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Abstract

Gypsiferous soils are characterized by low nutrient availability and structural limitations that often restrict crop productivity. Therefore,
developing integrated nutrient-management strategies is essential to enhance plant performance under such challenging conditions. This
study evaluated the efficiency of integrated fertilization with compost, biofertilizers and diammonium phosphate (DAP) in improving the
growth and yield of maize (Zea mays L.) grown in gypsiferous soils under sprinkler irrigation. The field experiment was conducted during
the 2024 growing season, using a randomized complete block design (RCBD) with 10 treatments (T:-Ti) and 3 replications. Results
showed that the integrated treatment combining compost, biofertilizers and DAP (T,) produced the tallest plants (163.4 cm), the largest
flag leaf area (493.8 cm?) and the earliest flowering (55 days to 50 % male anthesis) compared with the control (128.9 cm, 404.3 cm? and
59.3 days, respectively). Moreover, this treatment recorded the highest yield components: 17.33 rows per cob, 195.5 g grain yield per plant
and a total yield of 10.43 t ha™, whereas the control recorded 14.33 rows per cob, 115.6 g per plant and 6.16 t ha™. These findings confirm
that integrating compost and biofertilizers with DAP represents a sustainable and efficient strategy to improve maize productivity in saline
-gypsiferous soils under sprinkler irrigation.

Keywords: biofertilizers; compost; DAP; gypsiferous soils; maize; sprinkler irrigation

Introduction DAP is frequently compromised by increased phosphate
precipitation and decreased availability, which hinders plant
uptake (8). Thus, combining DAP with organic materials, such as
compost and biofertilizers, has been a viable way to alleviate these
constraints (9). Compost improves soil fertility by increasing
organic matter, enhancing cation exchange capacity (CEC),
improving aeration and water retention and mitigating salinity
impacts by stimulating microbial activity (10, 11). Biofertilizers such
as Azotobacter and Bacillus fix atmospheric N, release organic
acids that solubilize unavailable phosphates and produce
phytohormones, all of which stimulate growth and improve plant
tolerance to environmental stresses (12, 13). However, despite
these advantages, gypsiferous soils remain severely constrained
by low nutrient availability and weak soil structure, which continue
to limit maize productivity under sprinkler irrigation systems. A
recent study has emphasized that integrating organic and bio-
mineral amendments is essential to overcome these persistent
limitations and sustain crop growth under arid conditions (14).

Maize (Zeamays L.) is one of the most important cereal crops
worldwide due to its critical role in food security, livestock feed and
the food and oil industries, covering more than 190 million
hectares globally (1). Notwithstanding the worldwide increase in
maize production, growing maize in arid and semi-arid regions
remains constrained by several factors. These include soil and
water salinity and low soil fertility, particularly in gypsiferous soils.
Gypsiferous soils-characterized by high gypsum (CaS0,:2H,0)
content are extensively distributed across Iraq and severely limit
nutrient availability and root development (2, 3). Soil gypsum is a
multifaceted medium, not only because of its physical properties
(e.g, poor structure, low organic matter levels and high
susceptibility to compaction), but also because of soil salinity and
sulfated status. These limitations are associated with crop growth
and reduce water-use efficiency and nutrient utilization (4, 5).
Recent literature highlights that the sustainable management of
these soils involves integrated systems that combine mineral,

organic and biological fertilizer applications to ensure both soil Field studies in Iraq have shown that integrating organic,
fertility and productivity (6). biological and mineral fertilizers improves maize growth and yield

under saline and heat-stress conditions (15). Other studies have
reported that integrated fertilization under sprinkler or drip
irrigation enhances water and nutrient use efficiency and
significantly increases productivity compared with sole reliance on

As an essential phosphate fertilizer in intensive farming
systems, diammonium phosphate (DAP) can supply phosphorus
(P) for root growth and energy formation and enhance nitrogen (N)
use efficiency (7). Nonetheless, in gypsiferous soils, the efficacy of
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chemical fertilizers (16). Recent investigations on vermicompost
have revealed its richness in essential nutrients and trace elements
and its ability to improve soil physical and chemical properties
while mitigating salinity stress (17). Vermicompost application has
been shown to significantly enhance maize growth and yield in
gypsiferous soil under sprinkler irrigation (17). Against this
background, the present experiment was conducted to test the
integrative effects of compost and biofertilizers along with DAP on
the growth and yield attributes of maize grown in gypsiferous soil
under sprinkler irrigation (18). These findings are expected to
provide a scientific foundation for developing sustainable
fertilization strategies for saline gypsiferous soilsin Iraq.

