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Abstract

This article reviews nano-biopesticides as environmentally friendly alternatives to conventional chemical pesticides in modern agriculture. Synthesis,
characterization and functional properties of various nanomaterials, including biopolymer-based nanoparticles (NPs) like zein and chitosan, as well as
metallic NPs, silver, gold, titanium dioxide and zinc oxide. These nanostructures are more effective against a variety of pests and diseases because of
their improved bioactivity, stability and targeted delivery. Safer agricultural practices are promoted by the use of nano-biopesticides, which have
several benefits such as lower pesticide dose, less environmental pollution and less damage to non-target species. The review also looks at how
certain nanomaterials work, such as by interfering with pest physiology or rupturing microbial membranes, which adds to their effectiveness.
Additionally, it assesses the possible harm that NP exposure may cause to ecosystems and human health, highlighting the significance of safety
evaluations and regulatory frameworks. The article highlights recent developments in nanotechnology, such as green synthesis approaches, to
provide environmentally sustainable pest management options. Despite their promise, challenges such as cost, scalability and long-term
environmental impacts require further investigation. In order to enhance nano-biopesticide formulations, guarantee safety compliance and make it
easier to incorporate them into sustainable pest control programs, the prospects section emphasizes the value of multidisciplinary collaboration.
Overall, nanotechnology holds potential to revolutionize pest control by offering highly effective, safe and sustainable alternatives that support
integrated pest management and agricultural sustainability.

Keywords: biopolymer nanoparticles; eco-friendly pest control; environmental safety; metal nanoparticles; nano-biopesticides; nanotechnology;
pest management; sustainable agriculture

Introduction the crop yield losses are numerous, but the major challenge to
crop yield production is the losses caused by pests and diseases
that need to be managed. Therefore, it is critical to comprehend
the challenges posed by pest and pesticide use. Over 65000 pests
and pathogens are known to cause infestations and diseases in
crop plants (2). An estimated amount of 2000 billion USD crop
loss is caused each year as a result of pests and diseases. In order
to reduce the severe food crises, various pesticidal technologies
ought to be applied in these situations, especially in developing

At present, the global population has crossed 7 billion and it is
expected to reach 9.2 billion by 2050, an increase of
approximately 30 %. This increased population leads to a 70 %
increase in food demand (1). One approach to satisfy the
increased food demand is an increase in crop production and
yield. While in agriculture, the reduction in crop yield and food
quality for human beings is a major problem. The causes behind
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nations (3). Insect pest control is a major concern for
entomologists, parasitologists and agricultural analysts because
of the substantial and prolonged negative impacts on
agricultural production and human health (4, 5). Pesticides are
applied to plants to keep them healthy and manage pests and
diseases. There are many chemicals used as pesticides, but the
most prevalent active ingredients (Als) in pesticides are:
chlorinated hydrocarbons, organophosphates, carbamates and
carbamide derivatives (6). Pesticides can be categorized as:
insecticides, rodenticides, nematicides, fungicides, bactericides,
herbicides and weedicides according to their mode of action,
nature and structure, but these pesticides can be toxic to
humans (7). These chemicals can contaminate the environment
and cause harm to humans and animals by ingestion, inhalation
and skin absorption (8). Moreover, the use of traditional pesticide
formulations has numerous shortcomings, like dust drift, limited
dispersibility, longer retention of chemical residue in soil, high
organic solvent content and other related issues. Because of
these restrictions, just 1 % of pesticides remain on surfaces
andthe rest will be released into the environment (9). However,
due to excessive use of pesticides, several pest species have
become resistant to pesticides and outbreaks produced by
arthropods have caused issues globally (10). Therefore,
researchers are now focusing on eco-friendly Integrated Pest
Management methods (11, 12).

