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Introduction 

The overuse of chemical pesticides in modern agriculture has led to 

severe ecological and health consequences, including soil 

contamination, resistance development in pathogens and decline of 

beneficial microorganisms (1, 2). As an environmentally responsible 

alternative, biological control employs naturally occurring 

microorganisms to suppress plant pathogens and reduce 

dependence on synthetic agrochemicals (3, 4). Among the diverse 

biocontrol agents (BCAs), fungal and bacterial genera such as 

Pseudomonas fluorescens, Bacillus thuringiensis, Coniothyrium 

minitans and Trichoderma species have been widely recognized for 

their antagonistic and plant growth-promoting abilities (5, 6). 

 The genus Trichoderma comprises of filamentous fungi well 

known for its rapid growth, adaptability and ability to parasitize or 

compete with a wide range of phytopathogens (6). It is one of the 

most studied genera in plant pathology due to its commercial 

importance as a bio fungicide and biofertiliser. The tenth edition of 

Ainsworth and Bisby’s Dictionary of Fungi classifies Trichoderma 

(teleomorph Hypocrea) under Domain: Eukarya; Kingdom: Fungi; 

Phylum: Ascomycota; Class: Sordariomycetes; Order: Hypocreales; 

Family: Hypocreaceae (7). 

 Trichoderma viride has gained prominence due to its strong 

mycoparasitic activity, fast colonisation rate, ease of mass 

production and proven success in managing numerous soil- and 

seed-borne diseases. In India, T. viride dominates the biofungicide 

market, accounting for over half of the registered microbial 

products, reflecting both its efficacy and commercial viability (8). 

 India’s National Farmers Policy (2007) emphasizes the 

promotion of biopesticides as a means to achieve sustainable 

productivity (9). Despite increasing awareness, biopesticides 

constitute only about 2 % of India’s total pesticide use, compared to 

20 - 40 % in developed regions such as Europe and the USA (10). This 

highlights the urgent need to advance the use of efficient and reliable 

biocontrol agents like T. viride through standardized production and 

application technologies. 

 Therefore, this review provides a comprehensive account of 

T. viride, covering its biology and ecology, mechanisms of action as a 

biological control agent, methods of mass production and 
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Abstract  

Sustainable agriculture stives to enhance crop productivity while minimizing environmental degradation, emphasizing the need for eco-
friendly and effective alternatives to synthetic agrochemicals. Biological control has been proven to be an effective substitute for synthetic 

chemicals. Among biocontrol agents (BCAs), Trichoderma viride has emerged as a well-established biocontrol fungus with multifaceted roles 

in plant disease management and growth promotion. This review aims to systematically evaluate biology, mechanisms of action, mass 

production technologies and field application methods to T. viride, highlighting its limitations and future research prospects. By consolidating 
and critically analyzing scattered information, this work seeks to identify knowledge gaps that can guide the development of improved 

formulations and practical usage strategies. Overall, T. viride demonstrates remarkable potential as sustainable bioresource for integrated 

disease management, improved soil health and environmental stewardship, although its commercial success depends on advances in 

formulation stability, contamination control and strain selection. 
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formulation and field application techniques. It also addresses major 

limitations and future directions, emphasising research gaps in 

formulation stability, contamination control and molecular strain 

improvement. 

Biology and ecology of T. viride 

Trichoderma viride is a cosmopolitan filamentous fungus that thrives 

in diverse ecological habitats, including agricultural soils, decaying 

organic matter and forest litter (11- 13). It reproduces rapidly through 

the production of green conidia and exhibits a strong capacity to 

colonize plant roots and organic substrates (14). Morphologically, T. 

viride colonies are fast-growing and typically green due to abundant 

sporulation. Optimal growth occurs between 20-28 °C, though it can 

tolerate a wide temperature range of 6-37  °C (14, 15). 

 Taxonomically, T. viride belongs to Domain: Eukarya; 

Kingdom: Fungi; Phylum: Ascomycota; Class: Sordariomycetes; 

Order: Hypocreales; Family: Hypocreaceae; Genus: Trichoderma; 

Species: T. viride Pers. (teleomorph: Hypocrea rufa) (16, 17). This 

species is distinguished by its secretion of hydrolytic enzymes-such 

as chitinases, glucanases and cellulases-that degrade cell walls of 

phytopathogens (18, 19). 

 Ecologically, T. viride functions as both a saprophyte and a 

symbiont. It colonizes rhizospheres, grow rapidly, forming irregular 

cotton flocks or dense clusters with mostly green surfaces. 

