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Abstract

Seed germination and early seedling growth are critical stages that determine successful crop establishment and productivity in grain
legumes. However, limited information is available regarding the comparative physiological effects of individual seed treatments with salicylic
acid (SA), humic acid (HA) and zinc (Zn) on faba bean seedlings. This study aimed to evaluate the physiological effects of individual seed
treatments with SA, HA and Zn on the germination performance and growth of faba bean (Barcino cultivar) seedlings. Seeds were sterilized
and soaked in different concentrations of each treatment (SA at 0, 50, 150, 200 mg/L; HA at 0, 100, 200, 300 mg/L; Zn at 0, 200, 300, 400 mg/L).
Germination and seedling vigour were assessed using standard indices. The results showed significant superiority of all treatments compared
to the control. Salicylic acid at 150 mg/L was the most effective treatment, recording the highest values for the final germination percentage
(98.21 %), the lowest average germination time (3.4 days) and the highest germination index (37.21), in addition to its superiority in all
vegetative growth traits and vitality indicators. Humic acid followed in performance at 300 mg/L, followed by Zn at 300 mg/L. This study
concludes that seed pre-treatment with 150 mg/L SA is a promising approach enhancing germination and early seedling growth in faba bean.
The findings highlight the importance of determining the optimal concentration for each biostimulant to avoid potential inhibitory effects at

higher doses.
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Introduction

As a living entity, seed quality inevitably declines from the time of
harvest until it is sown in the field if not managed with appropriate
care (1). The application of micronutrients as a seed treatment has
proven effective for improving early seedling vigour, crop
establishment, growth and final yield. Additionally, this approach
helps to correct specific nutrient deficiencies present in the soil (2). A
range of methodologies, encompassing both agronomic and
genetic techniques, are employed to increase micronutrient levels in
various agricultural crops. Agronomic biofortification, which involves
the exogenous application of micronutrients to plants, is a widely
used strategy to increase nutrient concentrations in edible grains; for
example, zinc (Zn) can be supplied as zinc sulfate (ZnS0O,) via soil or
foliar application, or through seed priming, to improve Zn nutrition in
crop plants (3). This approach utilizes micronutrient-rich fertilizers
such as ZnSQ,, ferrous sulfate (FeSO,) and chelated forms such as Zn
-EDTA, which can be applied through several methods to effectively
enhance the nutrient content of grains during the biofortification
process (4, 5). Techniques including soil and foliar application and
seed priming are used to apply micronutrients (6-8). Seed priming is
a cost-effective technique for administering fertilizers, particularly
under adverse growing conditions (9). This pre-sowing treatment
induces a physiological state in seeds that enhances germination
performance. The process involves partially hydrating seeds to a
point that precludes radicle emergence (10-12). Typically, seeds are

immersed in aerated nutrient solutions and subsequently dried back
to their original moisture content (2, 13).

Salicylic acid (CsHa(OH)COOH), a phenolic compound, plays
a significant regulatory role in various physiological and
developmental processes in plants. These include modulating
photosynthetic  activity, stomatal conductance, oxidative
phosphorylation and mitochondrial electron transport, as well as
enhancing innate immunity against oxidative stress (14-17). It also
promotes flowering by counteracting the inhibitory effect of amino-
oxyacetic acid under poor-nutrition (nutrient-deficiency) stress
conditions (18). Furthermore, SA increases the activity of
nitrogenase and nitrate reductase enzymes, leading to improved
fertilizer use efficiency (19). Its regulatory function extends to
flowering through involvement in photoperiodic pathways and to
the modulation of senescence-related genes (20, 21). Furthermore,
SA modulates the activity of key apoplastic proteins and enzymes,
including catalase (CAT), superoxide dismutase (SOD), ascorbate
peroxidase (APX), peroxidase (POX), guaiacol peroxidase (GPO), ACCG-
oxidase and ortho-hydroxycinnamic acid. It also exerts a broader
regulatory influence on overall plant growth and developmental
processes (22).

