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Abstract  

Abiotic and biotic stresses are major global challenges that reduce plant productivity, quality and sustainability worldwide. These stresses 
threaten global food security as the human population continues to grow. These stresses threaten global food supply in the current era of 

increasing population. Stresses negatively affect the normal growth and development of plants. They are mainly divided into 2 groups: abiotic 

and biotic stress. In particular, abiotic stresses lead to impaired growth and development of plants, disruption of the photosynthesis process 
and water regime. High temperatures lead to protein denaturation and decreased enzyme activity, while low temperatures lead to 

membrane damage. Abiotic stressors are one of the primary elements influencing the growth and production of major agricultural income 

crops. Environmental elements that cause physiological and biochemical pain in plants include salinity, drought, low temperature, heavy 

metals and chemical pollution. This article examines biotechnological approaches that use modern genetic engineering technologies such as 
RNA interference (RNAi) and CRISPR/Cas9 systems to improve plant resilience to abiotic stressors. RNAi plays a crucial role in activating plant 

defence mechanisms by modulating the expression of stress-responsive genes, whereas CRISPR/Cas9 technology allows for the creation of 

new, stress-tolerant types by introducing precise alterations in the genome. These biotechnologies have significant potential to develop 

stable, high-yielding and stress-resilient crops. Overall, this review summarizes recent advances in RNAi and CRISPR/Cas9 technologies for 
improving plant resilience to abiotic stresses.   
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Introduction 

Global climate change and anthropogenic activities are increasing 

plant exposure to abiotic stresses. The growing world population is 

leading to an increase in demand for food products. Developing 

stress-resistant crop varieties is a pressing global priority (1). Abiotic 

factors are usually understood as water scarcity, sudden changes in 

temperature, salinity, heavy metals and other inorganic stress 

factors (2). Stresses lead to a significant decrease  in plant 

productivity and disruption of physiological processes (3). Although 

there are natural adaptation mechanisms to ensure plant 

resistance to abiotic stresses, they are not systematic and 

permanent. Thus, modern biotechnological approaches are 

essential to develop stress-resistant plants. 

Emerging technologies in genetic engineering and 

molecular biology, such as RNA interference (RNAi) and CRISPR/

Cas9, are creating opportunities for the generation of stress-tolerant 

genotypes in plants (4, 5). While the RNAi mechanism allows for the 

suppression or blocking of the expression of specific genes through 

microRNAs, CRISPR/Cas9 allows for the precise and efficient editing 

of DNA. 

This article reviews the effects of abiotic stresses on plants, 

the key genes responsible for them, phytochrome genes and 

studies on the creation of stress-tolerant plants using RNAi and 

CRISPR/Cas9 technologies. The main objective is to evaluate the 

effectiveness and future potential of these modern biotechnological 

methods tools. 

Abiotic factors and their effects on plants  

Abiotic factors affect plant growth as a result of environmental 

stresses caused by non-living factors: drought, temperature 

changes, salinity, heavy metals, ultraviolet light (UV) and carbon 

dioxide (CO2) changes. Such stresses impair plant growth and 

development, reduce photosynthetic efficiency and ultimately 

lower yields (Fig. 1). 

Drought  

Plants under drought stress experience a decrease in transpiration 

rate and carbon assimilation due to the closure of small pores on 

the surface of their leaves, i.e. stomata, which are important for 

photosynthesis, transpiration and gas exchange processes. This 

results in the production of reactive oxygen species (ROS).  
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 Antioxidant systems such as superoxide dismutase (SOD), 

catalase (CAT) and ascorbate peroxidase (APX), which protect 

proteins, lipids and deoxyribonucleic acid (DNA) from oxidation, 

increase in efficiency (6). The abscisic acid (ABA) hormone, mitogen-

activated protein kinase (MAPK) and calcium ions (Ca2+) pathways 

are the main ones involved in signal transduction, while osmotic 

stabilizers such as proline and glycine-betaine help to maintain 

growth. 

High and low temperature (temperature stress)   

High temperatures impair photosynthetic efficiency by disrupting 

enzyme activity and thylakoid membrane stability. Stomata 

opening is controlled by hormonal and temperature-dependent 

signalling pathways that affect plant productivity. Cell membrane 

fluidity decreases under low temperature and the activation of ROS-

related stress mechanisms increases as a result of AFP (antifreeze 

protein) aggregation. Transcription factors such as dehydration 

response element binding factor (DREB) and WRKY play a key role in 

this stress response (7). 

