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Abstract

Abiotic and biotic stresses are major global challenges that reduce plant productivity, quality and sustainability worldwide. These stresses
threaten global food security as the human population continues to grow. These stresses threaten global food supply in the curent era of
increasing population. Stresses negatively affect the normal growth and development of plants. They are mainly divided into 2groups: abiotic
and biotic stress. In particular, abiotic stresses lead to impaired growth and development of plants, disruption of the photosynthesis process
and water regime. High temperatures lead to protein denaturation and decreased enzyme activity, while low temperatures lead b
membrane damage. Abiotic stressors are one of the primary elements influencing the growth and production of major agriculturd income
crops. Environmental elements that cause physiological and biochemical pain in plants include salinity, drought, low temperature, heavy
metals and chemical pollution. This article examines biotechnological approaches that use modern genetic engineering technolcgies such as
RNA interference (RNAi) and CRISPR/Cas9 systems to improve plant resilience to abiotic stressors. RNAi plays a crucial role i activating plant
defence mechanisms by modulating the expression of stress-responsive genes, whereas CRISPR/Cas9 technology allows for the creation of
new, stress-tolerant types by introducing precise alterations in the genome. These biotechnologies have significant potential to develop
stable, high-yielding and stress-resilient crops. Overall, this review summarizes recent advances in RNAi and CRISPR/Cas9 technologies for
improving plant resilience to abiotic stresses.
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This article reviews the effects of abiotic stresses on plants,
the key genes responsible for them, phytochrome genes and
studies on the creation of stress-tolerant plants using RNAi and
CRISPR/Cas9 technologies. The main objective is to evaluate the
effectiveness and future potential of these modern biotechnological
methods tools.

Abiotic factors and their effects on plants

Introduction

Global climate change and anthropogenic activities are increasing
plant exposure to abiotic stresses. The growing world population is
leading to an increase in demand for food products. Developing
stress-resistant crop varieties is a pressing global priority (1). Abiotic
factors are usually understood as water scarcity, sudden changes in
temperature, salinity, heavy metals and other inorganic stress
factors (2). Stresses lead to a significant decrease in plant
productivity and disruption of physiological processes (3). Although

Abiotic factors affect plant growth as a result of environmental
stresses caused by non-living factors: drought, temperature

there are natural adaptation mechanisms to ensure plant
resistance to abiotic stresses, they are not systematic and
permanent. Thus, modern biotechnological approaches are
essential to develop stress-resistant plants.

Emerging technologies in genetic engineering and
molecular biology, such as RNA interference (RNAi) and CRISPR/
Cas9, are creating opportunities for the generation of stress-tolerant
genotypes in plants (4, 5). While the RNAi mechanism allows for the
suppression or blocking of the expression of specific genes through
microRNAs, CRISPR/Cas9 allows for the precise and efficient editing
of DNA.

changes, salinity, heavy metals, ultraviolet light (UV) and carbon
dioxide (CO.) changes. Such stresses impair plant growth and
development, reduce photosynthetic efficiency and ultimately
lower yields (Fig. 1).

Drought

Plants under drought stress experience a decrease in transpiration
rate and carbon assimilation due to the closure of small pores on
the surface of their leaves, i.e. stomata, which are important for
photosynthesis, transpiration and gas exchange processes. This
results in the production of reactive oxygen species (ROS).
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Fig. 1. Impact of abiotic stresses on plant growth and development.

Antioxidant systems such as superoxide dismutase (SOD),
catalase (CAT) and ascorbate peroxidase (APX), which protect
proteins, lipids and deoxyribonucleic acid (DNA) from oxidation,
increase in efficiency (6). The abscisic acid (ABA) hormone, mitogen-
activated protein kinase (MAPK) and calcium ions (Ca**) pathways
are the main ones involved in signal transduction, while osmotic
stabilizers such as proline and glycine-betaine help to maintain
growth.

High and low temperature (temperature stress)

High temperatures impair photosynthetic efficiency by disrupting
enzyme activity and thylakoid membrane stability. Stomata
opening is controlled by hormonal and temperature-dependent
signalling pathways that affect plant productivity. Cell membrane
fluidity decreases under low temperature and the activation of ROS-
related stress mechanisms increases as a result of AFP (antifreeze
protein) aggregation. Transcription factors such as dehydration
response element binding factor (DREB) and WRKY play a key rolein
this stress response (7).

