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Abstract  

Lichens, symbiotic associations of fungi and photosynthetic algae, are rich sources of bioactive compounds with significant ecological 

functions and considerable pharmacological potential. This review provides an integrated overview of the morphological, ethnobotanical, 

structural and functional diversity of lichen metabolites. Most lichen species produce structurally diverse secondary metabolites with 
antimicrobial, anticancer, antioxidant, anti-inflammatory and enzyme-inhibitory effects. Despite centuries of traditional use, challenges 

persist in isolating individual metabolites because of their complex thallus structure, low solubility and sensitivity to conventional extraction 

methods. However, modern advancements, including axenic cultivation, genome mining, molecular networking and next-generation 

analytical technologies, have enabled the discovery of previously undetectable metabolites and provided deeper insights into their 
biosynthetic pathways. Advancing lichen research by combining traditional knowledge with modern biotechnological innovations will be 

pivotal for identifying new, sustainable therapeutic molecules that meet emerging global healthcare demands.   
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Introduction 

Lichens are stable and ecologically significant symbiotic organisms 

composed of 2 main partners: fungi and algae. The fungal 

component or mycobiont, typically belongs to the Ascomycetes, 

Basidiomycetes, Phycomycetes, or Deuteromycetes, whereas the 

photosynthetic partner, or photobiont, is either a green alga 

(Chlorophyta) or a cyanobacterium (Cyanophyta). The mycobiont 

usually establishes the structural framework and protects against 

environmental stresses, while the photobiont contributes organic 

carbon and, in some cases, fixed nitrogen, ensuring the metabolic 

balance of the association (1). Lichens are broadly distributed across 

diverse terrestrial ecosystems and play a vital role in mineral cycling 

(2). Lichen symbiosis represents one of the most successful and 

stable mutualistic relationships in nature, persisting for more than 

600 million years and contributing significantly to the stability of 

terrestrial ecosystems (3, 4). 

 Lichens are highly sensitive to environmental changes, 

particularly those related to air pollution. Their growth is hindered 

when sulfur dioxide (SO2) levels in the atmosphere exceed 50–60 µg/

m³. In addition to SO2, exposure to other contaminants such as 

fluoride, nitrogen oxides, hydrocarbons, heavy metals and 

particulate matter can adversely affect lichen physiology, leading to 

discoloration, reduced growth and even mortality. Therefore, lichens 

are widely recognized as reliable bioindicators for assessing air 

pollution and environmental health (5). This high environmental 

sensitivity also modulates the secondary metabolite composition of 

lichens, resulting in chemical profiles that closely mirror their growth 

conditions, an essential factor for obtaining consistent, high-quality 

biomass in pharmacological research and natural product 

development. 

 Beyond their ecological indicator role, lichens have evolved 
remarkable biochemical defense mechanisms that enable them to 

thrive in extreme environmental conditions, including arid deserts, 

alpine regions, rocky coastlines and polar habitats. These adaptive 

responses are largely attributed to the synthesis of secondary 

metabolites, a diverse group of chemically unique compounds, such 

as depsides (DE), depsidones (DEPs), dibenzofurans (DBF) and usnic 

acid (UA) derivatives, which provide protection against ultraviolet 

radiation, microbial pathogens and oxidative stress (6). The 

exploration of natural sources for novel bioactive compounds has 

increasingly highlighted lichens as promising candidates for drug 

discovery. Their documented therapeutic relevance positions them 

as valuable non-timber forest resources with significant biomedical 

potential (7). Although more than 20000 lichen species have been 

identified globally, only a small subset has undergone rigorous 

chemical and biological characterization, leaving much of their 

metabolic diversity and therapeutic capacity unexplored. This 

limitation underscores the necessity for expanded biochemical 
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profiling and mechanistic pharmacological studies to   fully elucidate 

and harness their value in modern drug research (8). 