Approximately 1 million deaths and chronic illnesses are
caused by pesticide poisoning per year in the world (13). There is
a need for eco-friendly and non-toxic alternatives to synthetic
pesticides. Researchers and scientists have developed natural
and synthetic pesticides that are less toxic, target specific,
efficient even in low doses and break down faster than
traditional pesticides (14). Biopesticides and nano-pesticides are
introduced and applied as better alternatives to synthetic
pesticides (15). The introduction and application of
nanotechnology in the synthesis of pesticides has given ancient
materials new properties, which is another contentious issue
surrounding biopesticides (16-20). Recently, there has been a
notable surge in the synthesis and utilization of nanomaterials
and advancements in pesticide formulations (21, 22).
Additionally, nano-carrier materials enable a regulated release
and prevent active ingredients from degrading.

Recently, several compounds of natural and microbial
origin have been studied as potential biopesticides, such as olive
mill oil, stilbenes in grape cane, Talaromyces flavus strains (SAY-Y
-94-01), Clitoria ternatea, etc. (23, 24). Emerging data indicate
that nanotechnology can be a useful tool for developing new
nanocomposites that manage pests and diseases and thus
enhance crop varieties (25-27). Exploiting nanotechnology for
the synthesis of eco-friendly pesticides leads to the emergence of
nano-biopesticides. Nano-biopesticides offer several advantages

over biopesticides and traditional methods alone for varied
reasons, such as better and easier translocation of the
compound to the plants, biodegradability, produce rapid effects
after the application of the product and release from the vector
gradually. They also had no negative impact on soil
microorganisms; hence, they do not disturb the soil microfauna.
The nano-biopesticides can be synthesised by 2 methods. In the
first method, the biologically active pesticidal compound (APC) is
extracted from plants then it is mixed with suitable nanoparticles
(NPs). After mixing, it is inserted into a suitable supporting
material that is usually a polymer. The metallic salt was secreted
by the APC, which binds with NPs that hemolyze and merge into
a suitable polymer; while in the second method, the biologically
APCis integrated with NPs.

Biopesticides

The term "biopesticide" refers to insecticides made from
microorganisms, plants and animals. These are categorized as:
(a) microbial biopesticides; (b) botanical biopesticides; (c) plant-
incorporated protectants; and (d) biochemical biopesticides (28).
The biopesticides have many advantages over conventional
pesticides, which are as follows: (i) reduced toxicity; (i) target
specific, i.e., affecting exclusively the pest in question; (iii) highly
potent even at low dosages; (iv) quick breakdown; and (v) little
exposure with nearly no emission problems (29).

Microbial biopesticides

In the case of diseases, the microbial biopesticide can affect the
pathogen in many ways, like competition, antibiosis, induced
systemic resistance, lytic enzymes, etc. In order to manage insect
pests, fungus spores were initially employed as a biopesticide in
the late 1800s. Agostine Bassi proved in 1835 that silkworms may
be shielded from illness by the spores of Beauveria bassiana
(white muscardine fungus). This was among the first instances of
biopesticide application that were recorded. Bacillus
thuringiensis (Bt) is a common microbial insecticide. Various Bt
strains produce different combinations of proteins that Kkill
insects or larvae (30). Pseudomonas and Trichoderma are
bacterial or fungal microbes that have been widely used as
biopesticides to stop the spread of soilborne diseases (31).
Trichoderma is efficient against a varied pathogenic fungus, such
as Phytophthora, Fusarium, Sclerotinia, Sclerotiorum, Candida
albicans, Rhizoctonia, Pythium, etc. Several microbial-based
biopesticide products have already been commercialized for
plant-disease management, as listed in Table 1.

Botanical biopesticides

The exploitation of several secondary metabolites derived from
plants, including phenolics, terpenes, alkaloids and essential oils,
forms the botanical biopesticides (32). These plant extracts can
act as fungicides, bactericides, insecticides and acaricides. There

Table 1. List of commercially available microbial products against plant diseases