Salt stress 

There are 2 main types of salt stress: osmotic stress (substances or 

effects related to osmotic pressure) and ionic stress, which disrupts 

Na+/K+ balance. These conditions increase ROS production and 

impair membrane integrity and photosynthetic activity. The activity 

of the signalling pathways the salt overly sensitive (SOS), calcium-

dependent protein kinase (CDPK), MAPK and ABA is accelerated. 

Osmotic substances such as proline, glycine-betaine and trehalose 

help maintain a stable water content in the cell (8). Sodium (Na+) 

and potassium (K+) ions transporters - HKT1, SOS1 and NHX1 -

function to ensure ion homeostasis. Signalling pathways such as 

the wall associated-kinase (WAK) and the receptor-like kinase (RLK) 

also play a key role in overcoming cell wall and endoplasmic 

reticulum stress(9). The antioxidant mechanisms of plants, 

including SOD, CAT, APX and flavonoids, protect the cell from ROS-

related damage (6).  

Heavy metals   

In plants, heavy metals enter the cell through the roots from the soil 

and through the green parts from the atmosphere. This accelerates 

ROS formation, leading to oxidative damage of membranes, 

proteins and DNA. NAC and WRKY transcription factors are actively 

involved in the signalling pathways. Organic substances such as 

polyamines and phytochelatin, which are involved in combating 

the effects of heavy metals, isolate and protect important cell 

structures from damage. Detoxification mechanisms are an active 

area of ongoing research.  

Ultraviolet radiation and CO₂ concentration  

UV radiation induces CPD (cyclobutane pyrimidine dimer) in DNA 

damage or mutation, DNA-repair mechanisms (this is a natural 

biological process in which a cell detects and corrects damaged or 

erroneous DNA molecules) and antioxidants are activated. WRKY 

transcription factors play an active role in the management of UV 

stress. CO2 is essential for photosynthesis and increasing it can 

speed up the process of photosynthesis and also affect plant 

responses to climate-related stresses. In plants, light (including UV 

radiation) signals involving phytochromes regulate active response 

mechanisms under conditions of abiotic stress. 

Natural adaptation mechanisms of plants  

The role of hormones (ABA, ethylene, jasmonate) 

Plant hormones play a key role in natural adaptation mechanisms. 

In particular, abscisic acid is a key regulatory hormone in adaptation 

to stresses such as drought, salinity and low temperature. ABA 

regulates seed dormancy during adverse weather conditions and 

prevents the spread of disease and helps plants conserve water by 

closing stomata. Under various stress conditions, ABA, which is 

synthesized from β-carotene by the enzyme 9-cis-epoxycarotenoid 

dioxygenase (NCED), enhances the activity of antioxidant enzymes 

(CAT, SOD, APX) and ensures the efficiency of the photosynthetic 

apparatus (10). Ethylene maintains physiological balance under 

drought and salinity stress conditions. It activates defense 

responses against toxic substances resulting from salinity stress by 

ensuring the stability of the ethylene overproducer 2 (ETO2) and 

ethylene Insensitive 2 (EIN2) signaling. Jasmonates (JA) are involved 

in the signalling pathway involving Ca2+, ROS and nitric oxide (NO), 

as well as phosphorylase and potassium channels, which affect 

stomatal closure under water stress conditions. There is a 

coordinated interaction between JA and ABA, which work together 

to regulate stomatal closure and the expression of stress-responsive 

genes, such as Responsive to dehydration 22 (RD22) gene (11). 

Signalling pathways (MAPK, Ca2+ signalling) 

The MAPK (Mitogen-Activated Protein Kinases) cascade is one of the 

main signalling pathways that mediate the plant's stress response. 

Fig. 1. Impact of abiotic stresses on plant growth and development.  
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MAPK3 and MAPK6 kinases are involved in responses to drought, 

salinity and temperature stresses, including the research model 

Arabidopsis thaliana and crops such as tobacco and rice. Stress-

activated signalling pathways regulate downstream transcription 

factors, with WRKY and DREB genes controlled via MAPK cascades 

rather than as direct targets. (12). Ca2+ signalling is involved in rapid 

and secondary messengers in plant cells to external stress. 