Morphological characteristics of lichens  

Lichens exhibit remarkable morphological diversity, a feature that 

enables them to thrive across a wide range of diverse ecological 

habitats, from arid deserts to polar tundras and humid forests. Their 

structural variations play a crucial role in adapting to environmental 

stresses, such as temperature extremes, moisture fluctuations and 

variations in light intensity (9). Based on their macroscopic growth 

forms, lichens are categorized into 3 major types: fruticose, foliose 

and crustose (10). 

 Fruticose lichens possess a complex, 3-dimensional and 

often shrubby or filamentous thallus that extends freely from the 

substrate, as seen in Usnea species. Foliose lichens, on the other 

hand, display broad, leaf-like thalli with distinct upper and lower 

surfaces, loosely attached to the substrate except at specific points; 

examples include Umbilicaria and Lobaria species. Crustose lichens 

form thin, tightly adherent crusts on rocks, bark, or soil, lacking a 

lower cortex, which makes separation from their substrate difficult; 

Rhizocarpon species are typical representatives. Beyond these major 

types, several intermediate or specialized morphologies have been 

identified, such as leprose (powdery), filamentous (hair-like), 

squamulose (scaly), gelatinous (mucilaginous due to cyanobacterial 

photobionts) and byssoid (cottony) forms. These variations highlight 

the evolutionary adaptability of lichens and their ability to colonize 

extreme and unique environments (11). Fig. 1 illustrates 

representative examples of the selected lichen species. 

Ethno-botanical roles of lichens  

Lichens hold a long-standing place in traditional and 
ethnomedicinal practices worldwide, reflecting their cultural, 

nutritional and therapeutic significance. Various cultures, including 

those in China, Japan, India, Iceland and several other European 

countries, have historically recognized and utilized ethnolichens as 

integral components of traditional healing systems. In traditional 

medicine, lichen preparations have been used to treat a wide range 

of ailments, including skin infections, respiratory disorders, digestive 

problems, liver ailments, hemorrhoids, wounds and gynecological 

conditions (13). In addition, various traditional groups worldwide 

have used lichens as valuable sources of food and fodder, natural 

dyes, aromatic substances and spices (14, 15). 

 Lichens and their bioactive components have long been 

utilized in traditional and modern medicinal practices for their 

therapeutic efficacy against a broad spectrum of diseases.           

Evernia furfuracea is one of the earliest recorded lichens used by 

humankind, with archaeological evidence indicating its 

identification in ancient Egyptian remains from the 18th Dynasty 

(1700–1600 BC), suggesting its significance as a medicinal and 

aromatic substance in early civilizations (16). Lichens have been 

conventionally used in the treatment of various diseases, including 

dysentery, bronchitis, hemorrhoids and tuberculosis (TB) and serve 

as stomachic, antidiabetic and hemostatic agents (17, 18). In 

addition to their traditional uses, lichens exhibit a wide range of 

biological activities, including anticancer, antimicrobial, 

antiallergenic, antiviral, anti-inflammatory, antipyretic, 

hepatoprotective, analgesic, antinociceptive, anthelmintic, 

neuroactive, antioxidant and enzyme-inhibitory properties, as well 

as anti-herbivore and plant-growth-inhibitory activities (19). The 

initial investigations primarily identified the antioxidant and 

antigenotoxic properties of lichen extracts (20). Over time, the focus 

has extended to include antimicrobial, enzyme-inhibitory, 

immunomodulatory and anti-inflammatory potentials. 

Nevertheless, in vivo studies are limited, typically in fish and rodents 

(21). Thus, lichens represent a promising yet underexplored reservoir 

of pharmacologically active compounds with significant potential for 

development into modern therapeutic agents. These diverse 

traditional uses are underpinned by a vast array of unique bioactive 

secondary metabolites, which are discussed in the following 

sections. Fig. 2 displays the overall pharmacological properties of the 

lichen extracts. 