S. No. Microbe (Source) Product name Target pathogen
1. Agrobacterium radiobacter strain 84 Galltrol A. tumefaciens
2. Bacillus subtilis strain GB03 Companion, Kodiak Fusarium, Rhizoctonia
3. Pseudomonas syringae Bio-save 10LP Botrytis, Mucor, Penicillium
4. Burkholderia cepacian Intercept Pythium, Fusarium, Rhizoctonia solani
5. Pseudomonas fluorescens A506 BlightBan A506 Erwinia amylovora
6. Pseudomonas fluorescens Dagger G Pythium, Rhizoctonia
7. Aspergillus niger AN-27 Kalisena Rhizoctonia solani
8. Trichoderma harzianum RootShild, F-stop, Trichodex  Pythium, Fusarium, Rhizoctonia, Colletotrichum, Sclerotinia
o. Gliocladium virens GL-21 SoilGard Pythium, Rhizoctonia
10. Combination of T. harzianum and T. viride Trichopel, Trichojet Armillaria, Fusarium Phytophthora, Pythium
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are various plants whose extracts have been recognized as the
source of agricultural pesticides and protect plants from
unwanted diseases and pest attacks. Some plant extracts can
also show nematicidal properties. When the juvenile root-knot
nematode is exposed to Neriumoleander’s extract at a 5 %
concentration, the mortality rate of the juvenile root-knot
nematode is increased.

Plant-incorporated protectants (PIPs)

These are biopesticides obtained from plant products. PIPs are
basically genetically modified products that produce a specific
pesticidal compound in a plant. These are directly expressed in
plant tissue (genetically modified crop). The Bt genes
integrated into plants responsible for producing substances
harmful to insects, are the most thoroughly researched example
of PIPs. Plant creates their own gene-specific proteins that
function as poisons for pests when their genes are expressed.

Biochemical biopesticides

Natural chemicals or metabolites obtained from living organisms
(plants, animals and insects) are known as non-toxic biochemical
pesticides. They are used to control pests without causing their
death. By acting as plant growth regulators (PGR) and attracting
or repelling pests (pheromones), these compounds may aid in
growth and development. Farmers employ pheromones and
semio-chemicals to entice insects into a trap and manage the
insect population by removing them from the field. Thus, insect
pheromones can be used as management and monitoring
instruments against crop pests. Several direct pest management
methods based on pheromones include: push-pull, attract and
kill, mass trapping and mating disruption (33, 34). Biochemical
pesticides mechanism of action work indirectly. It harms and kills
their target indirectly. For instance, they interfere with their
targets' sexual function but do not harm the target directly.
Terpenoids, alkaloids, phenolics and other secondary
compounds that are naturally generated from plants can be
employed as biopesticides. Certain vegetable oils, including
canola oil, have also been found to have pesticidal qualities (35).

Nanotechnology and nanoparticles

Biopesticides are environmentally safe, do not harm humans
and animals andare a better option than traditional chemical
pesticides. But even the use of biopesticides has certain
limitations that can be overcome using more advanced
nanotechnology. Application of nanotechnology has a great
future in the agricultural sector by improving abiotic stress-
control methods and mitigating the effects of climate change
(36). The application of NPs to combat abiotic stress is the
emerging field of nanobiotechnology (37, 38). Nowadays, due to
environmental concerns and human safety, scientists have
proposed the concept of green NPs that can be economically
produced by plants (39, 40). Nanosizing the pesticides will
significantly enhance solubility, permeability, dispersion,
penetration and bioactivity of the pesticide (41).

NPs are found in 3 size systems: monomeric, oligomeric,
or polymeric particulate systems with a particular size scale (42).
NPs of silver (Ag), copper (Cu), silicon dioxide (SiO,) and zinc
oxide (ZnO) are best suited for the development of biopesticides
because of their important pest control qualities and ability to
reduce pollution of water, soil and the environment (43). NPs
have been used in agriculture to improve soil nutrients, suppress

weeds, boost soil fertility and protect plants. Additionally, they
serve as fertilizers and aid in the production of foliar tissue or
species-specific insect repellents. For instance, Zn NPs are
created by coupling the NPs with Zn metals using biodegradable
chemicals. The resulting products are environmentally safe and
are used to increase soil fertility. Soils treated with Zn NP have 3
benefits: they boost soil Zn levels, manage broad-spectrum
agricultural pests and make vegetable crops a valuable source of
zn. Similarly, NPs can be used as magic bullets to target specific
plant components for pest management by combining
fungicides, herbicides, pesticides, or genes (44). NPs are
synthesized by physical, chemical and biological techniques
based on their chemical makeup.