Temperatures between 20 and 28 °C are excellent for growth, but it 

may also flourish at 6 or 32 °C. It's a mesophilic fungus that can 

survive at 37 °C but not at 48 °C (20). For vegetative development, T. 

viride requires a relative humidity of greater than 92 %, while the 

formation of spores needs a relative humidity of 93 - 95 % (21); 

consequently, T. viride has great viability in wet soil. As a saprophyte 

T. viride can be found on wood, seeds and plant waste (22). 

Trichoderma viride, competes for nutrients and space with other 

microbes and promotes plant growth by enhancing mineral uptake 

and inducing systemic resistance (23).  

 Once applied to soil, this biocontrol agent colonizes the seed 

- rhizosphere, proliferates on the surfaces, parasitize (coil) pathogens 

present on the surface of the seed and surround the rhizosphere (24). 

Plant roots that have been treated with Trichoderma have an 

enhanced capacity to explore the soil and acquire minerals (25). 

Trichoderma viride in the soil assists in the transformation of Fe3+ to 

Fe2+ in the plant, resulting in increased solubilization and uptake (24, 

26). Trichoderma inoculation improves the uptake of copper, 

sodium, zinc and other micronutrients (27). Trichoderma strains 

synthesize acids, including citric acid, glucuronic acid and coumaric 

acid, which help with the release of the phosphorus ions that are 

present in most of the soils but are unavailable to plants (28). 

 However, certain Trichoderma strains may act 

opportunistically, producing metabolites that can suppress other 

fungi or cause green mold in mushroom cultivation (29-32). 

Therefore, strain selection and safety assessment are crucial prior to 

commercialization. 

Trichoderma viride as a biological control agent (BCA) 

For the first time, Trichoderma was described as a biological control 

agent in the early 1930s (22). The Trichoderma species are free-living, 

cosmopolitan fungi that are found in decomposing organic material, 

vegetable debris and soils. It is a potent antagonist with the ability to 

suppress significant plant parasites and is found in practically all soil 

types (34). It is effective in controlling soil-borne, air-borne and seed-

borne plant pathogens (35, 36).  

 The main biocontrol mechanisms of Trichoderma include 

mycoparasitism, antibiosis and competition for food and space. In 

mycoparasitism, the fungus coils itself around another pathogen 

and grows on its surface (37). Then, with the action of lytic enzymes 

and toxic compounds, it degrades the cell wall of the pathogen and 

then absorbs the nutrients. The main enzymes responsible for the 

degradation of the host cell wall are Chitinase and β-glucanases (38). 

Long-term research has shown that Trichoderma has mycoparasitic 

ability against various phytopathogenic fungi such as Alternaria 

alternata, Botrytis cinerea, Rhizoctonia solani, Sclerotinia 

sclerotiorum, Pythium spp., Phytophthora spp. and Fusarium spp. 

(39). In antibiosis, Trichoderma produces various metabolites and 

compounds that interfere with the normal functioning of the 

phytopathogens. These compounds limit the colonisation of the 

phytopathogens. The effect of these compounds leads to the 

rupture of the cell wall and the leakage of the cytoplasm of 

pathogens (38). Trichoderma viride produces viridepyronone, which 

is effective in controlling Sclerotium rolfsii (40). Fungus of 

Trichoderma spp. grows very fast and colonises the rhizosphere 

rapidly. They exhaust nutrients and space, due to which there is very 

little room for other pathogens to grow. One of the major reasons for 

the death of pathogenic microorganisms is due to competition for 

food and space (38). Many strains of the Trichoderma genus colonise 

the roots of plants and encourage the development and growth of 

plants. Trichoderma species have been widely used as bioagents to 

manage disease and improve plant nutrition and growth.  As a 

bioagent, Trichoderma can be a cost-effective and convenient 

approach. Many studies on Trichoderma are currently underway, 

with the primary focus on its ability to alleviate abiotic stress, but the 

mechanism is less known that it allows it to modulate multiple 

abiotic stress elements. On the biochemical side, several biological 

strategies are being explored to improve and grow Trichoderma 

strains, including genetic engineering and recombinant technology 

(41). Trichoderma viride is environmentally friendly, cost-effective 

and simple to utilize. It promotes plant growth and can be used in 

conjunction with other Biofertilizers. There are no residual toxicity 

and no harm to beneficial soil bacteria and there is no evidence 

of developing resistance (22, 42) (Fig. 1). 

Mass production and formulations of T. viride 

Trichoderma viride, known for its potent biocontrol properties and 

ability to enhance plant growth, has garnered significant attention in 

agricultural and industrial applications. Its mass production is crucial 

for harnessing its benefits in biological control of seed and soil-borne 

diseases and bioremediation of soil in sustainable agriculture (21, 43, 

44). Various methods of mass production, including dry and solid-

state fermentation, have been optimised to enhance the yield and 

viability of  T. viride (45).  