Bioactive compounds and pharmacological potential 

Lichens possess remarkable biochemical diversity, producing a 

variety of unique bioactive compounds that contribute to their 

nutritional and medicinal significance. Despite their long-standing 

use in traditional practices, scientific exploration of their edible and 

therapeutic potentials remains relatively limited. Lichens produce         

2 distinct categories of metabolites: primary and secondary. Their 

therapeutic applications are attributed to their bioactive secondary 

metabolites and their ability to store carbohydrates. These 

secondary metabolites, often produced via unique biosynthetic 

pathways not found in higher plants, include DE, DEPs, DBF and 

related compounds. Such compounds are known for their wide 

range of biological activities, including antimicrobial, antioxidant, 

antiviral, anti-inflammatory and cytotoxic effects (13). Primary 

metabolites produced by lichens are vital for their growth and 

survival and include essential biomolecules such as amino acids, 

proteins, polysaccharides, carotenoids and various vitamins (22). 

 Extensive studies have revealed that lichens are rich 

reservoirs of chemically diverse metabolites, many of which are 

structurally unique and exclusive to these symbiotic organisms. The 

major classes of these bioactive compounds include DE and their 

esters (e.g., atranorin and barbatic acid), DEPs (e.g., salazinic and 

lobaric acid), phenolic compounds (e.g., orcinol and β-orcinol 

derivatives), depsones (e.g., picrolichenic acid), polysubstituted 

benzenes, anthraquinones (e.g., physcion), DBFs (e.g., UA), 

terpenoids, steroids, xanthones, aliphatic acids, quinones                   

(e.g., parietin), pulvinic acid derivatives (e.g., vulpinic acid), lactones 

(e.g., nephrosterinic acid) and specific lichen-derived 

polysaccharides. Many of these metabolites are unique to lichens 

and rarely occur in other organisms (23, 24). 

 Most secondary metabolites in lichens are synthesized 

through 3 principal biosynthetic routes: the acetyl-malonate (also 

referred to as the polyketide pathway), mevalonate and shikimate 

pathways. Among these, the acetyl-malonate pathway is the most 

prominent, yielding a wide range of biologically active compounds, 

including DE, DEPs, DBF, anthraquinones, chromones and 

xanthones, which have been extensively studied for their 

pharmacological properties (25). Notable metabolites synthesized 

via this pathway include lecanoric, gyrophoric, evernic, atranorin, 

thamnolic, protocetraric, fumarprotocetraric, stictic, UA, lepraric, 

thiophanic and umbilicaric acid. 

 The mevalonate pathway primarily contributes to the 

synthesis of terpenes, carotenoids and steroids. To date, researchers 

have identified over 20 distinct triterpene compounds in lichens (26). 

In contrast, the shikimic acid pathway, commonly found in both 

microorganisms and plants, serves as a key route for the production 

of essential primary metabolites, including aromatic amino acids 

https://plantsciencetoday.online


3 

Plant Science Today, ISSN 2348-1900 (online) 

 

a) Fruticose lichen  e.g. Letharia vulpina b) Foliose lichen    e.g. Flavoparmelia caperata 

c) Crustose lichens  e.g. Lecidella elaeochroma d) Squamulose lichen   e.g. Placidium arboreum 

e) Leprose lichen    e.g. Chrysothrix xanthina f) Gelatinous lichen    e.g. Collema bachmanianum 

g) Filamentous lichen    e.g. Ephebe lanata h) Byssoid lichen   e.g. Roccellinastrum neglectum 

Fig. 1. Different forms of lichens with examples (12).  
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and 

folic 

acid 

(27). 

This 

pathway is particularly associated with the formation of pulvinic acid 

and terphenylquinone pigments, which protect lichens from 

ultraviolet radiation and oxidative stress (28). Representative 

chemical structures of these lichen metabolites are illustrated in      

Fig. 3, highlighting their structural diversity and functional 

significance. 