Categories of NPs

NPs are primarily divided into 3 groups based on their
composition. These fall into the following categories: inorganic,
organic and carbon-based (45).

Organic NPs

These NPs are made of organic materials like polymers, lipids,
proteins, carbohydrates, etc. (46). Dendrimers, liposomes,
micelles and protein complexes like ferritin are a few well-known
examples of organic NPs. Organic NPs are more brittle by nature,
vulnerable to temperature and electromagnetic radiation (47).
They are usually biodegradable and non-toxic (48).

Carbon-based NPs

NPs in this category are made up of carbon atoms. This category
includes fullerenes, carbon black NPs and carbon quantum dots.
Applications for carbon-based NPs are numerous, including
bioimaging (49), energy storage (50) and drug delivery (51). High
strength and electron affinity are two of the special qualities of
carbon-based NPs (52, 53).

Inorganic NPs

Inorganic NPs are defined as those that are not synthesized from
biological or carbon-based components. The most prevalent
types of NPs in this class include metal NPs, ceramic NPs and
semiconductor NPs. Metal NPs can be monometallic, bimetallic,
or polymetallic (54, 55). A few metal NPs have unique thermal,
magnetic and biological properties. They consequently become
more important building blocks for the development of
nanodevices with a variety of applications (56, 57). In today's
cutting-edge balanced synthesis of metal NPs in terms of size,
shape and facet is necessary (58). Semiconductor materials have
both metallic and non-metallic qualities and are utilized to
generate semiconductor NPs. These NPs are essential parts of
electrical, optical and photocatalysis devices (59, 60). Ceramic
NPs are inorganic solids composed of carbides, phosphates,
carbonates metal and metalloid oxides, including calcium (Ca)
and titanium (Ti) (61). They are frequently created by heating and
then cooling and they can be thick, porous, hollow, amorphous,
or polycrystalline. An overview of commonly studied nano-
biopesticides, their synthesis approaches, target organisms and
pesticidal mechanisms is summarized in Table 2. They are widely
used in biological applications due to their high load capacity
and good stability (62). Different categories of NPs used in nano-
biopesticide formulations, along with their composition,
synthesis methods and agricultural applications, are
summarized in Table 3.
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Nano-biopesticide

Biologically generated and designed substances with NPs used
as pesticides are known as nano-biopesticides. Nano-
biopesticides have intrinsic qualities including target-specific,
release of active ingredients, enhanced solubility of active
ingredients and the active component will not degrade too
quickly and easily (77). Even when they are applied in small
amounts, nano-biopesticides will not lose their effectiveness.
The use of nano-biopesticides in disease and pest management
can enhance the target specificity by employing information on
the disease and/or pest's life cycle and behaviour. The activity of
gut protease in Helicoverpa armigera is altered by the AgNPs
synthesized from Ficus benghalensis (banyan tree) and Ficus
religiosa (peepal tree) leaf extracts (78). Direct application of
chemical pesticides to plants can result in environmental
problems and chemicals released into the food chain through
the air or soil. Pesticides containing NP formulations, such as
micelles and nano-composite materials, help control these
problems by lowering the likelihood of environmental and
health problems. Likewise, insecticides are delivered by clay-
based nanotubes to manage pests (79). Further, the addition of
biopolymers to nano-biopesticides enhances numerous
properties of nano-biopesticides, like stiffness, penetrability,
solubility, biodegradability, thermal stability and crystallinity (80,
81). Reported nano-biopesticides exhibiting significant efficacy
against diverse pest species across different countries are

summarized in Table 4. The mode of action of nano-
biopesticides involves inducing oxidative stress, damaging gut
tissues and disrupting cellular processes in pests (Fig. 1)