Temperature, salinity, or drought stress increases the concentration 

of Ca2+ inside plant cells. This in turn activates other signalling 

pathways through Ca2-dependent kinases (CDPKs) and CaM 

(calmodulin) (13). Ca2+ signals are not only a signal receptor system, 

but also a “Ca2+ code” that encodes the type of stress (aspects of 

amplitude, duration, repetition). Studies in Arabidopsis roots have 

shown that Ca2+ pulses activate gene expression in response to a 

certain level of winter stress (MEKK1-MKK2-MAPK cascade) (14). 

MAPK and Ca2+ signalling is interconnected and Ca2+ activity can also 

activate MAPK cascades. For example, ABA induces rapid Ca2+ 

signalling under stress conditions and affects stomatal closure and 

gene expression through MAPK cascades. Thus, there is a close 

relationship between Ca2+ signalling and the MAPK cascade (15). 

Photomorphogenesis and stress response coordination 

through phytochromes  

Phytochromes are used by plants to detect temperature and other 
stress factors in accordance with the light environment. Plants 

activate physiological processes in response to stress by receiving 

light signals. Phytochrome genes, PhyA, PhyB, PhyC, PhyD and PhyE, 

play an important role in the reception of light signals and 

adaptation to environmental factors in plants. Phytochromes 

control plant development, flowering, seed germination and 

responses to stress factors (16). PhyA is primarily responsive to far-

red light and is synthesized in the dark and rapidly degraded in light 

(17).  

 The expression level of PhyA can change depending on solar 
radiation and mechanical stresses (18). PhyB mainly senses red light 

and is involved in the regulation of photoperiodism, phototropism, 

and elongation. It also balances stress responses as a result of its 

combined effect with jasmonic acid and abscisic acid. PhyB is 

actively involved in sensing high-temperature stress. At high 

temperatures, the active form is converted to a passive state. This 

results in an effect on photomorphogenesis and stomatal opening. 

In the presence of ultraviolet-B radiation and oxidative stress, the 

defence system is activated through hormones such as jasmonic 

acid and salicylic acid. (19). PhyC does not function alone, but forms 

a heterodimer with PhyB and participates in the transmission of 

light signals (20). PhyC works together with PhyB in stress responses. 

The expression level of PhyC can change in response to changes in 

photoperiod and environment.  

 PhyC, in conjunction with PhyB, is involved in regulating the 

timing of flowering and temperature sensitivity of plants, as well as 

their response to light (21). PhyD also exhibits similar properties to 

PhyB, being mainly sensitive to red light. It has functional similarities 

to PhyB in photomorphogenesis and light-stress responses. It is 

involved in the adaptation of plant development to external 

environmental influences. The fact that PhyB can enhance the 

sensitivity to ER-stress (Endoplasmic Reticulum stress response) 

under the influence of red light naturally indicates that PhyD and 

PhyB perform the same function (22). Recent studies have 

investigated the role of PhyB and PhyC in overcoming HIL (High-

intensity light) stress (23). PhyE also works in coordination with PhyB 

and PhyD. Due to its sensitivity to red light, it is involved in 

photomorphogenetic processes (24). PhyE, together with PhyB and 

PhyD, participates in light and temperature responses (25). 

Genes responsible for abiotic stresses   

Plants harbour diverse stress-responsive genes that regulate 

adaptation mechanisms. Also, their functions activate defence 

mechanisms against stress and control the reception of signals and 

reactions to these signals. In particular, the DREB, NAC, WRKY, HKT1, 

SOS1, NHX1 and late embryogenesis abundant (LEA) genes are 

present in almost all evolutionarily developed plants (Table 1).  

 Plants have transcription factors involved in stress 

responses. In particular, DREB, NAC and WRKY genes are active 

transcription factors. These genes are involved in the regulation of 

various signaling pathways. In particular, they control the response 

to stress in the cell and are actively involved in enhancing tolerance. 

Many scientists have conducted studies on DREB, NAC and WRKY 

genes in plants such as Arabidopsis thaliana, Oryza sativa, Zea mays, 

Triticum aestivum, Glycine max, Vitis vinifera, Solanum tuberosum 

and Solanum lycopersicum (Table 2).  

Enhancing stress tolerance using RNA interference (RNAi) 
technology  

RNA interference (RNAi) technology allows the control of the activity 

of specific genes plants. It is a natural molecular mechanism that 

controls gene expression at the post-transcriptional stage. In RNAi 

technology, the expression of a targeted gene is silenced or 

attenuated by specifically targeted small interfering RNAs (siRNA, 

miRNA).  