 These structurally diverse natural compounds have been 

reported to exhibit a broad spectrum of bioactivities, many of which 

align with the traditional medicinal uses and therapeutic claims 

associated with lichens (15, 29, 30). Ongoing phytochemical 

investigations have shown that different lichen species synthesize 

distinct sets of bioactive molecules, each characterized by unique 

structural features (31). These bioactive compounds are largely 

responsible for the antibacterial, antiviral, antimycobacterial, anti-

protozoal, anti-inflammatory, analgesic, immunostimulatory and 

antipyretic properties of lichens (32). The remarkable chemical 

diversity and corresponding therapeutic applications of lichen-

derived metabolites, as well as their roles in ethnomedicine across 

cultures, are summarized in Table 1, providing a comprehensive 

overview of their pharmacological potential and reinforcing the 

significance of lichens as a rich source of bioactive natural products. 

Advances in lichen metabolite extraction and analysis  

Secondary metabolites derived from natural sources frequently 

exhibit potent biological activities. Due to the growing threat of 

antibiotic resistance, the search for new antimicrobial agents from 

natural sources has become increasingly important (57). Although 

lichens have long been studied for their pharmacologically relevant 

compounds, isolating individual secondary metabolites and 

developing efficient extraction methods remain challenging. Their 

complex symbiotic structure, comprising fungal and algal or 

cyanobacterial partners enveloped in a robust extracellular matrix, 

restricts the availability of internal metabolites. Furthermore, many 

lichen-derived compounds exhibit poor solubility, which 

complicates their extraction and analysis (58). 

 Recent advancements, including axenic cultivation, targeted 

metabolite synthesis, molecular network techniques, advanced 

Fig. 2. Medicinal applications of lichen.  

 Polysubstituted benzenes Anthraquinones 

Steroid 

Depsides Depsidone 

Dibenzofuran Terpenoids 

Fig. 3. Molecular structure of some secondary metabolites produced by lichens.  
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 Table 1. Bioactive compounds produced by lichens and their application in ethnomedical fields 

Sl.No Species of lichen Bioactive compounds Medical applications References 

1 Acarospora gobiensis Gobienines A-C, Acarogobien A and B, Antibacterial and antioxidant properties (33) 

2 Acroscyphus sphaerophoroides Gyrophoric acid, Skyrin, Graciliformin, 
Rugulosin 

Antibacterial and antioxidant properties (34) 

3 Alectoria ochroleuca 
UA, Atranorin, Virensic acid, Ethyl 

hematommate, 2-methoxypsoromic 
acid and Olivetoric acid 

Antibacterial, antifungal, anticancer and 
antioxidant properties 

(35) 

4 Arthothelium awasthii Barbatic acid Antibacterial and antioxidant properties (36) 

5 Cetraria islandica  
Protolichesterinic acid, UA, 

Butyrolactone, Perlatolic acid 

Antimicrobial, antioxidant, anticancer, 
antidiabetic and immunomodulatory 

effects 
(37) 

6 Cladoina sp Fumarprotocetraric acid, UA, Perlatolic 
acid, Squamatic acid 

Anticancer, antimicrobial, antigenotoxic 
and antioxidant properties 

(38) 

7 Dermatocarpon miniatum  Mycosporines Antioxidant, antibacterial and 
photoprotective properties  

(38) 

8 Diploschistes scruposus Polyphenols Antioxidant and antibacterial properties (39) 

9 Everniastrum cirrhatum  Atranorin Antimicrobial, antioxidant and anti-obesity 
properties 

(40) 

10 E. prunastri  Evernic acid  
Antibacterial, neuroprotective, anti-

inflammatory, cytotoxic and antioxidant 
properties 

(41) 

11 Flavocetraria nivalis  UA Antimicrobial and antioxidant properties (42) 

12 Flavoparmelia caperata UA Wound healing, antimicrobial and anti TB 
properties 

(43) 

13 Heterodermia diademata  Atraric acid Antifungal, anti-lipoxygenase and 
anticancer properties 

(44) 

14 Hypogymnia physodes 

Physodic acid, 3-hydroxyphysodic acid, 
2′-O-methylphysodic acid, Protocetraric 

acid, Chloroatranorin, Usnic acid and 
Atranorin 

Antimicrobial, cytotoxic ,  antioxidant, 
treating Alzheimer’s and Parkinson’s 

disease 
(23) 

