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Abstract   

The conversion of roselle calyx into a dried extract without decreasing its 

consistency is a challenge, given the perishability of the calyx and instability 

of anthocyanin, which can quickly degrade and develop colored or unwant-

ed brown colors because of its high reactivity. The most critical factors influ-

encing anthocyanins' stability are pH, temperature, light and post-harvest-

related enzymes. Besides, the calyx suffered wound injury when removing 

seed from the calyx, causing stress and eventually, microbial degradation. 

Nonetheless, mature anthocyanins stimulate plants by responding to stress, 

especially drought, high salinity, excess light and injury; it is also correlated 

with improved stress resistance as the genes of individual plants are trig-

gered under these conditions modulate anthocyanin biosynthesis. This 

work investigates the stability and potential role of roselle anthocyanin in 

post harvest deterioration. Anthocyanin stability can, therefore, be achieved 

by maintaining low pH and temperature, acylation, glycosylation, copig-

mentation and encapsulation. In the quest for roselle deterioration bi-

omarkers, the detection of critical enzymes, such as Chalcone synthase CHS 

and FH3 Flavanone 3 hydroxylase, would offer insight into the genetic modi-

fication of anthocyanin.  
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Introduction   

The roselle (Hibiscus sabdariffa L.) is a member of the Malvaceae family and 

has been grown in several countries around the globe, including Malaysia 

(1) (Fig.1). Increasingly, many people believe that medicinal herbs, fruits 

and vegetables contribute to a broad range of health advantages (2). Phe-

nolic is well-known for its many health advantages, including “regulating 
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glucose levels and increasing antioxidant, anti-

inflammatory, anti-mutagenic, anticancer and neuropro-

tective effects,” due to its ability to modulate numerous 

processes and pathways in the human body (3, 4). Many 

physicians, nutritionists and other health professionals 

now believe that a daily regimen of herbal remedies, fruits 

and vegetables helps protect human health (2). Roselle 

calyces have abundant flavonoids such as anthocyanins 

and other phenolic compounds. Naturally, flavonoids are 

distributed as dietary polyphenol. Roselle dried petals can 

be used for tea, coffee, jam, pudding, ice cream or the pet-

als that can be boiled and used for syrup (1, 5). 

 Anthocyanidin and their conjugated acyl-
glycosylated or glycosylated derivatives, termed anthocya-

nins, are both flavonoids and a fascinating family of water-

soluble vacuolar pigments (4). They are produced via the 

flavonoid pathway and are thought to be the primary 

source of the vibrant red, orange, violet and blue colors 

found in a variety of edible flowers, vegetables, fruits, 

some cereals, seeds and plant leaves, as well as their deriv-

atives such as juices, tea and red wines (6). Over 4000 fla-

vonoids have been depicted and classified into many ma-

jor groups, including phenolic flavonols, anthocyanin, 

Chalcone, catechin, flavones and isoflavones, according to 

their phenol structures (7). The active roselle extract has 

shown to be the anthocyanin in several forms and that 

delphinidin-3-sambubioside leads in folk medicines and 

activity in the treatment of many diseases (8). Anthocyanin 

pigments exist in six separate anthocyanin groups, includ-

ing “delphinidin, cyanidin, malvidin, pelargonidin, pe-

tunidin and peonidin,” were found in various highly antiox-

idant-active vegetables and fruits (9, 10). 

 Plants activated anthocyanin, due to poor post har-

vest regulation and in response to stresses like dryness, 

increased salinity, light and wound degradation, also are 

associated with increased stress tolerance. Anthocyanins 

can protect the plant against oxidative stress due to stabi-

lizing unpaired electrons in free radicals. The sensitivity of 

its antioxidants is higher than that of vitamins C and E (11, 

12). Many anthocyanins have demonstrable antiviral, anti-

bacterial and fungicidal activity like other flavonoids (13, 

14). Pathogenic microorganism infections can be protect-

ed from plants (15, 16). However, the instability of antho-

cyanin leads to early degradation and develops unwanted 

brown colors due to its high reactivity. The most critical 

factors influencing anthocyanins' stability are pH, temper-

ature, light and post-harvest-related enzymes. Therefore, 

the present study summarizes and critically reviews recent 

findings concerning the effect of anthocyanin stability and 

its potential role in roselle post harvest deterioration. Par-

ticular emphasis will be placed on the mechanism and 

stability of anthocyanins' degradation, subject to heat, pH, 

storage, degradation kinetics and the role of anthocyanin 

in post harvest deterioration. 