Materials and Methods
Experimental site

The field experiment was conducted during the 2024 growing
season at the Agricultural Field of the Center for Biotechnologies
and Environmental Research, University of Fallujah (233.355° N,
43.783° E), a site characterized by gypsiferous soils with moderate
to high salinity and a dry climate with hot summers (x43 °C), cold
winters (=5 °C) and low seasonal rainfall.

Soil characteristics

Pre-sowing soil samples (0-30 cm) revealed a sandy loam texture,
with 65 % sand, 23 % silt and 12 % clay. The soil had an electrical
conductivity (EC) of 4.32 dS m?, pH of 7.21 and low organic matter
content. Additional soil chemical and biological characteristics are
presented in Table 1. Irrigation water applied via sprinkler irrigation
had an EC of 3.0 dS m* and its chemical composition is presented in
Table2.

Experimental design

The experiment was laid out in an randomized complete block
design  (RCBD) with 10 treatments (T-Tw) and
3 replications. Each plot measured 6 m? and was planted with the
maize cultivar “Baghdad” at 75 x 20 cm spacing, corresponding to
a planting density of 66666 plants ha™.

Treatments
The list of treatments and their combinations of compost and
biofertilizers (Azotobacter and Bacillus) is summarized in Table 3.

Table 1. Physicochemical and biological properties of the soil
sample

Parameter Value Unit
Gypsum 180.6 gkg!
Lime 5.43 gkg?!
Clay 120 gkg?
Silt 230 gkg?!
Sand 650 gkg?!
EC 4.32 dsm?
pH 7.61 -
Organic Matter 331 gkg!
Phosphorus 5.4 mg kg*
Nitrogen 30.5 mg kg*
Total Microorganisms 3.023 Log CFU g*

Table 2. Physicochemical properties of irrigation water samples (2025)

Table 3. Description of organic-bio fertilizer integration treatments
applied in the experiment

No TREAT

T Control

T Compost 100 %

Ts Bio 100 % (50 % Azotobacter + 50 % Bacillus)

Ta Compost 25 % + Bio 75% (50 % Azotobacter + 50 % Bacillus)
Ts Compost 75 % + Bio 25% (50 % Azotobacter + 50 % Bacillus)
Te Compost 75 % + Bio 25 % (25 % Azotobacter + 75 % Bacillus)
T7 Compost 25 % + Bio 75 % (75 % Azotobacter + 75 % Bacillus)
Ts Compost 75 % + Bio 75 % (75 % Azotobacter)

To Compost 75 % + Bio 25 % (75 % Azotobacter + 25 % Bacillus)
T  Compost 75 % + Bio 75 % (40 % Azotobacter + 60 % Bacillus)

Compost was applied at a rate of 5 g plant?, while
biofertilizers were inoculated at 15 mL plant!, containing
Azotobacter and Bacillus strains. Mineral fertilizer included DAP
(225 g m?) and urea (46 % N), which were applied in three split
doses at sowing, the 6-8 leaf stage and pre-tasseling.

Data collection

Growth traits measured were plant height, number of leaves, flag
leaf area and days to 50 % flowering, whereas yield traits included
number of rows per cob, number of grains per row, 500-grain
weight, grain yield per plant and total grain yield (t ha?).

Statistical analysis

Data normality was tested using the Shapiro-Wilk test and
variance homogeneity was examined before performing the two-
way ANOVA. Statistical analyses were carried out using GenStat
software and treatment means were compared using the LSD test
atthe 5 %significance level (19-24).