15 Lasallia sp Depsides, tridepsides, polyglucans and 
anthraquinones. 

Antimicrobial, anticancer and antioxidant 
properties 

(23) 

16 Lethariella sp UA antioxidant, anticancer and anti-
inflammatory effects 

(45) 

17 Letharia vulpina  Vulpinic acid Antibacterial, anti-angiogenic, 
antiproliferative and antioxidant property 

(42) 

18 Lobaria sp 
Retigeric acid B, Rhizonyl 
alcohol,Thelephoric acid 

Antioxidant, antibacterial, antifungal, neuro
protective and anti-

inflammatory properties 
(38) 

19 Ochrolechia sp Variolaric acid, Gyrophoric acid 
Antibacterial, anti-tumor, anticancer, 

antiviral, anti-inflammatory and 
antiproliferative properties 

(46) 

20 
Parmelia sp 

  
Salazinic acid 

Antioxidant, antibacterial,  
antifungal and anti-

inflammatory properties 
(42) 

21 Parmotrema sp Parmosidone F, Tsavoenone A 
Antioxidant, antibacterial, antifungal, 
antiviral and anti-Alzheimer's disease 

properties 
(47) 

22 Protousnea magellanica Divaricatic acid, Sekikaic acid Antibacterial, antiviral, anticancer and 
antioxidant properties 

(48) 

23 P. furfuracea Olivetoric acid, Physodic acid, 
Physciosporin 

Antioxidant, antimicrobial, antifungal and 
enzyme-inhibiting properties 

(49) 

24 
Psoroma sp 

  
Vicanicin, Pannarin, Psoromic acid Anti-proliferative and antioxidant property (50) 

25 Ramalina sp UA, Sekikaic acid, Parietin, Ramalin, 
Stereocalpin A and B 

Reduce inflammation, antimicrobial and 
anticancer activity 

(51) 

26 Rinodina sp Atranorin,Variolaric acid,Sphaerophorin Antibacterial, anti-inflammatory, 
antioxidant and anticancer activity 

(52) 

27 Rhizocarpon geographicum Psoromic acid; UA, Rhizocarpic acid Anti-proliferative activity (53) 

28 
Solorina crocea 

  
Solorinic acid, Norsolorinic acid, 

Averantin, Depsides 
Antimicrobial, cytotoxic and antioxidant 

properties (35) 

29 Sphaerophorus globosus  Sphaerophorin, UA Anti-proliferative activity and antioxidant 
activity 

(50) 

30 Stereocaulon alpinum Laurer Lobaric acid Antioxidant, anticancer, antimicrobial 
activity and anti TB properties 

(54) 

31 Thamnolia sp UA Anti-inflammation,  antimicrobial, 
antioxidant and anticancer properties 

(38) 

32 Umbilicaria sp Gyrophoric acid, UA, Lecanoric acid 
Anti-cancer, antimicrobial, anti-

inflammatory, anti HIV,and antioxidant 
properties 

(55) 

33 
Usnea sp 

  

Norstictic acid, Psoromic acid, 
Protocetraric acid, Barbatic acid, 

Diffractaic acid 

Anti-inflammation; anticancer, anti TB, 
antioxidant and cytotoxic properties 

(47) 

34 Xanthoparmelia coreana Norstictic acid, Stictic acid Antibacterial, anticancer antioxidant 
properties and treating sexual dysfunction 

(56) 