Anthocyanin  

Anthocyanins constitute a significant class of flavonoids 

containing many secondary metabolites and natural pig-

ments present in the roselle calyx, fruits and vegetables 

(Table. 1). Anthocyanins are polyphenol glycosylated com-

pounds ranging from orange, red and purple to blue in 

flowers, fruits and vegetative tissue (17). In nature, about 

600 anthocyanins have been discovered (18). Anthocya-

nins' most prominent plants include "pelargonidin, cya-

nidin, delphinidin, peonidin, petunidin and malvidin" (17). 

Anthocyanins protect plants against various biotic and 

abiotic stresses (19, 20). As seen in (Fig. 2), two benzene 

rings with a three-carbon linear chain are used for antho-

cyanins (C2, C3, C4); this means they have a single C6-C3-

C6 skeleton (21). Chemically, anthocyanins are anthocya-

Fruits Anthocyanin Content (mg.100 g-1) 

Roselle 

(Hibiscus sabdariffa) 

Dp 3-xylosylglucoside 

Cy 3-xylosylglucoside 

Dp 3-glucoside 

Cy 3-glucoside 

150 

Blue berry  
( Vaccinium crynbasum) 

Dp 3-galactoside 

Dp 3-arabinoside 

Mv 3-galactoside 

Mv-arabinoside 

25-495  

Black berry  
(Rubus spp..Var Cumber-
land)   

Cy 3-glucoside 

Cy 3-rutinoside 

Cy 3-sambubioside Cy 3-
xylosylrutinoside 

428 

Strawberry (Fragaria 
spp.)  

Pg 3-glucoside 

Cy 3-glucoside 
450-700 

Cranberry 
(Vaccinium macrocarpon 
Ait)  

Pn 3-galactoside 

Pn 3-arabinoside 

Cy 3-galactoside 

Cy 3-arabinoside 

78 

Grappe  
(Vitis vinifera L.)  

Mv 3-monoglucoside 

Pn 3-monoglucoside 

Dp 3-monoglucoside 

Mv 3-monoglucoside-p- 
coumarate 

 Pn 3-monoglucoside-p- 

coumarate 

30-750  

Prune 
(Prunassalicina cv. Sor-
dum).  

Cy 3-rhamnoglucoside 

Cy 3-glucoside 
29.5 

Sweet cherry  
(Prunus cerasus L. var. 
Montmorency)  

Pn 3-rutinoside 

Cy 3-glucoside 

Cy 3-rutinoside 

Cy 3-sophoroside 

Cy 3-2Gglucosylrutinoside  

34-8  

Table 1. Anthocyanin content (mg.100 g-1) of some fruits (128). 

Figure 2. Anthocyanins general structure, highlighting the six most abun-
dant anthocyanidins (25) ` 
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nidin fractions obtained from flavylium or 2-

phenylbenzopyrilium cation. In polar solvents, such as eth-

anol, methanol and water, anthocyanins are soluble. 

 The structures of anthocyanins can be transformed 

with pH changes, leading to color changes due to the color 

stability, usually higher than pH 4 (14) (Fig. 5); the acid pH 

range was suitable for most anthocyanin dyes. The red col-

or is especially acidic at pH 1-3, with a high pH of about 4, 

and the majority of colors are blue and purple with pH lev-

els ranging from 6-7 (22). Anthocyanin's various functions 

include its coloring effects in plants and numerous health 

effects, including antioxidants, anti-diabetic, antihyperten-

sive, anticancer, cardioprotective and many other medici-

nal properties. They're considered to be very unstable. pH, 

temperature, light and storage are the most critical factors 

influencing stability (22, 23). 

Anthocyanin Biosynthesis    

A general flavonoid pathway synthesizes anthocyanins. 