 Understanding the best practices for mass production not 

only supports the efficient application of this beneficial organism but 

also contributes to the broader goals of reducing chemical inputs in 

farming (46). As the demand for eco-friendly agricultural solutions 

grows, the effective scaling of T. viride production becomes 

increasingly vital (47) (Table 1). 

Talc-based formulation 

Talc-based formulation of T. viride for the seed treatment was 

developed by the Tamil Nadu Agricultural University (52). Firstly, 

Trichoderma is cultured in a broth medium, then combined in a 1:2 

ratio with talc powder and shade dried to an 8 % moisture content. 

Trichoderma talc-based formulations have a shelf life of 3-4 months 
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(53, 54). Seed treatment with talc-based formulation @ 4 - 5 g/kg 

seed have become increasingly widespread for managing several 

soil-borne diseases (53, 54). Many private manufacturers produce 

enormous amounts of talc-based formulations for farmers. As an 

estimate, to cover 50 % of India's land, 5000 tons of Trichoderma are 

expected to be required each year (54) (Fig. 2). 

Wheat bran vermiculite-based formulation 

Vermiculite is a phyllosilicate having a high water-holding capacity. It 

belongs to the group of mica minerals (56).  In molasses-yeast 

medium, Trichoderma is grown for 10 days. 33-g wheat bran and 100 

g vermiculite are sterilized at 70 °C in an oven for 3 days. This is 

followed by adding 20 g of fermenter biomass to 0.05 N medium, 

followed by condensed/whole biomass with Hydrochloric acid 

(HCL). The material is properly homogenized and dried in the shade 

(54). A formulation had been created by mixing wheat bran, 

Vermiculite and dry fermenter-produced biomass from various 

Trichoderma and Gliocladium isolates to check the overall survival 

and growth of Rhizoctonia solani. This product was easy to make 

and did not need sterile conditions. Before use, the dry mix was 

activated by adding a mild acid (0.05 N HCl) and letting it sit for 2-3 

days at 23-25  °C, which encouraged the growth of helpful fungal 

hyphae. When applied to a soilless mix infected with R. solani, the 

activated product effectively controlled damping-off disease in 

various crops such as pepper, cucumber, eggplant, zinnia and 

cabbage. Among the 6 tested isolates, T. hamatum (TRI-4) and T. 

virens (Gl-3) were the most effective, lowering disease levels to those 

found in healthy controls. In cucumber, even very small amounts 

(0.13 %) of these products reduced disease, although 0.5 % was 

necessary for complete protection (57) (Fig. 3). 

Press mud (filter cake) based formulation 

Press mud, also known as filter cake, is a sugar industry waste that 

can be used as a starting point for mass Trichoderma multiplication 

(61). During the process, a 9-day-old Trichoderma culture was 

produced in Potato dextrose broth (PDB) and mixed thoroughly into 

1.2 quintals of filter cake (54). To keep it moist, water is applied from 

time to time. Gunny bags are utilized to wrap them to facilitate air 

circulation and retain humidity under shade. In 25 days, a 

foundation culture for subsequent growth is prepared (54). Before 

being applied in the field, the same is completely mixed into 8000 kg 

of filter cake and incubated for 8 days in the dark (54). This helps to 

bring 8000 times higher inoculants in the field as compared to 

prescribed levels of biopesticides, leading to a quick and significant 

response. Likewise, different chemicals can be employed for a 

rapid increase of various biological agents at the mass phase (10) 

(Fig. 4.).  

 

Table 1. Different substrates used to produce Trichoderma viride 

Sl No. Substrate References 
 1 Wheat bran-saw dust modified medium Parkash and Saikia (48) 
 2 Sorghum grain Parkash and Saikia (48) 
 3 Rice bran Naeimi et al. (49) 
 4 FYM Prasad et al. (50) 
 5 Spent tea leaf waste Lima et al. (51) 
 6 Talc based Sudha et al. (52) 
 7 Wheat bran-vermiculite based Martinez et al. (56) 
 8 Biochar based Martinez et al. (56) 
 9 Alginate beads based Martinez et al. (56) 

 10 Press mud-based Sinha et al. (60) 
 11 Sorghum grain-based Singh et al. (64) 
 12 Sawdust-based Pandey (66) 
 13 Coffee husk-based Nduka et al. (67) 
 14 Fruit waste-based Siddiqui et al. (99) 
 15 Beetroot based Khandelwal et al. (100) 
 16 Banana based Thangavelu and Mustaffa (101) 
 17 Oil based Nathan et al. (102) 
 19 Carrot based Simon and Anamika (103) 
 20 Starch industry wastewater Verma et al. (104) 
 21 Poultry manure Asghar and Kataoka (105) 
 22 Decomposed coconut coir pith Kumar et al. (106) 
 23 Spent malt Gopalakrishnan et al. (107) 
 24 Groundnut shell medium Pandya et al. (108) 

 25 Wheat bran and biogas manure Bhale (109) 

 

Fig. 1. Flowchart depicting the mechanism of Trichoderma as a bioagent. 
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Fig. 2. Talc based formulation of T. viride. 