35 Xanthoria sp Parietin 

Cytotoxicity activity, anti-viral, anti-
inflammatory, enzyme inhibition, 

antioxidant,  antibacterial properties,  
cardiovascular and gastrointestinal 

protection 

(35) 

https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=ab8db249d156b33c&sxsrf=AE3TifNN4V93sHWIlA35GZtIkkGAZ0xWDQ%3A1754464421837&q=atranorin&sa=X&ved=2ahUKEwjE6dSk0fWOAxWMzjgGHa_wC_sQxccNegQIBBAB&mstk=AUtExfB6TEs36OK1TSIU0Gprxn2uL8iF82CdyfMTuuA
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=ab8db249d156b33c&sxsrf=AE3TifNN4V93sHWIlA35GZtIkkGAZ0xWDQ%3A1754464421837&q=ethyl+hematommate&sa=X&ved=2ahUKEwjE6dSk0fWOAxWMzjgGHa_wC_sQxccNegQIBBAD&mstk=AUtExfB6TEs36OK1TSIU0Gprxn2uL8iF82C
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https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=ab8db249d156b33c&sxsrf=AE3TifNN4V93sHWIlA35GZtIkkGAZ0xWDQ%3A1754464421837&q=2-methoxypsoromic+acid&sa=X&ved=2ahUKEwjE6dSk0fWOAxWMzjgGHa_wC_sQxccNegQIBBAE&mstk=AUtExfB6TEs36OK1TSIU0Gprxn2uL8
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=antibacterial&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAB&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD6cnp
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=anti-inflammatory&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAD&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=anti-inflammatory&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAD&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=antibacterial&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAB&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD6cnp
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=antifungal&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAC&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD6cnpRs-
https://www.google.com/search?rlz=1C1RXQR_enIN1117IN1117&cs=1&sca_esv=25c2551b4f45e1f2&sxsrf=AE3TifOOzampqAe5Unha5AILDnr_3aW3KQ%3A1759484861769&q=anti-inflammatory&sa=X&ved=2ahUKEwjy8YLx34eQAxUG2jgGHf0BNU8QxccNegQICBAD&mstk=AUtExfD1hcrO6QpnIXMnlDaoLUd31rz1pOD
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bioinformatics, phylogenetics and modern genetic tools, have 

begun to overcome these barriers and enhance our understanding 

of lichen metabolomics and their evolutionary biosynthetic 

pathways (24). Innovative strategies, such as one strain many 

compounds (OSMAC), genome mining and molecular networking, 

now enable the activation of cryptic biosynthetic gene clusters in 

lichen symbionts, expanding the discovery of novel bioactive 

compounds (59). Recent studies employing genome mining and 

comparative genomics have identified biosynthetic gene clusters 

and potential regulatory elements in the lichen-forming fungi, 

Evernia prunastri and Pseudevernia furfuracea. Notably, the non-

reducing polyketide synthase (NR-PKS) gene in P. furfuracea was 

found to synthesize depside-lecanoric acid, a compound not 

previously reported from natural lichen thalli (60). 

 In addition, emerging extraction technologies, such as 

Soxhlet extraction, microwave-assisted extraction and supercritical 

fluid extraction, have improved metabolite recovery from lichen 

biomass (61–63). However, challenges remain in degrading 

thermolabile metabolites under high temperatures and harsh 

solvent conditions (59). Therefore, the use of potent organic solvents, 

such as acetone, benzene, ethanol and chloroform, must be 

carefully optimized to preserve compound integrity (7). As a 

sustainable alternative, volatile natural deep eutectic solvents 

(VNADES) have gained attention for their efficiency in extracting 

lichen compounds while minimizing the use of toxic solvents. They 

comprise volatile and easily evaporated components such as 

menthol, thymol and camphor. VNADES allows residue-free 

extraction and effective recovery of sensitive metabolites, including 

polyphenols, alkaloids, flavonoids and lichen acids, without their 

degradation (6). 

 For metabolite identification, advanced analytical tools such 

as liquid chromatography tandem mass spectrometry (LC-MS/MS) 

and nuclear magnetic resonance (NMR) spectroscopy, coupled with 

chromatography, have demonstrated high sensitivity and precision, 

particularly for compounds like UA (64, 65). The integration of MS/MS

-based molecular networking with comprehensive spectroscopic 

analyses, including Gauge-Independent Atomic Orbital (GIAO) NMR 

shift calculations, has facilitated the discovery and structural 

elucidation of novel pigments in lichens (66). Additionally, several           

MS-based metabolomic approaches, including electron ionization-

mass spectrometry (EI-MS), high-performance liquid 

chromatography-diode array detector-mass spectrometry           

(HPLC-DAD-MS), electrospray ionization-mass spectrometry 

fragmentation patterns (HESI-MS/MS) and liquid chromatography-

diode array detector-tandem mass spectrometry                                   

(UPLC-PDA-MS/MS), have significantly contributed to the 

identification of new lichen compounds and enhanced insights into 

their complex biochemical systems (59). 