Humic acid (HA) is a natural organic compound commonly
extracted from lignite or leonardite deposits containing ancient,
fossilized organic matter. It offers extensive benefits for both soil and
plants. It significantly enhances seed germination through a process
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called seed priming and promotes robust root development in
cuttings by stimulating natural rooting hormones. Acting as a
powerful natural chelating agent, it unlocks and makes available
essential macro- and micronutrients (such as phosphorus, calcium,
iron, zinc and manganese) that are often immobilized in the soil,
thereby also helping to alleviate soil salinity and improve
problematic soils such as red and calcareous soils. Furthermore, it
improves the soil's physical structure by darkening its color to
absorb more heat, preventing crusting and cracking to protect roots
and enhancing aeration and water retention. Humic acid is
predominantly negatively charged, enhancing cation retention and
reducing the bioavailability of certain toxic metals, which can
indirectly favour beneficial soil microbial activity. Physiologically, it
activates vital enzymes and energy-related processes within the
plant, leading to stronger roots, increased cell division, improved
stress tolerance due to higher osmotic pressure and ultimately
earlier production and higher-quality fruits (23).

Zinc is one of the vital micronutrients for plants, as it has
many critical functions. It acts as a cofactor for more than 300
enzymes and is also required for the production of tryptophan,
which is a precursor of auxin (24). Zinc also plays a key role in
maintaining the integrity of biological membranes, protein
synthesis, photosynthesis, pollen formation and disease resistance
(25). Moreover, more than 3000 proteins contain Zn prosthetic
groups in their structure (26).

Treating seeds with Zn has been shown to enhance early
seedling development, leading to better crop establishment. This
method also serves to alleviate soil Zn deficiency, which contributes
toincreased yields and enriched Zn content in the grain of numerous
crops (27-29), as seeds with low Zn contents showed delayed
germination and poor seedling vigour, which negatively affected
plant growth and final grain yield (30).

Faba bean (Viciafaba L), also known as broad bean, is an
annual cool-season legume (Fabaceae) cultivated widely for its
protein-rich edible seeds. Beyond its importance as a food and feed
crop, faba bean contributes to soil fertility through symbiotic
nitrogen fixation and is often integrated into crop rotations and
green-manure systems (31). Broad bean protein contains essential
amino acids and high concentrations of niacin, lysine and folic acid,
also it has high levels of minerals mainly iron and Zn (32, 33). Vicia
faba is cultivated mainly for its fresh green seeds (shelled) and
mature dry seeds, although the pods may also be consumed at a
very young stage. As a legume, it fixes atmospheric nitrogen and is
commonly used in rotations, supporting soil fertility and soil health
(34). Broad beans grow in temperate and warm climates and the
optimum temperature for seed germination ranges from 20-25°C.

Broad beans are an important crop in Iraqg, both nutritionally
and economically. However, their production faces challenges that
affect cultivated area and seedling production. Therefore, the main
objective of this research was to evaluate the physiological effects of
individual treatments of organic (HA), mineral (Zn) growth
stimulants and plant growth regulator (SA) on the germination and
growth rate of broad bean seedlings. This study contributes to
bridging the research gap in Irag, where such advanced studies on
vegetable crops, especially broad beans are rare and essential for the
development of agricultural practices.

Materials and Methods
Plant material and seed sterilization

Seeds of the Barcino broad bean variety (V. faba) were used in this
study. Prior to treatment, seeds were surface-sterilized to eliminate
microbial contaminants following a previously described protocol
(35). Seeds were washed sequentially in 10 % (v/v) neutral detergent,
rinsed, briefly immersed in 70 % (v/v) ethanol (30-60 sec) and then
treated with 2.5 % (v/v) sodium hypochlorite for 15 min. Finally,
seeds were rinsed three times with autoclaved distilled water and
blotted dry on sterile filter paper before use (35).

Experimental design and treatment application

The experiment was conducted under controlled laboratory
conditions at the University of Baghdad, Iraq in 2024. Three separate
completely randomized design (CRD) experiments were conducted
(SA, HA and ZnSQx), each with four treatments (including the control)
and four replications per treatment. Each replication consisted of 25
seeds. Seeds were treated with one of three bioactive compounds:
SA, HA or Zn (ZnSO47H,0). For each compound, four concentration
levels were tested, including a zero-concentration control.

Salicylic acids treatments

Seeds were soaked for 24 hr in aqueous solutions of 99.5 % pure SA
at concentrations of 0 (control), 50, 150 and 200 mg L™. To facilitate
dissolution, the SA was first dissolved in 1 mL of 96 % ethanol before
being brought to the final volume with distilled water. An equivalent
amount of ethanol (1 mL L) was added to the control treatment
(0 mgL?) to account for any solvent effects (36).

Humic acid treatments

Seeds were soaked for 12 hr in aqueous solutions of HA at
concentrations of 0 (control), 100, 200 and 300 mg L* with gentle
agitation at 25 °C (37). To prepare the required solutions, 0.5 g KOH
was dissolved in 500 mL distilled water. The required amount of HA
was then slowly added to the alkaline solution while stirring
vigorously for 15-20 min until fully dissolved.