Silver NPs-based nano-biopesticides

AgNPs nanoparticles have ovicidal, larvicidal, adulticidal and
oviposition deterrent properties (92). They do not modify the
gene expression of insects (93); thus, AgNPs are eligible to be
referred to as nano-biopesticides. Biopolymers and
phytoextracts are utilized in the synthesis of AgNPs. A great
mortality rate was observed against Musca domestica by AgNPs
obtained from a lemon extract base. Also, significant pesticidal
activity was demonstrated against lepidopterans, aphids, thrips,
beetles, moths and cotton bollworms by AgNPs. AgNPs with
notable bio-pesticidal capability were produced employing
natural compounds as reducing agents (94). Since NPs induce
oxidative stress in the larvae's gut, (95) documented the effects of
AgNPs on castor semilooper (Acheae agjanata) and Asian
armyworm (Spodoptera litura). Drosophila melanogaster was
exposed to AgNPs and it experienced increased mortality as well
as issues linked to growth and development. According to
investigations by several researchers, green synthesised NPs
decreased the protein levels, acetylcholine and other
carboxylesterase activities, which resulted in mortality in a
variety of insect species (96). According to a recent study, Aedes
albopictus larvae exposure to salicylic acid-synthesized AgNPs
resulted in a drop in total protein content and decreased activity

Table 4. List of Nano-biopesticides with their efficacy, dose and country of study

Nano-biopesticide type Source/composition

Target pest/pathogen

Dose/concentration Efficacy (%) Country References

Ficus benghalensis leaf

Silver nanoparticles (Ag NPs) extract Aedes aegyptilarvae 25 mg/L 100 India (82)
Zinc oxide nanoparticles Azadirachta indica leaf h . -
(ZnO NPs) extract Helicoverpa armigera 50 mg/L 95 India (83)
Gold nanoparticles (Au NPs) Cassia fistula extract Spodoptera litura 40 mg/L 90 Sri Lanka (84)
Silica nanoparticles (SiO, NPs) Chemical precipitation Sitophilus oryzae 0.1 g/kg grain 85 Belgium (85)
Copper nanoparticles (CuNPs) Calotrz;)z’/(sragcl?antea Aphis gossypii 60 pg/mL 92 Egypt (86)
"I\'liéz?ia nanoparticles (TiO, Sol-Gel method Drosophila melanogaster 100 pg/mL 88 China (87)
Alumina nanoparticles Thermal
(ALLO, NPs) decomposition Plutella xylostella 0.5g/L 80 Japan (88)
Chitosan-based Chitosan + neem - -
nanoformulation extract Callosobruchus maculatus 2 % solution 98 India (89)
Microbial nano-biopesticide Bacillus thuringiensis . ;
(Bt-Ag NP) coated with AgNPs Aedes aegypti 10 ppm 100 Malaysia (90)
Iron oxide nanoparticles (Fe;0, Eucalyptus globulus ;
NPs) 4 extract Tetranychus urticae 80 mg/L 90 Iran (91)
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Fig. 1. Mode of action of nano-biopesticides.
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of esterases and phosphatases (97, 98). Thus, in the above-
described studies, exposure to green synthesised AgNPs
produces considerable mortality in a variety of insect pest
species, with different values of LCs; depending on the species,
suggesting that the AgNPs have pesticidal potential (99).

Zinc oxide NPs-based nano-biopesticides

Third-instar Aedes aegypti exposed to ZnO nanocomposites
showed significant morphological and histology-related
abnormalities, including deformities of the abdomen and thorax,
midgut degradation and gill loss (LCs= 1.57 mg/L for 1 day) (100).

Silica NPs-based nano-biopesticides

Regarding how silica NPs work against various pests, there are a
variety of physical harms (101, 102). Silica-treated NPs caused 85
% of diamondback moths (Plitella xylostella) to die within 72 hr
as a result of spiracle blockage, desiccation and body wall
breaking (103).

Alumina NPs-based nano-biopesticides

Significant pesticidal effects of alumina NPs against Sitophilus
oryzae (rice weevil/pest) (104). The mode of action shows that
cuticle degradation caused by alumina NPs results in
dehydration. According to the previous study (105), Bumblebees
(Bombus terrestris) treated with silica NPs (34 mg/L) experienced
severe abnormalities in their midgut epithelium.

Titania NPs-based nano-biopesticides

Titania NPs exhibit toxic effects on Drosophila melanogaster,
leading to reduced offspring viability (106, 107).