Three malonyl-CoA is condensed by CHS and 4-coumaroyl-

CoA molecules generated from tyrosine phenylalanine 

(shikimate or phenylpropanoid pathway) into naringenin, 

which is furthermore converted to naringenin via CHI 

(chalcone isomerase). F3H and flavonoid 3'5'-hydroxylase 

(F3'5'H) enzymes modified naringenin, resulting in different 

DFR (dihydroflavonols-4 reductase). These molecules were 

reduced to make leucoanthocyanidins (leucocyanidin, leu-

copelargonidin and leucodelphinidin) via DFR (26). Antho-

cyanidin synthase (ANS) oxidation of leucoanthocyanidins 

produces unstable flavylium cation anthocyanidin that is 

further bound to C3 monosaccharide residue in ring C or 

other flavonoid glucosyltransferases (UFGT)-catalyzed gly-

cosylation and methyltransferase (TM) positions, resulting 

in the formation of complicated aglycones and anthocya-

nin, creating stable anthocyanin molecules (25) Fig. 3. Glu-

cose is the most abundant sugar; natural anthocyanins 

have galactose and xylose (26). Additional modifications 

are also possible, including hydroxyl ring B methylation and 

acylation (24). Such intrinsic improvements are intended to 

improve the anthocyanin's stability or diversify anthocya-

nin colors (19). 

Economic and Medicinal Benefit of Anthocyanin  

Anthocyanins are generally used in the medical, food man-

ufacturing and cosmetics industries (26). Anthocyanins are 

more prominent than the food industry dyes and can pro-

vide alternatives to synthetic dyes. The return of red or blue 

colorants to anthocyanin sources dramatically increases 

anthocyanin intake (27). The demand for food color has 

risen steadily in recent years and is expected to rise from 10 

% to 15% per annum. The market for natural food coloring 

is expected to expand at a reasonably fast pace to over $7.7 

billion in 2019 compared to synthetic hue (28). Similarly, it 

was argued that the overall production of food colors keeps 

on expanding globally (29). Global markets are expected to 

expand by sales at an average growth rate of 6. 22% in 2015

-2019. Anthocyanins, carotenoids and chlorophyll are also 

used for coloring food. Roselle is a unique food in terms of 

nutritional properties because of its high concentration of 

vitamin C and anthocyanins. Roselle calyces, according to 

nutritionists are a good source of calcium, potassium, mag-

nesium, sodium, niacin, riboflavin and iron (29). 

 Consumers are becoming more mindful of what they 
are consuming owing to the variety of illnesses currently 

impacting the globe (30). The production of healthcare in 

human life has proved to be facilitated by anthocyanins 

and other nutritious bioactive. Daily colorful fruit and vege-

table consumption is essential for a balanced way of life to 

protect against chronic diseases (31). Low fruit and vegeta-

ble intake are estimated to be one of the causes of 1.7 mil-

lion deaths worldwide (32). Recent experimental studies 

have shown that colored food, fruit and vegetable com-

pounds may inhibit baked-food mutation. In preventing 

diseases linked to lifestyle, the use of roselle anthocyanins 

may have an essential role including, hyperglycemia, neu-

rological and cancer disorders, antioxidant, anti-

hypertension among others (33). 

Anticancer  

Anthocyanins from H. sabdariffa induce apoptosis in HL-60 

cancer cells by activating p38 MAP kinase, which phosphor-

ylates the target protein C-Jun, initiating apoptotic protein 

cascades that include Fas-mediated signaling and culmi-

nate in the release of cytochrome C from mitochondria and 

caspase-3 cleavage (34). Delphinidin 3-sambubioside from 

H. sabdariffa causes dose-dependent apoptosis in human 

promyelocytic leukemia (HL-60) cells via a mitochondrial 

malfunction pathway mediated by reactive oxygen species 

(ROS) (35). It was shown for the first time that anthocyanins 

from H. sabdariffa changed mitochondrial activity and ac-

celerated cell death in MCF-7 cells via autophagy and ne-

crosis rather than programmed cell death (36). The previ-

ous research establishes that anthocyanins produced from 

roselle have anticancer activity. 