Salt stress

There are 2 main types of salt stress: osmotic stress (substances or
effects related to osmotic pressure) and ionic stress, which disrupts
Na*/K" balance. These conditions increase ROS production and
impair membrane integrity and photosynthetic activity. The activity
of the signalling pathways the salt overly sensitive (SOS), calcium-
dependent protein kinase (CDPK), MAPK and ABA is accelerated.
Osmotic substances such as proline, glycine-betaine and trehalose
help maintain a stable water content in the cell (8). Sodium (Na")
and potassium (K') ions transporters - HKT1, SOS1 and NHX1 -
function to ensure ion homeostasis. Signalling pathways such as
the wall associated-kinase (WAK) and the receptor-like kinase (RLK)
also play a key role in overcoming cell wall and endoplasmic
reticulum stress(9). The antioxidant mechanisms of plants,
including SOD, CAT, APX and flavonoids, protect the cell from ROS-
related damage (6).

Heavy metals

In plants, heavy metals enter the cell through the roots from the soil
and through the green parts from the atmosphere. This accelerates
ROS formation, leading to oxidative damage of membranes,
proteins and DNA. NAC and WRKY transcription factors are actively
involved in the signalling pathways. Organic substances such as

polyamines and phytochelatin, which are involved in combating
the effects of heavy metals, isolate and protect important cell
structures from damage. Detoxification mechanisms are an active
area of ongoing research.

Ultraviolet radiation and CO, concentration

UV radiation induces CPD (cyclobutane pyrimidine dimer) in DNA
damage or mutation, DNA-repair mechanisms (this is a natural
biological process in which a cell detects and corrects damaged or
erroneous DNA molecules) and antioxidants are activated. WRKY
transcription factors play an active role in the management of UV
stress. CO, is essential for photosynthesis and increasing it can
speed up the process of photosynthesis and also affect plant
responses to climate-related stresses. In plants, light (including UV
radiation) signals involving phytochromes regulate active response
mechanisms under conditions of abiotic stress.

Natural adaptation mechanisms of plants
Therole of hormones (ABA, ethylene, jasmonate)

Plant hormones play a key role in natural adaptation mechanisms.
In particular, abscisic acid is a key regulatory hormone in adaptation
to stresses such as drought, salinity and low temperature. ABA
regulates seed dormancy during adverse weather conditions and
prevents the spread of disease and helps plants conserve water by
closing stomata. Under various stress conditions, ABA, which is
synthesized from (3-carotene by the enzyme 9-cis-epoxycarotenoid
dioxygenase (NCED), enhances the activity of antioxidant enzymes
(CAT, SOD, APX) and ensures the efficiency of the photosynthetic
apparatus (10). Ethylene maintains physiological balance under
drought and salinity stress conditions. It activates defense
responses against toxic substances resulting from salinity stress by
ensuring the stability of the ethylene overproducer 2 (ETO2) and
ethylene Insensitive 2 (EIN2) signaling. Jasmonates (JA) are involved
in the signalling pathway involving Ca?", ROS and nitric oxide (NO),
as well as phosphorylase and potassium channels, which affect
stomatal closure under water stress conditions. There is a
coordinated interaction between JA and ABA, which work together
to regulate stomatal closure and the expression of stress-responsive
genes, such as Responsive to dehydration 22 (RD22) gene (11).

Signalling pathways (MAPK, Ca?* signalling)

The MAPK (Mitogen-Activated Protein Kinases) cascade is one of the
main signalling pathways that mediate the plant's stress response.
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MAPK3 and MAPK6 kinases are involved in responses to drought,
salinity and temperature stresses, including the research model
Arabidopsis thaliana and crops such as tobacco and rice. Stress-
activated signalling pathways regulate downstream transcription
factors, with WRKY and DREB genes controlled via MAPK cascades
rather than as direct targets. (12). Ca** signalling is involved in rapid
and secondary messengers in plant cells to external stress.
Temperature, salinity, or drought stress increases the concentration
of Ca* inside plant cells. This in turn activates other signalling
pathways through Ca*dependent kinases (CDPKs) and CaM
(calmodulin) (13). Ca* signals are not only a signal receptor system,
but also a “Ca* code” that encodes the type of stress (aspects of
amplitude, duration, repetition). Studies in Arabidopsis roots have
shown that Ca* pulses activate gene expression in response to a
certain level of winter stress (MEKK1-MKK2-MAPK cascade) (14).
MAPK and Ca? signalling is interconnected and Ca** activity can also
activate MAPK cascades. For example, ABA induces rapid Ca&
signalling under stress conditions and affects stomatal closure and
gene expression through MAPK cascades. Thus, there is a close
relationship between Ca* signalling and the MAPK cascade (15).