Fig. 3. Wheat bran-vermiculate based formulation of T. viride. 
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Biochar-based formulation 

Biochar is a lightweight and porous substance produced from 
heating biomass in the absence of oxygen. Its composition depends 

on the type of biomass chosen (62). Corn, rice, vegetable peels, wood 

from agricultural waste and sewage sludge are the most common 

feed to produce biochar (63). T. viride survives better in biochar with 

a small particle size than in biochar with a large particle size. Biochar 

boosts Trichoderma sporulation increases the water-holding 

capacity of the soil and reduces fertilizer drainage (56), (Fig. 5).  

Sorghum grain-based formulation 

Singh and his team in 2014 experimented to evaluate suitable 

organic substrate for Trichoderma formulation to control collar rot 

disease of cowpeas. The study found that after 7 days of inoculation, 

the sorghum grain substrate had the maximum population of 

Fig. 4. Press-mud based formulation of T. viride. 

Fig. 5. Biochar-based formulation of T. viride. 
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Trichoderma, followed by wheat grain (64). For the preparation of 

Sorghum grain-based formulation, take soaked sorghum grains and 

keep it in autoclavable bags. After filling the bags, a 1.5” PVC pipe is 

placed on the top of the cover, closed with a cotton plug and tied 

with a rubber band. The bags are then kept in an autoclave for 

sterilization at 121 °C and 15 lbs. for 15 min. After sterilization, the 

grains are cooled at room temperature. After cooling, the sorghum 

grains are inoculated with 1-2 bits of Trichoderma with an 

inoculation loop or spatula. The inoculated bags are then shaken for 

proper mixing and are stored at a temperature of 25-30 0C. The bags 

are regularly checked for mycelial growth. After mycelium growth 

(green color), the bags are again shaken for uniform growth and 

sporulation (65) (Fig. 6, Table. 2). 

Coffee husk-based formulation 

Trichoderma formulation can also be prepared using coffee husk, a 

byproduct of the coffee industry (67). The coffee husk was 

humidified by soaking 50 g of substrate for varying time span (30 

min, 1 hr, 2 hr and 3 hr) in 1000 mL of distilled water. Subsequently, 

the wet substrates were placed inside plastic bags that could be 

autoclaved for 15 min at 121 0C. Using a sterile syringe, 1 mL of 

conidia suspension of Trichoderma isolates was added to the 

autoclaved substrates before they were placed into plastic bags. The 

plastic bags were perforated to provide for aeration. The inoculated 

bags were incubated for 10 days at 30 °C (68). This formulation was 

found to be very efficient in treating black pepper foot rot caused by 

Phytophthora (53, 54) (Fig. 7).  

Banana waste-based formulation 

In banana waste, (69) recommended a mass multiplication practice 

for Trichoderma spp. The similar banana squander was treated with 

rock phosphate, urea, B. polymyxa, P. sajor caju and T. viride cultures. 

A trench of different banana squanders, such as sheath pseudo 

shoot with heart, is chopped into 5 - 8 cm pieces (54). A trench is 

prepared, as well as the variety of ingredients are layered in 5 layers. 

5 kg of urea, 125 kg of rock phosphate, 1 ton of banana squander 

along with 1 L of P. sajor caju, B. polymyxa and T. viride broth culture 

are integrated into every layer (54). Five diverse layers are organized 

similarly and methodically mixed. Within 45 days, the banana 

squander decomposes, as well as enriched mass culture is available 

for field use (54) (Fig. 8.). 

Alginate pills-based formulation 

Alginate is a non-toxic biodegradable hydrocolloid that in the 
presence of divalent cations such as calcium forms thermally stable 

hydrogel beads (56). In one division, sodium alginate (25 g/750 mL) is 

dissolved in purified water, whereas the food base (50 g/250 mL) is 

suspended in a different division. As soon as these preparations have 

cooled, they are autoclaved and blended with biomass. The 

combination is added to the CaCl2 solution drop via drop, forming 

sphere-shaped beads that are dried out by air and afterward stored 

at 5 °C (54). Alginate beads are inexpensive, non-toxic, biodegradable 

and have a positive effect on the enzymatic activity of the 

microorganism (56) (Fig. 9). 