 Furthermore, imaging techniques such as Raman 

microscopy provide time-resolved insights into the spatial 

distribution of key compounds within lichens (65). Using Fourier-

transform infrared (FTIR) imaging and Raman microscopy, 

researchers have successfully localized UA in various lichen species 

(67). Moreover, nanotechnology has emerged as a promising tool for 

enhancing the extraction efficiency and therapeutic delivery of lichen 

metabolites. Nanoencapsulation strategies, employing liposomes, 

cyclodextrins, or metallic nanoparticles, have improved the 

bioactivity, stability and controlled release of key compounds, such 

as UA, while reducing cytotoxicity (68). These advancements have 

significantly enhanced the therapeutic potential of lichen-derived 

metabolites. 

 To fully harness the pharmacological potential of lichens, 

future research should prioritize comprehensive pharmacological 

screening, toxicity evaluation and preclinical validation of 

unexplored metabolites. Careful optimization of extraction 

parameters, including solvent type, temperature and duration, is 

essential to maximize yield while maintaining metabolite integrity. 

The integration of advanced analytical platforms with next-

generation computational tools continues to redefine lichen 

chemistry, leading to the discovery and detailed characterization of 

numerous novel bioactive compounds. 

Limitations of the present review  

Although this review provides a comprehensive overview of the 

ecological, ethnobotanical, chemical and pharmacological 

significance of lichens, it is limited by the availability and 

heterogeneity of existing literature. Many lichen species remain 

poorly studied and data on their bioactive metabolites are unevenly 

distributed across taxa, regions and analytical methods. Most 

pharmacological evidence is restricted to in vitro studies, with few     

in vivo investigations or clinical evaluations, which limits the 

translation of these findings to therapeutic applications. 

Additionally, variations in extraction procedures, environmental 

influences on metabolite composition and the limited number of 

genome-sequenced lichenized fungi constrain the depth of 

comparative biochemical and biosynthetic analysis. Therefore, the 

conclusions drawn must be interpreted in light of these knowledge 

gaps.  

 

Conclusion  

Lichens are a remarkable yet underutilized reservoir of structurally 

diverse bioactive compounds, many of which exhibit notable 

pharmacological properties, including antimicrobial, antioxidant, 

anti-inflammatory and anticancer activities. Secondary metabolites, 

such as UA, atranorin, lobaric and psoromic acids, contribute 

significantly to these therapeutic effects, supporting the long-

standing traditional use of lichens in ethnomedicine across cultures. 

Despite substantial in vitro evidence, the lack of comprehensive           

in vivo studies and clinical validation continues to hinder the 

translation of these findings into viable human therapeutic 

applications. Modern biotechnological advancements have 

enhanced the potential to discover novel compounds and improve 

their bioavailability in the human body. Future advancements will 

require targeted interdisciplinary strategies, including combining 

metagenomics of the lichen holobiont with integrated metabolomic 

profiling to uncover cryptic biosynthetic gene clusters, applying 

genome mining, molecular networking and structure-activity 

relationship (SAR)-based computational modelling to accelerate 

lead identification and developing axenic or symbiont-engineered 

cultivation systems to enhance metabolite yield. Moreover, 

incorporating nanotechnology-driven drug-delivery approaches 

may improve the bioavailability and therapeutic efficacy of key 

metabolites. By integrating these modern biotechnological tools 

with ethnobotanical insights, lichens can be positioned as 

sustainable, non-timber bioresources capable of contributing 

meaningfully to the next-generation natural drug discovery.  
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