Gold NPs-based nano-biopesticides

By hindering the development and reproduction in German
cockroaches (Blatella germanicay), gold NPs kill the insect (108).
Green synthesised gold nanoparticles (AuNPs) inhibited trypsin
in mealybugs (Planococcus citri), mosquitoes (Aedes aegypti) and
beetles (Stegobium panniceum) (109). Substantial mortality in
Aedes aegypti was observed when exposed to AuNPs (110, 111).
Exposure to AuNPs caused the midgut, cortex, caeca and
epithelial cells to be mutilated andthe caudal hairs to be lost.

Synthesis of metallic NPs (nano-biopesticides)
Chemical method/bottom-up method

Bottom-up method involves sono-decomposition and reduction
processes (112, 113). Chemical reduction, precipitation and the
Sol-Gel synthesis technique are among the various chemical
methods employed in this approach. More accurate NPs in terms
of size, shape and molecular makeup are produced using this
technique. Fig. 2 showed schematic representation of the green
synthesis process and mechanism of metallic NPs. The various
techniques used in the chemical method are as follows:

Chemicalreduction

In the chemical reduction technique, NPs are created by
chemically reducing the metal salts. This process is frequently
used to create metallic NPs, including Au and Ag. Polyol and
citrate reduction are popular approaches.

Precipitation

Using precipitation techniques, metal ions are precipitated with
the addition of a precipitating agent to create NPs. This
technique works well with a variety of metal NPs.

Sol-Gel synthesis

A sol, a colloidal suspension of NPs, is converted into a gel using
this sol-gel synthesis technique, which is then dried and
annealed to create NPs.

Physical method/ Top-down method

The Physical or top-down strategy involves grinding of bulk
metallic components and stabilizing nanocomposites with
colloidal protective chemicals. Despite being widely used, this
process can be costly, time-consuming and result in NPs with
flawed surface topologies. The various physical techniques are as
follows:

Arc discharge, laser ablation and evaporation-condensation

In these techniques, a target substance is physically vaporised
using arc discharge or laser ablation, resulting in the synthesis of
NPs. They are frequently employed to synthesize NPs based on
carbon.
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Fig. 2. Schematic representation of the green synthesis process and mechanism of metallic nanoparticles.

https://plantsciencetoday.online


https://plantsciencetoday.online

Ball milling

To synthesize NPs, bulk materials are ground and milled using
mechanical techniques like ball milling. Metals and ceramics are
among the materials that can be worked with using this
approach.

Biological synthesis (green synthesis methods)

In this method, the NPs synthesis often involves the utilization of
various synthetic compounds, such as sodium citrate, hydrazine
hydrate and SDS (114-116). These organic reducing agents are
costly, poisonous and require more energy to create NPs. They
raise the biological concerns and have challenging waste
management issues (117, 118). These detrimental effects have
made it challenging for researchers to identify eco-friendly and
natural (biopolymers) reducing agents under this method of NPs
synthesis (119-122). Two biological sources are typically utilized
for NP synthesis.

Microbial synthesis using different fungal/bacterial strains

This method involves using microorganisms like fungi and
bacteria to biosynthesize NPs. Microbes' capacity to lower metal
ions and regulate the size and structure of NPs makes this
technique beneficial. Metal salt can be significantly reduced by a
variety of bacterial strains, such as Pseudomonas asstutzeri,
Bacillus lichiniformis and Lactobacillus spp. (123, 124).

Plant-mediated synthesis

The synthesis of various nanocomposite materials also involves
plants that contain secondary metabolites such as flavones,
amides, cyperoquinones, benzoquinones, terpenoids and
ketones (125, 126).

Application strategies: Formulation and delivery of nano-
biopesticides

Formation plays a crucial role in the successful application of
nano-biopesticides in agriculture. A proper formulation of nano-
biopesticides will enhance their stability and efficacy. Effective
dispersion is a prerequisite for any nano-effective formulation in
practical applications. Nano-biopesticide delivery methods with
various functions for plant protection have recently been
described as including nano-emulsions, nano-encapsulates,
nanocontainers and nanocages. The following formulations are
used for the delivery of nano-biopesticides

Encapsulation in NPs

In encapsulation, the biodegradable matrix/polymer makes the
outer vesicle that encloses the active compounds in the inner
core. The substance that is encapsulated in a polymeric NP is a
bioactive substance. It enhances the stability and protects
against environmental deterioration. By enabling regulated
release, these NPs guarantee a consistent and efficient
distribution of active substances.

