extractor pretrained on 

ImageNet to be reused while adapting the final layers to the 

target classification task, thereby reducing training time and 

minimizing overfitting in limited data scenarios (29). 

 For each model, the pretrained feature extraction layers 

were initialized with ImageNet weights and the original fully 

connected layer was replaced with a new classifier 

corresponding to the number of tea leaf disease classes (i.e., 8). 

During the initial training phase, the early feature extraction 

layers were frozen to retain generic visual representations, while 

deeper layers were gradually unfrozen for fine-tuning to capture 

task-specific patterns. 

 Model training employed the Adam optimizer with a 

learning rate of 1 × 10-4 and categorical cross-entropy loss. Adam 

was selected for its adaptive learning rate mechanism, which 

supports stable and efficient convergence. A batch size of 32 was 

used and early stopping was applied, halting training if validation 

accuracy did not improve for 50 consecutive epochs. This 

strategy prevented overfitting and eliminated unnecessary 

computation.  

Fig. 1. Sample tea leaf disease images collected from the source mentioned above.  

 

Fig. 2. Preprocessing flow chart.  
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Output-level ensemble with SoftMax classification 

In the output-level ensemble strategy, each CNN model 

independently processes the input image and produces a 

probability distribution over all disease classes through the 

SoftMax activation in its final classification layer. For a model 

output logit vector Z = (z1, z2, . . . , zK), the SoftMax probability 

assigned to class c is given by 

 

 
 

 where, K denotes the total number of disease classes. 

Thus, each CNN generates a probability vector. 

Pi = [ Pi(1), Pi(2), . . . , Pi(K) ], (2) 

 where i ∈ {1, 2, 3, 4} corresponds to the four base models 
(ResNet-18, VGG-16, Mo- bileNetV2 and InceptionV3).  

 To obtain a unified prediction, the probability vectors 

from all models are fused using element-wise averaging: 

 

  

 where N = 4 is the number of CNN models and Pfinal(c) is 

the aggregated probability for class c. The final predicted label is 

then selected as the class with the highest fused probability:  

 

 By averaging the probability distributions from multiple 
models, this ensemble approach reduces the impact of 

misclassification by any single network, compensates for 

individual model biases and improves the overall stability and 

robustness of the classification system. The workflow is 

summarized in the Fig. 3 and the Algorithm 1. 

Algorithm 1: Probability averaging ensemble 

1: Input: Pre-trained  models M = {M1,M2,M3,M4}; test dataset  

 

2: Output: Predicted labels ŷi 

3: Preprocessing: Resize and normalize all input images. 

4: for each sample xi ∈ D do 

5:           Obtain class probability vectors Pk (xi) from each model Mk. 

6:             Compute the averaged probability:  

7: Assign the predicted label:  

8: end for  

Feature-level RF ensemble with deep feature extraction and 

PCA 

In the feature-level Random Forest (RF) ensemble, deep features 

were extracted from the final fully connected layer of each CNN 

model-ResNet-18 (512), VGG-16 (4096), MobileNetV2 (1280) and 

InceptionV3 (2048)-and these feature vectors were concatenated 

to form a single high-dimensional representation. 

                F = [ f1  || f2 || f3 || f4 ]      (5) 

 Before dimensionality reduction, each feature block was 
standardized using the training-set mean and standard deviation 

to ensure uniform scaling across the different architectures.  

 PCA was then applied to remove redundant information 

and reduce noise. PCA was implemented using the SVD solver 

with ncomponents = 300, selected based on achieving more than 90 % 

cumulative explained variance. Whitening was disabled 

(whiten=False) to preserve the natural variance structure and a 

fixed random state=42 ensured reproducibility. The resulting 

compressed feature representation is denoted as FPCA ∈ R300, 

 which served as the input to the RF classifier.  