Fig. 6. Sorghum-grain based formulation of T. viride. 

S. No Substrate 
Mixture ratio 

(grams) 
Colonization 

capacity 
No of spores/

gram 
Sporulation 

grade Reference 

1 Rice husk + sorghum 20 + 20 Excellent 1.31 x 109 Excellent 

Pandey (66) 
2 Sawdust + sorghum 20 + 20 Excellent 9.8 x 108 Good 

3 Rice bran + sorghum 20 + 20 Excellent 1.15 x 109 Excellent 

4 Sorghum grains 40 Excellent 1.06 x 1010 Excellent 

Table 2. Effect of sorghum-based substrate growth of Trichoderma viride 
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Fig. 7. Coffee-husk based formulation of T. viride. 

Fig. 8. Banana-waste based formulation of T. viride. 
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Oil-based formulation 

They are prepared by mixing conidia from a liquid-state/solid-state 

fermentation with a firm emulsion formulation of vegetable oils. 

Microbial agents are suspended in a water-immiscible solution such 

as a fuel portion (diesel, mineral oils), or vegetable oils (groundnut, et 

cetera), with the support of a surface-active agent (53, 54). This can 

be liquefied in water to form a solid emulsion. To create a uniform 

emulsion after dilution in water, emulsifiable concentrate needs a 

high concentration of an oil-soluble emulsifying agent (54). The oil 

application does not injure crops, humans, fungal spores or animals. 

Trichoderma formulations are also being used as foliar sprays (53, 

54). Oil-based formulations must be ideal for foliar spraying in arid 

weather, along with having a long shelf life. Since the spores are 

bubbled by oil, which protects them from drying at 5 °C, they can 

survive for longer on the plant surface, even in arid weather. Reports 

are on the   production of an emulsion formulation of T. harzianum 

to battle Botrytis cinerea, which causes apple post-harvest rot (70). A 

reverse emulsion formulation of T. harzianum with an 8-month shelf 

life was formulated using native constituents at the ex-Project 

Directorate of Biological Control (PDBC) in India. Moreover, this 

formulation was found to be effective against soil-borne groundnut 

diseases (54). Common oils used in the formulation are Canola oil, 

Neem oil, Paraffin oil and Soybean oil (71). 

Comparative significance of T. viride formulations 

A wide range of T. viride formulations has been developed to 

enhance field performance, stability and adaptability across diverse 

agro-climatic conditions. As summarized in Table 3, each carrier 

system offers unique advantages that influence shelf life, ease of 

production and application efficiency. Talc-based formulations 

remain the most widely commercialized due to their low cost, 

simple preparation and suitability for seed treatment (40, 41, 44). 

Press mud and biochar carriers provide nutrient-rich and moisture-

retentive environments that improve spore survival in soil, making 

them highly effective for field application (47, 50, 58, 61). Grain-based 

substrates such as sorghum produce exceptionally high conidial 

yields, supporting vigorous soil or nursery inoculation (66, 68, 70). 

Advanced alginate bead and oil-based formulations extend shelf life 

and protect spores under harsh environmental conditions, enabling 

controlled release and improved foliar performance (72, 74, 78, 80, 

83). Together, these formulations offer versatile delivery systems 

that strengthen the reliability and scalability of T. viride in sustainable 

crop protection (Table 3). 

 

 

 

Fig. 9. Alginate-pills based formulation of T. viride. 

https://plantsciencetoday.online


9 

Plant Science Today, ISSN 2348-1900 (online) 

Methods of field application of T. viride 

Methods of field application of T. viride include seed treatment, seed 

biopriming, soil drenching, root dip and foliar spray. These 

approaches enhance rhizosphere colonization, suppress soil-borne 

pathogens and promote plant growth (53, 54, 74) (Fig. 10). 

Seed treatment 

In this technique, seeds are covered with dry powder/dust of T. viride 

just before sowing (72). Crop coating with Trichoderma is a 

successful technique for preventing seed-borne and soil-borne 

diseases. As these seeds germinate, the T. viride present on the 

surface of the seeds also germinates and colonizes the roots of these 

seedlings and the rhizosphere (53, 54). Chickpea seeds treated with 

Trichoderma enhanced their vigor and seedling growth (55).  Reports 

in the usage of Trichoderma as a seed treatment to control 

Helminthosporium leaf spot disease of the Chrysalidocarpus 

lutescens plant (73). The study concluded that the seeds treated with 

Trichoderma spp. showed reduced disease incidence compared to 

untreated seeds. The seed treatment also increased seed 

germination and seedling vigor index (73). Regular wheat seed 

treatment with the combination of T. viride, T. harzianum, P. 

fluorescence, Glicocladum virens and Vitavax @ 0.125 % (half the 

recommended dose) also gave good control of loose smut of  wheat. 