Photomorphogenesis and stress
through phytochromes

response coordination

Phytochromes are used by plants to detect temperature and other
stress factors in accordance with the light environment. Plants
activate physiological processes in response to stress by receiving
light signals. Phytochrome genes, PhyA, PhyB, PhyC, PhyD and PhyE,
play an important role in the reception of light signals and
adaptation to environmental factors in plants. Phytochromes
control plant development, flowering, seed germination and
responses to stress factors (16). PhyA is primarily responsive to far-
red light and is synthesized in the dark and rapidly degraded in light
17).

The expression level of PhyA can change depending on solar
radiation and mechanical stresses (18). PhyB mainly senses red light
and is involved in the regulation of photoperiodism, phototropism,
and elongation. It also balances stress responses as a result of its
combined effect with jasmonic acid and abscisic acid. PhyB is
actively involved in sensing high-temperature stress. At high
temperatures, the active form is converted to a passive state. This
results in an effect on photomorphogenesis and stomatal opening,
In the presence of ultraviolet-B radiation and oxidative stress, the
defence system is activated through hormones such as jasmonic
acid and salicylic acid. (19). PhyC does not function alone, but forms
a heterodimer with PhyB and participates in the transmission of

Table 1. Key genes involved in plant responses to abiotic stresses

light signals (20). PhyC works together with PhyB in stress responses.
The expression level of PhyC can change in response to changes in
photoperiod and environment.

PhyC, in conjunction with PhyB, is involved in regulating the
timing of flowering and temperature sensitivity of plants, as well as
their response to light (21). PhyD also exhibits similar properties to
PhyB, being mainly sensitive to red light. It has functional similarities
to PhyB in photomorphogenesis and light-stress responses. It is
involved in the adaptation of plant development to extemal
environmental influences. The fact that PhyB can enhance the
sensitivity to ER-stress (Endoplasmic Reticulum stress response)
under the influence of red light naturally indicates that PhyD and
PhyB perform the same function (22). Recent studies have
investigated the role of PhyB and PhyC in overcoming HIL (High-
intensity light) stress (23). PhyE also works in coordination with PhyB
and PhyD. Due to its sensitivity to red light, it is involved in
photomorphogenetic processes (24). Phyk, together with PhyB and
PhyD, participates in light and temperature responses (25).

Genes responsible for abiotic stresses

Plants harbour diverse stress-responsive genes that regulate
adaptation mechanisms. Also, their functions activate defence
mechanisms against stress and control the reception of signals and
reactions to these signals. In particular, the DREB, NAC, WRKY, HKT1,
SOS1, NHX1 and late embryogenesis abundant (LEA) genes are
present in almost all evolutionarily developed plants (Table 1).

Plants have transcription factors involved in stress
responses. In particular, DREB, NAC and WRKY genes are active
transcription factors. These genes are involved in the regulation of
various signaling pathways. In particular, they control the response
to stress in the cell and are actively involved in enhancing tolerance.
Many scientists have conducted studies on DREB, NAC and WRKY
genes in plants such as Arabidopsis thaliana, Oryza sativa, Zea mays,
Triticum aestivum, Glycine max, Vitis vinifera, Solanum tuberosum
and Solanum lycopersicum (Table 2).

Enhancing stress tolerance using RNA interference (RNAi)
technology

RNA interference (RNAI) technology allows the control of the activity
of specific genes plants. It is a natural molecular mechanism that
controls gene expression at the post-transcriptional stage. In RNAi
technology, the expression of a targeted gene is silenced or
attenuated by specifically targeted small interfering RNAs (SiRNA,
MIRNA).