Nano-emulsions

Nano-emulsions enhance many factors of nano-biopesticides,
i.e., chemical stability, hydrophilicity, environmental durability,
effectiveness of nano-biopesticides and are largely dependent
on nano-emulsions. The bioavailability of active substances is
improved by the small size of the droplet, which increases the
surface area available for interactions. Additionally, this
formulation approach ensures effective pest control by
improving coverage on plant surfaces.

Nano-capsules

Nano-capsules are composed of a membrane-like structure or
shell that encloses the active compound in its core. By encasing
bioactive substances in a protective shell, environmental
deterioration and off-target effects are reduced and stability and
targeted administration are guaranteed. Longlasting
effectiveness is facilitated by the regulated release mechanisms
provided by nano-capsules. Polymeric nano-capsules are used
as nanocarriers, primarily composed of biodegradable polymers
such  as  chitosan, alginate, gelatin, collagen,
carboxymethylcellulose and polyethylene glycol (PEG).

Hybrid formulations

In hybrid formulations, combining various nanomaterial types
can improve stability and effectiveness in a synergistic way. For
multifunctionality and enhanced overall effectiveness, hybrid
nano-biopesticides can contain NPs, nanocomposites, or a mix
ofthe 2.

Co-formulants for stability

Nano-biopesticides can be made more stable by adding co-
formulants or stabilizing agents. Surfactants, polymers and other
stabilising agents are examples of these additives, which
enhance dispersion, stop agglomeration and shield the active
ingredients from deterioration.
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Fig. 3. Schematic representation of the key limitations and future prospects of nano-biopesticides.
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Future prospects

As shown in Fig. 3 the schematic illustrates the key limitations
faced by nano-biopesticides and highlights potential future
prospects to address these challenges.

e  Nano-biopesticides have significant potential as sustainable
alternatives to conventional pesticides, but their wider
adoption  requires  collaborative  and  regulatory
advancements.

e  Multidisciplinary collaboration among material scientists,
agronomists, toxicologists, microbiologists and regulatory
experts is essential to ensure safety, scalability and field
efficiency.

e Standardization of ecotoxicity testing protocols is crucial,
including soil microbial toxicity, aquatic organism tests e.g.,
zebrafish  (Daphnia magna) and non-target species
assessments such as pollinators (Apis mellifera) and beneficial
insects (Trichogramma spp.).

e The development of green synthesis methods and
biodegradable nanocarriers should be prioritized to minimize
environmental impact and enhance biodegradability.

e Integration of nano-biopesticides with precision agriculture
technologies such as drone-assisted spraying and smart
delivery systems canimprove targeting and reduce waste.

e  Strengthened regulatory frameworks and clear biosafety
guidelines are necessary for commercialization and large-
scale implementation.

e Farmer training, stakeholder engagement and global
research collaboration will play vital roles in ensuring the
responsible use, monitoring and long-term sustainability of
nano-biopesticides.

Conclusion

Nano-biopesticides represent a transformative advancement in
sustainable pest management, offering enhanced efficacy, target
specificity and reduced environmental impact compared to
conventional pesticides. Beyond their current achievements,
future progress depends on strengthening multidisciplinary
collaboration among scientists, toxicologists and regulatory
authorities to ensure the safe and efficient application of these
technologies. Emphasis should be placed on developing green
synthesis methods, biodegradable nanocarriers and standardized
ecotoxicity testing to safeguard ecosystems. Integrating nano-
biopesticides with precision agriculture and farmer training
programs will further enhance their effectiveness at the field level.
With continued innovation and harmonized regulations, nano-
biopesticides have the potential to revolutionize global agriculture
through sustainable, eco-friendly pest control solutions.
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