However, a single bioagent alone cannot control the disease. The 

seedling emergence also increased due to the combined use of the 

bioagents and vitavax (74). 

In- situ application of T. viride; Seed biopriming 

Biopriming is treating seeds with biocontrol agents and incubating 

them in humid, moist environments before the radicle appears (75). 

This practice has the potential to do better than simple seed coating 

in terms of seedling appearance, pace and uniformity. Trichoderma 

conidia sprout on the surface of bio-primed seeds and form a 

coating outside their surface. Such seeds are extra tolerant of a 

variety of soil environments (54). Biopriming helps in the use of fewer 

biocontrol agents on the seed. Seed biopriming is flourishing in 

brinjal, chickpea, tomato and soybean in Uttarakhand's Terai region 

(76). Bio-primed seeds of rajma and chickpea in pots and fields, 

inoculated with microbial strains of T. asperellum T42, Rhizobium 

spp. RH4 and P. fluorescens OKC, independently and in combination, 

showed superior germination proportion and enhanced plant 

establishment in both crops relative to non-bioprimed control plants 

(77). It was also revealed that combining the microbes enhances 

seed germination plus increases plant growth more than applying 

them discretely. In both rajma as well as chickpeas, every 

combination that included Trichoderma was better than others and 

the triple microbial combination was better than other 

combinations in respect of seed germination and seedling growth 

(77) (Fig. 11). 

Soil treatment 

Soils contain both useful and harmful microbes (78). When we 

distribute Trichoderma spp. to soil, it improves the population 

dynamics of the fungal antagonists and stops pathogenic 

microorganisms from colonizing the rhizosphere (4). Biocontrol 

agents may be supplemented to the soil earlier or after planting to 

supervise a broad range of soil-borne fungal pathogens (12). 

Trichoderma viride is used alone or in combination with other 

treatments, which considerably reduce Colletotrichum falcatum 

induced red rot (79). It was 2010 observed that adding T. viride to the 

Table 3. Comparative Overview of Trichoderma viride formulations 

Formulation type Carrier material Approx. shelf life Ease of production Best use / 
Application 

Remarks References 

Talc-based Talc powder + 
CaCO₃ 

3-4 months Very easy Seed treatment Widely commercialized; 
inexpensive and stable 

(40, 41, 44) 

Press mud-based Sugar factory 
waste 

5-6 months Easy Soil application 
Nutrient-rich; cost-

effective carrier with good 
moisture retention 

(47, 50) 

Biochar-based Charred organic 
biomass 

6-8 months Moderate Arid and semi-arid 
soils 

Enhances water retention, 
supports higher spore 

survival 
(58, 61, 63) 

Sorghum grain-
based 

Sterilized 
sorghum or wheat 

grains 
4-5 months Easy Soil or nursery 

inoculum 

Provides high conidial 
yield and easy nutrient 

availability 
(66, 68, 70) 

Alginate bead 
formulation 

Sodium alginate + 
CaCl₂ 

8-12 months Moderate Controlled release, 
long-term storage 

Superior protection 
against desiccation and 
UV; best long shelf life 

(72, 74, 78) 

Oil-based 
formulation 

Vegetable oils 
(e.g., neem, 
groundnut, 
sunflower) 

6-10 months Moderate Foliar spray and 
seed coating 

Excellent field stability 
under dry conditions 

(80, 83, 86) 

Fig. 10. Methods of field application of T. viride. 
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soil was the most efficient way to prevent collar rot, root rot, Jute 

seedling blight and stem rot disease (80).  It was also revealed that 

seed-borne pathogenic fungi F. oxysporum, F. moniliforme, F. solani, 

B. theobromae, A. alternata and R. solani, as well as the seedling 

establishment of Dalbergia sissoo, could be regulated by the 

addition of an organic Trichoderma preparation to the soil (81). Since 

Trichoderma colonizes FYM (farmyard manure), it is more 

appropriate and beneficial to apply colonized FYM to the soil. This is 

the most proficient way to use Trichoderma, principally for the 

treatment of soil-borne diseases (55). 

Root treatment 

It is mostly done in the case of transplanted rice and vegetables (82).  