Results and Discussion

Table 4 shows significant variation among fertilization treatments for
plant height, leaf number and flag leaf area. The integrated
fertilization treatment (T4: DAP + Compost + Biofertilizer) yielded the
highest plant height (163.4 cm), which was markedly higher than the
control (1289 cm). This superiority can be attributed to the
complementary roles of the applied inputs: compost enriched the
soil with organic matter and improved its structure, thereby
enhancing water retention and mitigating the adverse effects of
salinity; biofertilizers such as Azotobacter and Bacillus contributed by
solubilizing insoluble phosphates and producing phytohormones
(auxins and gibberellins), which promoted root branching and
nutrient uptake; while DAP supplied readily available P and N, which
are fundamental for cell division and vegetative growth (6, 25).
Collectively, these interactions created a favorable rhizosphere
environment that supported stronger shoot development.

In addition, integrated fertilization significantly increased
leaf number and flag leaf area, with leaf number rising by 24.9 %
and flag leaf area by 22.2 % compared with the control. The largest
flag leaf area (493.8 cm?) was observed under T, compared with
404.3 cm? in the control, reflecting an expanded photosynthetic
surface and, by inference, a higher carbon assimilation potential.
Compost is known to enhance aeration and microbial activity,

Sample Name Texture Clay (%) Silt (%) Sand (%)

CacCos (%) Gypsum (%) NacCl (%)

TDS (mg/L) pH EC (dS/m)

EXP Site Sandy Loam 17.3 24.8 57.9

18.3 4.0

19.0 1019.7 7.4 9.0
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Table 4. Vegetative growth traits of maize

TREAT Plant height Number of leaves per Flag LeaI Area  Number of daysto 50 % Number of daysto 50 % Main Ear Height
(cm) plant (cm?) male flowering female flowering (cm)
T: 128.9 10.67 404.3 59.33 70 51.42
T2 151.0 12.33 469.8 57.00 66.33 64.34
Ts 156.1 13.00 468.3 56.33 66.00 60.80
Ta 163.4 13.33 493.8 55.00 64.67 67.12
Ts 142.4 12.67 476.8 56.00 65.67 55.84
Te 161.1 12.67 472.8 55.67 66.00 63.27
Tz 155.0 12.33 477.5 54.33 64.67 60.42
Ts 151.1 13.33 446.1 56.33 66.00 63.59
To 138.3 12.33 450.8 56.67 67.00 62.15
T1o 144.6 12.67 460.2 56.67 68.33 58.88
LSD 5 % 17.67 1.11 35.97 2.162 2.304 6.08

which may contribute to improve leaf development. In contrast,
biofertilizers contributed through N fixation and phytohormone
secretion, both of which stimulated leaf expansion. Moreover,
integrated fertilization shortened the time to 50 % flowering, with
T4 reaching anthesis in 55 days compared with 59.3 days in the
control, indicating a more efficient source-sink relationship and
improved physiological maturity due to balanced nutrient
availability (26).

The results in Table 5 clearly demonstrated the positive
impact of integrated fertilization on cob formation and grain filling
in maize (27, 28). The number of rows per cob increased
significantly from 14.3 in the control (T:) to 17.3 in the integrated
treatment (T,). This improvement can be attributed to enhanced P
availability, as P plays a central role in reproductive development
and kernel set. Similarly, the weight of 500 grains increased from
126.03g in T: to 120.1 g in Ts, reflecting more efficient assimilate
partitioning and suggesting improved grain filling under integrated
management. Grain yield per plant also significantly increased
from 115.6 g in the control to 195.5 g in T, leading to a total grain
yield of 10.43 t ha!, compared with the control (6.16 t ha?). These
results emphasize the value of dynamic nutrient management, in
that DAP served as a readily available source of P, compost
improved CEC and decreased P fixation and biofertilizers
maintained active emergent microbial populations (29, 30) all of
which positively influenced nutrient flow.

The observed improvement in growth and yield can be
attributed to the synergistic effects of compost and biofertilizers,
which enhance soil structure, increase nutrient availability and
promote root physiological activity. Compost improves soil
aeration and moisture retention, while biofertilizers accelerate
nutrient mineralization and stimulate phytohormone production,
collectively strengthening plant tolerance under saline-gypsiferous
conditions. These mechanisms scientifically justify the recorded
increases in maize performance and support the integrative
fertilization approach as an effective strategy for improving crop
productivity in challenging environments.