Zinc treatments

Seeds were soaked for 8 hr in ZnSQ,7H;0 (MW = 287.56 g mol,
purity =99 %) solutions at concentrations of 0 (control), 200, 300 and
400 mg L* (ppm). The solutions were prepared by dissolving 0.2, 0.3
and 0.4 g of ZnSO47H,0 respectively, in distilled water and making
uptoafinalvolumeof1L.

Following all soaking treatments, seeds were removed from
the solutions, rinsed briefly with distilled water and after priming,
surface air-dried on sterile filter paper at room temperature
(25 £ 2 °C) until no free water remained on the seed surface and they
regained their constant initial weight.

Germination bioassay and measured parameters

Twenty five treated and dried seeds from each treatment (with four
replications) were placed in 9 cm Petri dishes on two layers of moist
germination paper (Germitest), covered with a third layer and
moistened with distilled water equivalent to 2.5 times the dry weight
of the paper. The Petri dishes were placed in an incubator set at 25 °C
with a 16/8-hr light/dark photoperiod and 65 % relative humidity
and germination was monitored daily (38).

Germination was counted daily and the final germination
percentage (FGP %) was recorded on the eighth day after sowing in
accordance with standard seed testing rules and calculated (36) as:
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% FGR =
(Total seeds germinated/Total number of seeds) x 100
(Eqn.1)
Mean germination time (MGT) was calculated using the
formula (39):
SVI-11=
FGP % x Seedling dry weight (g) (Eqn. 2)

Germination index was also measured as following;

Gl =3 (Gt/t)
(Eqn. 3)

Where, Gtis the number of germinated seeds on day t (40).

On the 10" day, ten normal seedlings were randomly
selected from each replication. Shoot length (SHL) measured from
the point of seed attachment to the tip of the plumule and root
length (RL) along from the point of seed attachment to tip of the root
were measured in cm. Seedlings were then oven-dried at 70 °C for 48
hrto obtain a constant seedling dry weight (SDW).

Finally, seed vigour index | (SVIH) was calculated as an
indicator of overall growth performance (41) and SVI-Il as an

SVI-1= indicator of biomass accumulation (41).

FGP % x Total seedling length (cm) (Eqn. 4)
SVI-II=

FGP % x Seedling dry weight (g) (Eqn. 5)

Data analysis

The experiment was arranged in a CRD. The results were subjected
to analysis of variance (ANOVA) and the significant differences of all
means were compared using the least significant difference test
(LSD) at a significance level of p <0.05 using SPSSV.21.

Results and Discussion

The results presented in Table 1 clearly demonstrate that treating
Barcino broad bean seeds with SA, HA or Zn significantly improved
germination parameters compared to the untreated control.

Among all treatments, SA at a concentration of 150 mg/L
proved to be the most effective, achieving the highest FGP (98.21 %),
the shortest MGT (3.4 days) and the highest Gl (37.21). This finding is

consistent with previous studies reporting that SA treatment
increased the germination percentage in Arabidopsis (42). Similarly,
amaximum germination percentage of 95.83 % was observed in pea
plants treated with 300 mg/L SA (43). The efficacy of SAis likely due to
its role as a signalling molecule that promotes key enzymatic
activities crucial for breaking seed dormancy and initiating growth
(44). It is important to note that the positive effect of SA was
concentration-dependent, as a higher dose of 200 mg/L resulted in a
significant decline in performance, making it almost similar to the
control. This suggests a hormetic response, where low doses are
stimulatory, but high doses can become toxic or inhibitory to the
seeds.

For HA, the positive effects on germination became more
pronounced as the concentration increased. The optimal results
were observed at 300 mg/L, which yielded a high FGP (96.42 %), a
short MGT (3.41 days) and a strong Gl (35.61). The results of this study
agreed with a previous study that found an increase in germination
percentage in corn seeds treated with HA; however, no significant
differences were observed among the doses used. This may be due
to the high baseline germination of faba bean (V. faba), which could
mask HA effects on germination (45). The beneficial impact of HA can
be attributed to its multifaceted mechanism of action: it enhances
plant respiration and stimulates oxidative phosphorylation, leading
to increased ATP production. This energy boost consequently
improves the absorption and transport of nutrients and the
biosynthesis of compounds essential for growth. Finally, it is
important to note that HA particularly affects the germination of
different plant species depending on its source and dosage, as an
inhibitory effect on germination has been observed at high doses of
HA (46).