Gene name Gene category Main task Types of active stress References 

DREB Transcription factor (TF) 
Activates stress-related genes through DRE/CRT 

motifs 
Cold, drought, salinity (26) 

NAC Transcription factor (TF) Controls the expression of many genes that respond 
to stress 

Drought, salinity, high 
temperature 

(27) 

WRKY Transcription factor (TF) Coordinates stress, immune and hormone signals Drought, salinity, infections (28) 

HKT1 Na+ transporter (membrane 
protein) 

Na+ limits transport and maintains the K+/Na+ 
balance 

Salinity (29) 

SOS1 Na+/H+ antiporter Provides salt tolerance by removing Na+ ions from 
the cell 

Salinity (30) 

NHX1 Vacuoles are Na+/H+ antiporters Storage of Na+ in the vacuole, stabilization of osmotic 
pressure 

Salinity, drought (31) 

LEA Reserve protein (Late 
Embryogenesis Abundant) 

Protects against water loss and keeps proteins and 
membranes stable 

Drought, low temperature (32) 

Table 1. Key genes involved in plant responses to abiotic stresses  
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 This method is actively used in research processes and 

agrobiotechnology (70). Commercial applications of RNA 

interference include the development of virus-resistant papaya and 

apple with reduced browning (71).  

 In particular, RNA interference enables targeted regulation 

of genes involved in plant responses to abiotic stress, such as heat 

shock protein (HSP) genes (72, 73). Studies have been conducted on 

obtaining plants that are resistant to factors such as drought, 

salinity and low temperatures (Table 3).  

Increasing stress tolerance using CRISPR/Cas9 technology   

CRISPR/Cas9 technology can be used to increase the tolerance of 

plants to drought, salinity, low and high temperatures. This 

technology reliably and effectively edits the genes that respond to 

stress in plants. In this case, closing the plant’s evaporative pores 

(stomata) reduces gas exchange and consequently the rate of 

photosynthesis, limits water loss and can activate antioxidant 

defenses to combat stress (84). In recent years, many scientists have 

achieved positive results using CRISPR/Cas9 technology in adapting 

plants to drought, salinity and high and low temperature changes 

(Table 4).  

Comparative analysis of RNAi and CRISPR/Cas9 technologies          

Both (RNAi and CRISPR/Cas9) technologies are used to make plants 

more resistant to biotic and abiotic stresses (drought, salinity, low 

and high temperatures). RNAi works by reducing gene expression, 

resulting in a temporary downregulation/silencing of gene activity. 

CRISPR/Cas9 technology, on the other hand, can change the 

function of genes for a long time by editing the genome.  

 The effect of RNAi is temporary and limited to a decrease in 
gene expression. CRISPR/Cas9, on the other hand, shows that it 

works effectively for a long time through changes in the genome. 

RNA interference is suitable for reducing or silencing gene 

expression, while CRISPR technology makes stable and precise 

changes (93). By using RNAi and CRISPR/Cas9 technologies 

together, it is possible to reduce the level of gene activity and 

precisely change the genome structure. As a result, it creates new 

opportunities to increase stress tolerance in plants.  

 

 

 

Gene Plant type Genes Type of stress References   

DREB 

A. thaliana AtDREB1A, AtDREB2A Drought, low temperature, salinity (33-35) 

O. sativa OsDREB1A, OsDREB1G Low temperature, drought, salinity (36-38) 

Z. mays ZmDREB2A Drought, high temperature (39, 40) 

T. aestivum TaDREB Osmotic stress (41) 

G. max 
GmDREB1/A, 

GmDREB1B;1, 
GmDREB1A;2 

Low temperature, high temperature, drought, salinity (42, 43) 

V. vinifera 

VvDREB2A 
VviDREBA1- , 
VviDREBA1-6 
VviDREBA1-7 

Drought, low temperature (44-46) 

S. tuberosum 
StDREB 

StDREB1 
Salinity, drought (47-49) 

S. lycopersicum SlDREB Drought, low temperature, high temperature, salinity (50, 51) 

NAC 

A. thaliana AtNAC Salinity (52, 53) 

O. sativa 
OsNAC 

OsNAC3 
Drought, salinity (54, 55) 

Z. mays ZmNAC55 Drought (56) 

T. aestivum TaNAC29 Salinity, drought (57) 

G. max GmNAC085 Salinity (58) 

V. vinifera VvNAC17 Salinity, low temperature, drought (59) 

S. tuberosum StNAC053 Salinity, drought (60) 

S. lycopersicum SlNAC3 Salinity, drought (61) 

WRKY  

A. thaliana 
AtWRKY25 
AtWRKY33 

Salinity (62) 