 The Random Forest model was optimized using stratified 

5-fold cross-validation on the training set. The hyperparameter 

search space included: n estimators ∈ {100, 200, 300, 500}, max 

depth ∈ {None, 10, 20, 30, 50}, min samples split ∈ {2, 5, 10}, min 

samples leaf ∈ {1, 2, 4}, max features ∈ {‘sqrt’, ‘log2’} and 
bootstrap = True. Balanced accuracy and macro-F1 were used as 

the selection metrics to address potential class imbalance and 

out-of-bag (OOB) estimates (oob score=True) provided an 

internal generalization check. The best configuration was found 

to be n estimators = 300, max depth = 30, min samples split = 2, 

min samples leaf = 1, max features = ‘sqrt’ and bootstrap=True, 

with random state = 42. The final RF model was trained on the 

complete training set using these hyperparameters and 

predictions for the test images were generated through majority 

voting across the trees: 

 ypred = mode{Tree1(FPCA), Tree2(FPCA), . . . , TreeT (FPCA)}     (6) 

4 

Fig. 3. Workflow of probability averaging ensemble. 
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 where T = 300. By integrating complementary deep 

features, PCA-based compression and a robust ensemble 

classifier, the feature-level RF approach enhances both accuracy 

and generalization performance. The workflow is summarized in 

Fig. 4 and Algorithm 2.  

Performance evaluation metrics 

The proposed dual-strategy tea leaf disease classification 
framework, comprising an output- level ensemble and a feature-

level RF ensemble, was comprehensively evaluated to measure 

its effectiveness in accurately identifying eight tea leaf categories 

(seven diseases and one healthy class).  

 Given the multi-class nature of the problem, the 

evaluation metrics were calculated using macro-averaging, 

ensuring that all classes contributed equally to the overall 

performance regardless of the number of samples in each class. 

This prevents dominant classes from disproportionately 

influencing the evaluation and allows for a fair assessment 

across all disease categories.  

Algorithm 2. Feature-Level ensemble with PCA and random 

forest 

1. Input: Pre-trained models M = {M1, M2, M3, M4}; training 

dataset D={(xi, yi)}Ni=1; PCA target dimension d = 300  

1. Output: Predicted labels y î 

2. Feature Extraction: 

4. for each xi ∈ D do 

5. Extract deep features f (1) ∈ R512 from M1 (ResNet-18) 

6. Extract deep features f (2) ∈ R4096 from M2 (VGG-16) 

7. Extract deep features f (3) ∈ R1280 from M3 (MobileNet V2) 

8. Extract deep features f (4) ∈ R2048 from M4 (Inception V3) 

10. Concatenate features: Fi = [f i(1)||f i(2)||f i(3)|| f i(4)||] ∈ R7936 

11. end for 

12. Dimensionality Reduction: 

13. Apply PCA: FPCA = PCA (Fi, d), where d = 300 

14. Training: 

15. Train Random Forest classifier RF on reduced features FPCA 

16. Inference: 

17. Predict labels y î for test samples using trained RF 

 To obtain a comprehensive performance matrix of the 

proposed classification procedure, a combination of standard and 

diagnostic evaluation metrics was used. Accuracy provides a 

global measure of correct predictions, while Precision, Recall and 

F1-Score offer deeper insights into the trade-offs between false 

positives and false negatives for each category. In addition, an 

analysis of the confusion matrix was performed to visually inspect 

class-level prediction patterns, allowing the identification of 

specific misclassifications trends, particularly between diseases 

with similar visual symptoms. This multifaceted evaluation 

approach ensures that the reported performance reflects not only 

the overall accuracy of the model’s predictions but also its 

reliability in classifying all eight tea leaf categories with balanced 

sensitivity and specificity.  

Quantitative classification metrics - accuracy, precision, 

recall and F1-score  

Accuracy quantifies the proportion of correctly classified samples 

out of the total. 

 

                     

 where, TP, TN, FP and FN denote true positives, true 

negatives, false positives and false negatives respectively. 

 Precision measures the fraction of predicted positive 

cases that are actually correct: 

               

  

 Recall (or sensitivity) indicates the proportion of actual 

positive cases that are correctly identified: 

          

   

F1-Score, the harmonic mean of precision and recall, balances 

both metrics: 

 

   

 For the four-class classification task, the macro-averaged 

versions of these measures are expressed as: 

 

 

 

 

where C = 8 is the total number of classes in the dataset. 