Similarly, Zn application showed a progressive
improvement with increasing concentration. The best results for Zn
were achieved at the highest tested concentration of 300 mg/L, with
an FGP of 94.21 %, an MGT of 3.59 days and a Gl of 33.34. The results
of this study agreed with a previous study reporting that spinach
seed germination performance and germination speed increased
after seed treatment with Zn (47). Additionally, the results of this
study were consistent with previous reports showing that ZnSO,
treatment of tobacco seeds enhanced germination potential,
germination index and shortened mean germination time (48).

The improvement in germination indicators of Zn-treated
seeds is attributed to the stimulation of enzymes such as a-amylase,
which accelerates the breakdown of food reserves and enhances
energy supply to the growing embryo (10). In addition, Zn plays a

Table 1. Effect of seed treatment with SA, HA or Zn on germination parameters of Barcino broad bean seeds

Final germination percentage

Mean germination time

Treatment Concentration (mg/L) (FGP, %)* (MGT, days)* Germination index (GI)*
Control 0 86.65+2.34¢ 4.6+0.222 24.98+1.12¢
SA 50 93.41+1.98° 3.7+0.15° 33.4+1.32°
SA 150 98.21+1.05° 3.4+0.16° 37.21+0.94°
SA 200 88.05+1.42°¢ 4.1+0.23° 27.6+1.21¢
HA 100 90.01+2.21° 3.84+0.24° 29.54+1.28%
HA 200 94.35+1.67% 3.54+0.12" 33.15+1.08°
HA 300 96.42+1.45° 3.4140.19¢ 35.61+0.11%°
Zn 100 86.54+2.01°¢ 4.05+0.31° 27.74+1.21¢
Zn 200 90.15+1.61° 3.82+0.14° 30.74+0.87°
Zn 300 94.21+2.12° 3.5940.24¢ 33.34£1.23°

*Values are mean = standard error (n=4). Means within a column followed by different letters are significantly different according LSD test at p

<0.05. SA: Salicylic acid, HA: Humic acid, Zn: Zinc.
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crucial role in the synthesis of DNA, RNA and proteins during seed
priming (49).

In conclusion, while all treatments were beneficial, their
efficacy and optimal concentrations varied. Zinc showed a positive
but generally less pronounced effect compared to the organic
biostimulants (SA and HA). Humic acid performed best at a high
concentration (300 mg/L), promoting growth through enhanced
energy metabolism and nutrient uptake. However, SA at 150 mg/L
was the most effective treatment overall, acting as a powerful
physiological trigger for germination. The decline in its efficacy at 200
mg/L underscores the critical importance of identifying the precise
optimal concentration for each biostimulant to avoid inhibitory
effects.

The effect of different seed treatments on the growth and
vigour of Barcino broad bean seedlings is presented in Table 2. All
treatments (SA, HA and Zn) demonstrated a significant positive
effect (p<0.05) on allmeasured growth parameters compared to the
untreated control.

Salicylic acid at 150 mg/L showed the highest performance
in all studied traits, as it recorded the highest values for stem length
(12.87 cm), root length (9.48 cm), dry weight (68.14 mg) and vigour
indices (2187 and 6666 for vigour index | and Il respectively). This was
followed in performance by HA at 300 mg/L, which showed
significantly better results than the control but lower than the SA
treatment. Zn at 200 mg/L also significantly enhanced all growth
metrics compared to the control, though it was the least effective
among the treatments for most traits.

The superior performance of the SA treatment aligns with its
well-documented role as a plant growth regulator and an elicitor of
systemic resistance (19, 42). Seeds germinated in the presence of SA
exhibited higher activities of the key glyoxylate cycle enzymes,
isocitrate lyase and malate synthase, than those germinated in its
absence (22). These two enzymes are key components of the
glyoxylate cycle, which is essential for converting storage lipids into
carbohydrates during seed germination and early seedling
development. The upregulation of this metabolic pathway by SA is
indicative of an enhanced transition from a metabolically quiescent
state to an active one (49). This elicitation likely facilitates the
improved seed vigour observed in the presence of SA. Additionally,
the improvement in germination characteristics of primed seeds
could be the result of an increased antioxidant profile of treated
seeds (10, 35).