Gene name Gene category Main task Types of active stress  References
DREB Transcription factor (TF) Activates stress—relatﬁqdo%i(?:es through DRE/CRT Cold, drought, salinity (26)
i Controls the expression of many genes that respond  Drought, salinity, high
NAC Transcription factor (TF) to stress temperature (27)
WRKY Transcription factor (TF) Coordinates stress, immune and hormone signals Drought, salinity, infections (28)
Na* transporter (membrane Na* limits transport and maintains the K*/Na* -
HKT1 protein) balance Salinity (29)
SOSI Na‘/H* antiporter Provides salt toleranctigiglalmovmg Na*ions from salinity (30)
NHX1 Vacuoles are Na*/H* antiporters Storage of Na*in the v;:)cr:géi,rztablhzanon of osmotic Salinity, drought (31)
LEA Reserve protein (Late Protects against water loss and keeps proteins and Drought, low temperature (32)

Embryogenesis Abundant)

membranes stable
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Table 2. Studies on DREB, NAC and WRKY transcription factors in abiotic stress responses
Gene Plant type Genes Type of stress References
A. thaliana AtDREBIA, AtDREB2A Drought, low temperature, salinity (33-35)
0. sativa OsDREBI1A, OsDREB1G Low temperature, drought, salinity (36-38)
Z. mays ZmDREB2A Drought, high temperature (39, 40)
T. aestivum TaDREB Osmotic stress (41)
GMDREBI1/A,
G. max GmDREBIB;1, Low temperature, high temperature, drought, salinity (42,43)
GmDREBIA;2
DREB
VWDREB2A
. WiIDREBAI-,
V. vinifera VWIDREBAL-6 Drought, low temperature (44-46)
WiDREBAI-7
StDREB -
S. tuberosum StDREBI Salinity, drought (47-49)
S. lycopersicum SIDREB Drought, low temperature, high temperature, salinity (50,51)
A. thaliana AtNAC Salinity (52,53)
. OsNAC .
0. sativa OSNAC3 Drought, salinity (54, 55)
Z.mays ZmNAC55 Drought (56)
NAC T. aestivum TaNAC29 Salinity, drought (57)
G. max GmNAC085 Salinity (58)
V. vinifera WNACI7 Salinity, low temperature, drought (59)
S. tuberosum StNAC053 Salinity, drought (60)
S. lycopersicum SINAC3 Salinity, drought (61)
. AtWRKY25 .
A. thaliana AWRKY33 Salinity (62)
0. sativa OsWRKY11 Drought, high temperature, pathogen (63)
Z. mays ZmWRKY40 Drought, salinity, high temperature (64)
. Drought,
WRKY T. aestivum TaWRKY1 TaWRKY33 high temperature (65)
G. max GmWRKY12 Drought, salinity (66)
V. vinifera WWRKY28 Low temperature, salinity (67)
S. tuberosum StWRKY Drought, salinity, high temperature (68)
S. lycopersicum SIWRKY3 Drought, salinity (69)
This method is actively used in research processes and  Comparative analysis of RNAi and CRISPR/Cas9 technologies
agrobiotechnology (70). Commercial applications of RNA

interference include the development of virus-resistant papaya and
apple with reduced browning (71).

In particular, RNA interference enables targeted regulation
of genes involved in plant responses to abiotic stress, such as heat
shock protein (HSP) genes (72, 73). Studies have been conducted on
obtaining plants that are resistant to factors such as drought,
salinity and low temperatures (Table 3).

Increasing stress tolerance using CRISPR/Cas9 technology

CRISPR/Cas9 technology can be used to increase the tolerance of
plants to drought, salinity, low and high temperatures. This
technology reliably and effectively edits the genes that respond to
stress in plants. In this case, closing the plant’s evaporative pores
(stomata) reduces gas exchange and consequently the rate of
photosynthesis, limits water loss and can activate antioxidant
defenses to combat stress (84). In recent years, many scientists have
achieved positive results using CRISPR/Cas9 technology in adapting
plants to drought, salinity and high and low temperature changes
(Table4).

Both (RNAi and CRISPR/Cas9) technologies are used to make plants
more resistant to biotic and abiotic stresses (drought, salinity, low
and high temperatures). RNAi works by reducing gene expression,
resulting in a temporary downregulation/silencing of gene activity.
CRISPR/Cas9 technology, on the other hand, can change the
function of genes for along time by editing the genome.