  

Fig. 4. Workflow of the feature-level RF ensemble. 

(7) 

(8) 

(9) 

(11) 

(12) 

(13) 

F1-Score = 2 ×     
(10) 
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 The comparative performance of individual CNN 

architectures and the two proposed ensemble strategies was 

quantitatively assessed using macro-averaged accuracy, precision, 

recall and F1-score (Table 2).  

 From the results, it is evident that the ensemble strategies 

significantly outperform individual base learners. The output-level 

ensemble achieved the highest overall performance, with a macro-

accuracy of 98.3 %, macro-precision of 98.1 %, macro-recall of 98.2 

% and macro F1-score of 98.2 %. The feature-level RF ensemble 

also delivered strong results, surpassing all single CNN models.  

Confusion matrix analysis 

Fig. 5(a) and 5(b) show that the output-level ensemble 

consistently outperforms the feature-level RF ensemble across 

all eight disease categories, with the largest gains in Red Leaf 

Spot and White Spot and at least a +2 improvement for Healthy. 

class-wise accuracy remains 2-3 % higher for the Output-Level 

model in most cases. The confusion matrices illustrate this 

advantage: predictions from the output-level ensemble are 

concentrated along the diagonal, indicating strong classification 

confidence, whereas the feature-level ensemble shows more off-

diagonal errors, especially between visually similar diseases such 

as Gray Blight and Anthracnose.  

 

Results and Discussion  

Comparative analysis of ensemble strategies 

In this study, two ensemble strategies were evaluated for the 8-

class tea leaf disease classification task: Feature-level fusion using a 

RF classifier and output- level fusion by probability averaging of 

individual CNN model predictions. The goal was to identify the 

approach that delivers the best trade-off between precision, 

robustness and computational efficiency for agricultural disease 

detection. 

 The results revealed that the output-level ensemble 

approach consistently outperformed the feature-level RF method 

across all performance metrics. Specifically, accuracy increased 

from 95.6 % to 98.3 % (+2.7 %), with corresponding improvements 

in precision (+2.9 %), recall (+2.8 %) and F1-score (+2.9 %). These 

gains indicate a stronger ability to generalize to unseen data, 

attributed to the averaging mechanism’s capacity to reduce 

individual model bias and prediction variance. 

 As shown in Table 3, the output-level ensemble achieves 

the highest performance across all evaluation metrics.  

 The findings highlight that the output-level ensemble is the 
most effective strategy, offering higher predictive accuracy, greater 

robustness and lower computational complexity. While feature-

level RF can be valuable for feature interpretability, its lower recall 

and higher processing requirements make it less suitable for real-

time or embedded agricultural applications. In contrast, 

probability averaging provides an optimal combination of 

performance and efficiency, making it ideal for mobile-based or on

-field disease detection systems. 

 Fig. 6 shows a grouped bar chart comparing accuracy, 

precision, recall and F1- score for all individual CNN base models as 

well as the two ensemble strategies. It clearly illustrates the 

performance advantage of the output-Level probability averaging, 

demonstrating consistently superior performance across all four 

evaluation metrics.  

Fig. 5. Performance comparison of the proposed ensembles: (a) Confusion matrix for Output-Level Ensemble, (b) Confusion matrix for Feature-Level 
Ensemble.  

     
ResNet-18 88.0 87.5 87.9 87.7 

 84.5 83.2 83.7 83.4 
 86.1 85.7 85.4 85.6 
 87.3 86.9 87.0 87.0 

Feature-level ensemble (RF) 95.6 95.2 95.4 95.3 
Output-level ensemble (Avg)     

Table 2. Performance comparison of individual CNN models and the proposed ensemble methods based on macro-averaged metrics  
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Ablation study and model interpretability 

To evaluate the impact of different combinations of models in the 

probability averaging ensemble, an ablation study was conducted. 

Table 4 summarizes the accuracy achieved by different ensemble 

combinations. Results showed that while two-model ensembles  

achieved accuracies above 91 %, performance consistently 

improved with the addition of more models. The best result of 98.3 

% accuracy was obtained by combining all four models-ResNet-18, 

VGG-16, MobileNetV2 and InceptionV3-highlighting the 

complementary strengths of each architecture. This indicates that a 

diversified ensemble significantly boosts classification performance. 