Seedling roots can be treated using antagonist spore or cell 

suspension via drenching Trichoderma in nursery beds or dipping 

roots in Trichoderma suspension before transplanting (55). Root 

dipping in an antagonist's suspension boosts seedling growth as 

well as reducing disease severity in rice, eggplant, chilli, capsicum 

and tomato (83, 84, 85). Root dips of rice seedlings before 

transplantation have also been used to decrease sheath blight 

disease (86). Root-dipped tomato seedlings with T. viride showed an 

increase in plant height, root weight and reduced incidence of root-

knot nematode compared to uninoculated plants. High root length 

was also observed in inoculated plants. On observation, it was found 

that there were fewer egg masses/galls of root-knot nematode 

where roots were treated with T. viride (87) (Fig. 12.). 

Aerial spraying / wound dressing 

Trichoderma has been effectively utilized for biological control of 

decay fungi infecting wounds on shrubs and trees through aerial 

spraying of plant parts (88). Dissimilarity in microclimates has a key 

impact on the effectiveness of biocontrol agents for foliar diseases. 

Temperature, humidity, dew, rain, wind and radiation are all subject 

to diurnal and nocturnal, cyclic and non-cyclic variations in the 

phyllo sphere (89). As a product, the water capability of phylloplane 

microorganisms would be constantly changing. It can also fluctuate 

on leaves or the canopy's perimeter, as well as on sheltered leaves. In 

the sheltered, dense region of the plant, relative humidity was higher 

Fig. 11. Graphical representation of seed biopriming with T. viride, its field application and impact on plants’ growth. 

Fig. 12. Seedling root dip treatment with T.viride.  
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than inside the peripheral leaves (54). The deposition of dew is more 

evident in the middle and on the margins. Hydathodes, lenticels, 

wounds and stomata exude nutritional amounts of organic acids, 

sugars and amino acids that differ greatly. In phylloplane, it affects 

the effectiveness and survival of antagonists (90). For the biocontrol 

of Alternaria leaf spot in Vicia faba, a liquid solution of Trichoderma 

was sprayed directly onto the aerial regions of the plant (91). Reports 

are on the effectiveness of T. harzianum and T. virens in foliar sprays 

and talc-based formulations for lowering rice sheath blight disease 

incidence (58, 59). Field trials in Rajasthan were performed on root 

rot of groundnuts caused mainly by Thielaviopsis basicola, S. rolfsii,   

A. flavus, P. aphanidermatum, R. solani andA. niger, discovered that  

T. harzianum in powder and liquid bioformulation was successful in 

managing disease in the field (92). Studies are also on the treatment 

of scabs of citrus caused by Elsinoe fawcettii (93). It was also 

discovered that spraying of E. purpurascens and T. harzianum in the 

field reduced the occurrence of disease by 10 % and 17.8 %, 

respectively. About the fact that foliar application of Trichoderma 

decreases disease occurrence in the region, due to crop economy 

and increased dosage, it is not technically feasible. Therefore, crop 

value must be used to standardize dosage and application 

frequency, which may be a secure and feasible approach (54). 

Challenges and limitations of T. viride 

Despite its established potential as a biocontrol agent, Trichoderma 

viride faces several challenges during mass production, storage and 

field application that limit its large-scale adoption. 

Viability and shelf life 

The most critical limitation lies in maintaining the viability of T. viride 

spores from production to field delivery. The propagules are highly 

sensitive to fluctuations in temperature, moisture and relative 

humidity during transport and storage, which reduces their 

germination and field efficiency (94). Ensuring viable populations at 

the farmer level remains a challenge, especially under tropical 

climatic conditions. 

Contamination during production 

Large-scale fermentation and formulation processes are prone to 

contamination by bacteria or other fungi that can outcompete                              

T. viride (95). Strict aseptic conditions, sterilized substrates and 

continuous microbiological monitoring are essential to maintain 

culture purity. Contamination not only affects conidial yield but also 

shortens shelf life and compromises efficacy. 

Environmental dependency 

The establishment and activity of T. viride in the rhizosphere depend 

on several ecological parameters such as soil pH, temperature, 

moisture and organic matter content (94, 96). Optimal conditions for 

multiplication are often difficult to maintain under field 

environments, resulting in variable performance. In certain 

locations, poor colonization limits its suppressive effects against soil-

borne pathogens. 

Slow mode of action 

Compared to synthetic fungicides, T. viride operates through 

biological interactions that require time for colonization and 

antagonism (95). Consequently, it is less effective when disease 

incidence is already severe. The biological control process is gradual, 

often showing delayed symptom reduction compared to chemical 

treatments. 

Safety concerns 

Though generally regarded as safe, a few Trichoderma species such as 

T. aggressivum, T. pleurotum and T. pleuroticola are known to cause 

green mold disease in mushrooms, leading to commercial losses in 

mushroom cultivation. Furthermore, T. virens strain Q produces 

gliotoxin, a secondary metabolite reported to be immunosuppressive 

in humans (82). While such risks are minimal in agricultural use, strain-

specific safety assessments are recommended before large-scale 

commercialization. 