O. sativa OsWRKY11 Drought, high temperature, pathogen (63) 

Z. mays ZmWRKY40 Drought, salinity, high temperature (64) 

T. aestivum TaWRKY1 TaWRKY33 
Drought, 

high temperature 
(65) 

G. max GmWRKY12 Drought, salinity (66) 

V. vinifera VvWRKY28 Low temperature, salinity (67) 

S. tuberosum StWRKY Drought, salinity, high temperature (68) 

S. lycopersicum SlWRKY3 Drought, salinity (69) 

Table 2. Studies on DREB, NAC and WRKY transcription factors in abiotic stress responses 
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Conclusion  

Abiotic stresses such as drought, salinity, low and high 

temperatures are serious threats to plants, significantly reducing 

their growth and yield. The role of biotechnology in overcoming 

these problems is invaluable. In particular, it is possible to increase 

the stress tolerance of plants through CRISPR/Cas9 and RNAi 

technologies. These methods increase plant resistance to stresses 

by silencing genes through RNAi or by knocking out, altering, or 

inserting sequences with CRISPR. RNAi and CRISPR/Cas9 

technologies play an important role in the creation of new varieties 

through the genetic engineering of plants. RNAi technology reduces 

the sensitivity of plants to stress by reducing gene expression.  It is 

necessary to examine how genetic engineering affects plant 

ecological stability, identify new genes that influence stress 

tolerance, and continue developing improved methods. 

Environmental, economic, and social factors must also be 

considered to broaden the use of biotechnological approaches.  
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Type of stress Plant type Studied gene Result References 

Salinity 

A. thaliana Ath-miR393a Increased resistance to salinity stress (74) 

O. sativa Osa-miR319 Increased resistance to salinity stress (75) 

S. lycopersicum SlARF2-RNAi Increased resistance to salinity and drought stress (76) 

Drought 

A. thaliana Regulation of TIR1/AFB2 
receptors by miR393 

Under drought and osmotic stress conditions, 
miR393 inhibited lateral root growth by disrupting 

TIR1/AFB2 genes 
(77) 

O. sativa 
miRNA (amiRNA/STTM), 

(miR169g, miR393, miR402) 

The signaling pathways related to yield maintenance 
and stress tolerance through the regulation of these 

miRNAs under drought stress have been studied 
(78) 

Z. mays ZmmiR408a 
miR408a knockout lines showed increased proline 

content and decreased MDA. AGO/DCL/RDR gene 
expression dynamically changed during drought 

(79) 

S. tuberosum   StmiR169a NF-YA3 expression increased by miR169a knockdown 
(RNAi) under drought stress (80) 

Low temperature 

V. vinifera Vvi-miRNAs 44 DEM miRNAs were identified, which regulated TFs 
such as AP2, MYB, bZIP (81) 

T. aestivum  
CBF/ICE/COR signaling 

genes 
Mechanisms of cold adaptation through the ICE CBF 

COR pathway have been studied (82) 

S. tuberosum 
miR5125, miR10881 

ABF, GA3ox target genes 

Under cold stress conditions, the expression of these 
miRNAs controls genes associated with cold 

tolerance 
(83) 

Table 3. Studies on the role of RNAi in enhancing plant tolerance to abiotic stresses 

Type of stress Plant type Studied gene Result References  

Salinity 

A. thaliana AtWRKY3, AtWRKY4 Increased sensitivity to salinity stress (85) 

O. sativa OsRR22 Increased tolerance to salinity (86) 

S. tuberosum StDREB2, AtDREB1A 
Increased osmo protective response in response to 

salinity stress (87) 

Drought 

O. sativa SRL1, SRL2 
Leaf folding enhances drought tolerance by activating 

ROS scavenging mechanisms (88) 

Z. mays ZmDREB   Drought stress studies have been done (89) 

G. max   GmHdz4   
Root development, osmolyte accumulation and 

activation of the antioxidant defense system were 
observed 

(90) 

Low temperature 

O. sativa OsMYB30 
Knock-out results in increased cold tolerance, improved 

yield and stability (91) 

S. tuberosum StInvVac, StPPO2 InvVac/PPO2 genes were edited to improve quality 
during low temperature storage (92) 

Table 4. Studies on abiotic stresses using CRISPR/Cas9 in plant species 
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