Visualization of model decisions 

In addition to performance evaluation, interpretability was 

enhanced through Grad-CAM visualizations (30, 31). Fig. 7 presents 

the heatmaps generated using Grad-CAM implementation. These 

heatmaps revealed that the model consistently focuses on the 

diseased areas of the leaf, with red regions indicating the most 

critical features for decision-making. Correct classifications show 

clear alignment between the highlighted zones and visible 

symptoms, while even in misclassified cases, the model’s attention 

remains on relevant leaf areas. This interpretability not only 

increases trust in the model but also supports its practical 

deployment in tea plantations for real-time disease monitoring. 

Performance comparison with existing work 

Table 5 compares the proposed model with recent approaches for 

tea leaf disease classification. An earlier study reported an accuracy 

of 96 % using an ensemble approach on the Tea Sickness dataset 

(23). Another study achieved 92.47 % with a hybrid pooling-based 

CNN strategy (9), while a separate work obtained 97 % using a 

transfer learning approach (30). Other researchers used a hybrid 

CNN–RF methodology and reported 96 % accuracy (12). 

Additionally,  96.67 % accuracy was achieved using an SVM classifier 

with VGG-16 deep features (10). In comparison, the proposed model 

using output-level ensemble attained an accuracy of 98.30 %, 

outperforming the existing methods, as summarized in Table 5.  

  

Conclusion  

The tea leaf disease classification system developed in this work 

shows that combining deep learning models with feature 

reduction techniques can offer practical and reliable results. By 

aligning features extracted from different CNN models, applying 

PCA to remove redundant information and using a Random 

Forest classifier, the system achieved an accuracy of 95.6 %. This 

performance further improved to 98.3 % when a probability- 

based ensemble was applied. Such high accuracy is valuable in 

real agricultural settings, where early and accurate disease 

detection can help prevent crop losses and support tea growers 

in taking timely and effective actions. The outcomes also 

highlight the potential of the system to support precision 

agriculture by assisting farmers and field experts in monitoring 

large tea estates and reducing dependence on manual 

inspection. This, in turn, lowers the time and cost associated with 

traditional disease diagnosis procedures. The interpretability 

provided by Grad-CAM further enhances the trust and usability of 

the system, making it suitable for integration into mobile-based 

tools, drone-surveillance applications and other plantation-

monitoring platforms. 

    
 95.6 98.3  
 95.2 98.1  

 95.4 98.2  
F1-score 95.3 98.2  

Table 3. Performance comparison between ensemble strategies 

Fig. 6. Grouped bar chart comparing Accuracy, Precision, Recall and F1-score across base models and ensemble strategies.  

 

Model combination Accuracy (%) No. of models 

ResNet-18 + VGG-16   2 91.2 

ResNet-18 + MobileNetV2   2 92.5 

ResNet-18 + InceptionV3   2 92.0 

VGG-16 + MobileNetV2 + InceptionV3   3 94.6 

ResNet-18 + VGG-16 + MobileNetV2   3 95.1 

ResNet-18 + MobileNetV2 + 
InceptionV3 

  3 96.2 

ResNet-18 + VGG-16 + MobileNetV2 + 
InceptionV3 

  4 98.3 

Table 4. Ablation study of probability averaging ensemble with 
different model combinations  
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 However, some challenges remain. The dataset lacked 

balance, as certain disease categories had fewer samples, which 

was addressed through targeted augmentation techniques. 

Training and fine-tuning multiple deep learning models in 

parallel also required high computational resources, but efficient 

scheduling and resource management helped manage the 

process. Additionally, adapting the proposed methodology to 

other crops will require adjustments to account for variations in 

leaf morphology and disease characteristics. 

 Future work will focus on expanding and diversifying the 

dataset, developing lightweight models suited for field 

deployment and extending the methodology for multi-crop 

disease diagnosis. These efforts aim to improve scalability and 

make the system more practical, field-ready and robust as a 

digital decision-support tool for modern agriculture.    
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