Humic acid was next in effectiveness in enhancing broad
bean seedling growth and vigour indices, as it had a positive impact
on both root and shoot systems. A primary observed effect of HA is
the stimulation of overall seedling growth, leading to increased
biomass. This finding is in agreement with a previous study which
showed that HA was directly correlated with increased shoot length
and dry mass in corn seedlings (45). This effect is attributed to HA

stimulation of the root system, particularly lateral roots, which is
crucial as it expands the root surface area, thereby improving the
plant's capacity for water and nutrient uptake (50). Humic acid
enhances lateral root development by activating the plasma
membrane H*-ATPase and the H* pump in the tonoplast; this
acidification of the cell wall and apoplast facilitates cell elongation
and root growth (51). This establishes a clear trend in which humic
substances act as potent biostimulants for general plant growth.
Moreover, the use of HA improves the performance of seedlings by
accelerating their emergence speed and enhancing the vigour of the
seeds of several species; therefore, the use of such biologically active
chemicals may contribute to enhanced seed vigour (52).

Of all the treatments tested, Zn was the least effective in
improving seedling growth indicators; however, it was superior to
the water-treated control. Zinc is a vital micronutrient fundamental
to plant growth, primarily functioning as a cofactor for enzymes
critical to several physiological processes. It is integral to the
detoxification of reactive oxygen species (ROS), such as the
superoxide radical (O,") and hydrogen peroxide (H,0,), through its
role in enzymes like superoxide dismutase (53). Furthermore, Zn is
indispensable for protein synthesis, gene expression and the
structural and functional integrity of a vast array of proteins, with
nearly 10 % of all proteins requiring Zn for their synthesis or activity
(54). This underscores its importance from the molecular to the
whole-plant level.

The adequacy of Zn seed reserves is particularly crucial for
ensuring vigorous germination and strengthening seedling resilience
against abiotic stresses during this vulnerable early developmental
stage (55). Zinc seed priming has proven effective in enhancing FGP
%, seedling growth (shoot and root length) and seed vigour indices
(SVIH and SVI-II). Studies across diverse species, including chickpea
(28), maize (56), rice (57) and most recently tobacco (48), have
consistently demonstrated that priming with ZnSO, significantly
improves germination rates, seedling growth and vigour indices.
This improvement is attributed to the efficient translocation of
primed Zn to support early seedling development.

Although Zn priming improved some germination and
vigour traits, its overall effect was weaker than that of SA and HA. This
may be because the faba bean seeds already had sufficient internal
Zn reserves, limiting the benefit of additional Zn. Moreover, Zn has a
narrow optimal range and higher concentrations may cause mild
osmotic or toxic effects that reduce gains. High baseline germination
of the seed lot may also have masked treatment differences.

The enhanced seedling vigour observed in Zn-primed seeds
is well-supported mechanistically and is a direct result of Zn's
involvement in key developmental processes. The promoted
growth is linked to Zn's critical role in radicle development and
coleoptile growth, potentially through its influence on auxin
synthesis (28, 58). Ultimately, the overarching mechanism behind
the efficacy of Zn priming lies in its fundamental contribution to cell

Table 2. Effect of seed treatment with SA, HA or Zn on seedling growth and vigour indices of Barcino broad bean seeds

Treatment Concentration (mg/L) Shoot length (cm)* Root length (cm) * Seedling dry weight (mg) * Vigour index I* Vigour index II*
Control 0 8.60.41¢ 6.1+0.21°¢ 44.82+2.85¢ 1248¢ 38224
SA 150 12.87+0.51° 9.48+0.32° 68.14+2.582 21872 6666
HA 300 11.3+0.28° 8.21+0.21° 60.51+2.41° 2015° 5807°
Zn 200 10.54+0.25°¢ 7.81+0.31° 58.21+1,95 1996° 5512¢

*Values are mean + standard error (n=10, for length and weight). Means within a column followed by different letters are significantly different
at p =0.05. Only the best-performing concentration from each treatment is shown for clarity.
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division, cell proliferation, protein synthesis and the maintenance of
membrane integrity, which collectively ensure a strong and healthy
start for the plant (59).

Conclusion

Based on the strong evidence of its efficacy, pre-treating broad bean
seeds with 150 mg/L SA is a highly recommended agricultural
practice to significantly boost germination and seedling vigour,
which is expected to positively influence final yield. Future studies
should validate these results under Iraqgi field conditions and
quantify their effects on crop productivity and grain quality. The
potential synergistic benefits of combined applications of SA, HA and
Zn should also be tested. In addition, physiological analyses such as
antioxidant responses and reserve mobilization during germination
are recommended to clarify mechanisms. Finally, extending this
approach to otherimportant legume and vegetable crops in Iraq will
help assess its broader applicability.
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