Formulation and carrier limitations 

The physical and chemical stability of the carrier material 

significantly affects shelf life and field performance. Talc- and press-

mud-based formulations have moderate stability, whereas biochar 

and alginate encapsulations offer longer viability but involve higher 

production costs. Selection of appropriate carrier materials for target 

environments remains an active area of research (110). 

Regulatory and adoption barriers 

Lack of awareness among farmers, absence of standardized quality 

control across commercial producers and inconsistent regulatory 

frameworks hinder wider acceptance and market penetration (111). 

 Addressing these challenges through improved formulation 
technologies, optimized fermentation, temperature-stable carriers 

and genomic selection of robust strains will greatly enhance the 

reliability and scalability of T. viride based biocontrol products. 

Future perspectives 

The growing need for sustainable agriculture and reduced 

dependency on chemical pesticides calls for intensified research on 

T. viride to improve its efficiency, stability and adaptability under 

diverse agro-climatic conditions. Globally, T. viride and T. harzianum 

remain the most dominant Trichoderma-based biopesticides, 

accounting for a significant share of the commercial biocontrol 

market (94). In India, Pseudomonas fluorescens, T. viride and Bacillus 

thuringiensis constitute the majority of registered microbial 

bioagents (94). 

 Despite remarkable success, the development of next-

generation formulations and strains remains a major frontier. The 

following thematic areas are central to the future of T. viride research 

and commercialization. 

Genomic and omics tools 

Advances in genomics, transcriptomics and proteomics will enable 

the identification of genes linked to biocontrol efficacy, enzyme 

secretion and abiotic stress tolerance. Whole-genome sequencing of 

novel Trichoderma isolates can reveal molecular determinants of 

host-pathogen interactions and guide the development of 

genetically superior strains (56, 82). 

Nanocarrier and microencapsulation technologies 

Microencapsulation using biodegradable polymers or nanocarriers 

can significantly enhance shelf life, protect spores from desiccation 

and ensure controlled release during field application. Techniques 

such as alginate bead and chitosan coating have shown promise for 

maintaining spore viability at elevated temperatures (56, 98). 

Microbial consortia and compatibility studies 

Future efforts should emphasize the development of compatible 

microbial consortia combining T. viride with beneficial bacteria such 

as Pseudomonas fluorescens or Rhizobium spp. Such synergistic 
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formulations can improve nutrient solubilization, root colonization 

and overall crop resilience under biotic and abiotic stress (94, 97). 

Climate-resilient strains 

Isolation and breeding of thermotolerant, drought-tolerant and 

salinity-resistant T. viride strains are critical for maintaining 

biocontrol efficacy in variable agroecological regions. Molecular 

marker-assisted selection and mutagenesis can help identify robust 

isolates adaptable to changing climates (98). 

Commercial scaling and policy support 

To achieve wider adoption, T. viride technologies should be 

supported through national biofertilizer missions, quality control 

standards and farmer training programs. Development of cost-

effective, easy-to-apply formulations will further enhance 

acceptance among small and marginal farmers (94). 

 Integrating omics-guided strain improvement, advanced 

formulation science and policy-driven commercialization will 

transform T. viride from a traditional biocontrol agent into a 

scientifically optimized, climate-resilient bioresource for sustainable 

agriculture.  

 

Conclusion  

Biological control represents a cornerstone of sustainable crop 

protection. Among the diverse microbial bioagents, Trichoderma 

viride stands out for its multifaceted benefits- ranging from disease 

suppression and growth promotion to soil health restoration. Its 

potential as biofertilizer and biopesticide reduces reliance on 

synthetic chemicals, thereby mitigating environmental pollution 

and enhancing long-term soil productivity. 

 Contamination of cultures during the large-scale production 

is one of the most recurring problems, particularly when sterile 

conditions are not maintained. Inadequate drying or improper 

carrier selection can lead to rapid loss of viability. Storage at >30 0C 

often reduces conidial germination; therefore, controlled 

temperature and moisture are critical to maintain product quality. 

 Future research should prioritize strain improvement using 

genomic tools and explore nanocarrier-based formulations to 

enhance stability and field efficacy, ensuring wider adoption by 

farmers and industries. 

 However, the practical success of the T. viride depends on 

overcoming key challenges such as strain stability, contamination 

management and formulation optimization, continued 

interdisciplinary research integrating molecular biology, 

nanotechnology and field-based agronomy will be pivotal in 

realizing its full potential. 

 In conclusion, T. viride serves as a powerful model organism 

for developing next-generation bioinoculants that contribute to 

resilient, eco-friendly and economically viable agricultural systems. 
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