The effect of RNAi is temporary and limited to a decrease in
gene expression. CRISPR/Cas9, on the other hand, shows that it
works effectively for a long time through changes in the genome.
RNA interference is suitable for reducing or silencing gene
expression, while CRISPR technology makes stable and precise
changes (93). By using RNAi and CRISPR/Cas9 technologies
together, it is possible to reduce the level of gene activity and
precisely change the genome structure. As a result, it creates new
opportunities to increase stress tolerance in plants.

https://plantsciencetoday.online


https://plantsciencetoday.online

Table 3. Studies on the role of RNAi in enhancing plant tolerance to abiotic stresses

Type of stress Plant type Studied gene Result References
A. thaliana Ath-miR393a Increased resistance to salinity stress (74)
Salinity 0. sativa Osa-miR319 Increased resistance to salinity stress (75)
S. lycopersicum SIARF2-RNAi Increased resistance to salinity and drought stress (76)
. Under drought and osmotic stress conditions,
A. thaliana Rer%%leat{grgsog T;SI}?/?QZBZ miR393 inhibited lateral root growth by disrupting (77)
ptors by TIR1/AFB2 genes
. . The signaling pathways related to yield maintenance
0. sativa (mTéﬁg’é (ar%gl\sl;é/srr];;?ﬂﬁ)éz) and stress tolerance through the regulation of these (78)
Drought 9 ’ miRNAs under drought stress have been studied
miR408a knockout lines showed increased proline
Z.mays ZmmiR408a content and decreased MDA. AGO/DCL/RDR gene (79)
expression dynamically changed during drought
. NF-YA3 expression increased by miR169a knockdown
S. tuberosum StmiR169a (RNAJ) under drought stress (80)
V. vinifera Vvi-miRNAs 44 DEM miRNAs were identified, which regulated TFs 8l
' such as AP2, MYB, bZIP (81)
T gestivum CBF/ICE/COR signaling  Mechanisms of cold adaptation through the ICE CBF 82
Low temperature ’ genes COR pathway have been studied (82)
; ; Under cold stress conditions, the expression of these
R512 R10881 . > ; .
S. tuberosum MiR5125, MiR1088 miRNAs controls genes associated with cold (83)
ABF, GA3ox target genes tolerance
Table 4. Studies on abiotic stresses using CRISPR/Cas9 in plant species
Type of stress Plant type Studied gene Result References
A. thaliana AtWRKY3, AtWRKY4 Increased sensitivity to salinity stress (85)
Salinity 0. sativa OsRR22 Increased tolerance to salinity (86)
Increased osmo protective response in response to
S. tuberosum StDREB2, AtDREBIA salinity stress (87)
: Leaf folding enhances drought tolerance by activating
0. sativa SRLL, SRL2 ROS scavenging mechanisms (88)
Drought Z.mays ZmDREB Drought stress studies have been done (89)
Root development, osmolyte accumulation and
G. max GmHdz4 activation of the antioxidant defense system were (90)
observed
. Knock-out results in increased cold tolerance, improved
0. sativa OsMYB30 yield and stability (91)
Low temperature
InvWac/PPO2 genes were edited to improve quality
S. tuberosum StinvVac, StPPO2 during low temperature storage (92)
Conclusion Acknowledgements

Abiotic stresses such as drought, salinity, low and high
temperatures are serious threats to plants, significantly reducing
their growth and yield. The role of biotechnology in overcoming
these problems is invaluable. In particular, it is possible to increase
the stress tolerance of plants through CRISPR/Cas9 and RNAi
technologies. These methods increase plant resistance to stresses
by silencing genes through RNAi or by knocking out, altering, or
inserting sequences with CRISPR. RNAi and CRISPR/Cas9
technologies play an important role in the creation of new varieties
through the genetic engineering of plants. RNAi technology reduces
the sensitivity of plants to stress by reducing gene expression. It is
necessary to examine how genetic engineering affects plant
ecological stability, identify new genes that influence stress
tolerance, and continue developing improved methods.
Environmental, economic, and social factors must also be
considered to broaden the use of biotechnological approaches.
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