Table 5. Yield components and the yield of maize

Besides nutrient supply, the beneficial impact may be
attributed to enhanced soil-plant interactions under gypsiferous and
salinized conditions. Compost was beneficial in decreasing soil pH
and increasing CEC, alleviating sodicity and increasing the
availability of calcium (Ca) and magnesium (Mg). Biofertilizers
capable of producing exopolysaccharides may help mitigate Na*
toxicity by promoting a more balanced ionic environment in
gypsiferous soils. These processes, together, resulted in improved
photosynthetic efficiency and better grain filling under stress (31).

Altogether, the study inferred that combined fertilization
(DAP + Compost + Biofertilizer) exerted synergistic effects compared
with sole nutrient sources. Diammonium phosphate (DAP) provided
these nutrients at hand at the beginning, but compost and
biofertilizers likely improved soil health and enhanced microbial
activity, thereby sustaining fertility and productivity. This favourable
association is likely responsible for the better growth, flowering
precocity and yield of the maize crop under sprinkler irrigation in
gypsiferous soils when integrated soil management is applied (32).

The highest plants (163.4 cm), the greatest flag leaf surface
and the highest yield in grain (10.43 t ha compared to 6.16 t ha™ in
the control) were achieved with combined treatment (Tz), which
confirmed a higher effectiveness of plant nutrition combination
over separate inputs. This benefit could be attributed to the
synergetic contribution of composted enriched organic matter +
enhanced water holding capacity and CEC + improved soil
structure, biofertilizers (Azotobacter and Bacillus) + increased
microbial activity modulating N fixation, solubilization of phosphate
as well as phytohormone production stimulating root length and
nutrient uptake, DAP supplying available P and N prerequisite for
vegetative growth and reproductive organs. Together, these
mechanisms may have helped alleviate salinity stress by supporting
better ionic balance, without direct evidence of changes in Ca?*, Mg**
uptake, or Na* accumulation, which, in turn, supported higher
photosynthetic efficiency, assimilate partitioning and grain filling,
Therefore, integrated fertilization offers a scientifically validated and
sustainable strategy to maximize maize productivity while
improving soil health in stress-prone environments (33).

TREAT Number of rows per ear Number of grains per row Weight of 500 seeds (g)  Yield per plant (g) Total Yield (t ha')
T, 14.33 34.33 126.03 115.6 6.16
T, 15.00 36.33 118.25 177.9 9.49
T3 14.67 35.67 110.62 189.3 10.09
Ts 17.33 36.33 120.10 195.5 10.43
Ts 15.33 37.00 116.37 191.3 10.20
Ts 16.00 35.67 121.22 173.2 9.24
T7 16.00 35.67 116.80 184.2 9.82
Ts 16.33 37.33 105.93 188.2 10.04
Ty 15.67 36.33 119.90 166.8 8.89
T 16.00 36.67 114.58 182.9 9.75
LSD 5% 1.4 N.S 9.36 17.67 0.94
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The inclusion of compost not only enhances crop
productivity but also contributes to long-term soil sustainability by
increasing organic matter and stimulating beneficial microbial
activity. Expanding the use of biofertilizers and tailoring them to
local microbial strains is essential to maximize their efficiency
under Iragi environmental conditions. Furthermore, future
research should focus on integrating these practices with
advanced approaches, such as foliar nutrition and nanofertilizers,
which hold strong potential to improve nutrient use efficiency and
maize resilience under saline stress (34).

Conclusion

The results of this study clearly demonstrated that integrating
compost, biofertilizers and DAP produced significantly superior
vegetative growth and yield traits of Zea mays compared to single
nutrient sources. The combined treatment (Ts4) consistently
produced the tallest plants, the largest flag leaf area and the
earliest flowering, indicating enhanced physiological efficiency
under gypsiferous soil conditions. Yield attributes, such as number
of rows per cob, 500-grain weight and grain yield per plant, also
reached their highest values under integrated fertilization,
resulting in a remarkable total yield of 10.43 t ha?, compared with
6.16 t ha' in the control. These improvements reflect the
synergistic benefits of organic matter enrichment, improved
nutrient solubility, microbial activation and better ionic balance
under salinity stress. The findings confirm that integrated
fertilization is more effective than applying mineral fertilizers alone.
Therefore, this approach provides a sustainable and scientifically
validated strategy for enhancing maize productivity and soil health
in saline-gypsiferous environments. Further optimization of
biofertilizer formulations and nutrient ratios is recommended to
maximize long-term productivity.
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