Antioxidant Activity  

Although free radicals are produced naturally during me-

tabolism, their accumulation can be harmful to cells, caus-

ing oxidation of cellular components (such as nucleic acids, 

proteins and fatty acids) and lipid peroxidation, which ac-

celerates aging and contributes to the development of a 

variety of chronic diseases such as cancer, atherosclerosis 

and ulcerative colitis (37). Antioxidants made from synthet-

ic materials have been linked to various health problems, 

Figure 5. Anthocyanin structure changes with pH in an aqueous solution 
(131). 
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which is why more and more people are turning to natural 

sources. The antioxidant properties of anthocyanins are 

widely documented. Antioxidant activity of roselle extracts 

has been shown; in actuality, this plant has only recently 

emerged due to the growing interest in natural antioxi-

dants. According to Hai-Yao Wu, the roselle extract is rich in 

anthocyanins and has significant antioxidative properties 

(38). Researchers used H. sabdariffa extract to reduce the 

severity of the drug-induced sperm abnormalities and en-

hance sperm motility by increasing antioxidant capacity 

and the activity of testicular antioxidant enzymes. 

Antihypertensive  

According to the studies, H. sabdariffa is a safe and effective 

therapy for mild to moderate essential hypertension and 

that it is on par with current pharmaceutical antihyperten-

sive medicines. Roselle may be the first line of defense 

against increasing blood pressure (39). For the first time in 

humans, it was showed the antihypertensive effects of Hi-

biscus sabdariffa extracts on angiotensin-converting en-

zyme (ACE), giving scientific legitimacy to the use of roselle 

extract in traditional medicine to regulate blood pressure 

(40). As the anthocyanin content increases, enzyme activity 

decreases because the anthocyanins compete with the ac-

tive site for electron flow. The enzyme ACE turns angioten-

sin I into angiotensin II. 

Antimicrobial Activity  

To combat the emergence of antimicrobial resistance in 

bacteria over time, natural products have received consid-

erable attention due to their abundance of metabolites 

with antimicrobial, antifungal and antiparasitic properties. 

Indeed, these processes serve as a defensive mechanism 

for plants against diseases and illnesses throughout their 

development and growth. Among these phytochemicals, 

anthocyanins have previously been shown to be capable of 

inhibiting the replication and development of a variety of 

Gram-negative and Gram-positive bacteria and parasites (4, 

41). According to the studies, flavonoids in roselle extract 

have antibacterial properties because they form complexes 

with bacterial cell walls and enhance the extract's permea-

bility to the surface of the cells. Increasing the permeability 

of the plasma membrane, which in turn inhibits electron 

transport protein translocation and other enzyme-

dependent functions, may result in an ion leakage from 

bacterial cells as one potential mode of action (42, 43). Pro-

Figure 3. Anthocyanin biosynthesis pathway (129)  
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anthocyanidins found in Roselle combine or disrupt the 

structural entity of bacterial cells' P-fimbriae, limiting their 

ability to adhere and produce biofilms in vitro. 

Anti-inflammatory  

There were investigations on the effect of roselle extract on 
streptozotocin-induced diabetic rats (44). TNF- was found 

to be reduced at doses of 72 mg/day/200 g body weight and 

288 mg/day/200 g body weight, indicating that Roselle pos-

sesses anti-inflammatory properties. 

 Government policy recommendations like the US 

dietary guidelines and bodies as the National Fruit and Veg-

etable Alliance Guidelines note that the contribution made 

by bioactive nutritional compounds such as anthocyanin 

should be taken into account (27). Today China has estab-

lished a specific proposed anthocyanin daily intake level of 

50 mg/day (31). Similarly, "NHANES recorded anthocyanin's 

dietary intake in 2007-2008 at; 11. 6 ± 1.1 mg / d per person 

aged ≥ 20y. Females had more anthocyanin consumption a 

day (12.6 6.5 mg / d) than males (10.5 6.8 mg / d). The medi-

an ingestion of anthocyanins in different racial/ethnic 

groups has also been shown to differ considerably, with 

whites having more mean daily intakes (12.5, 6.3 mg / d) 

than Hispanics (10. 1, 6.2 mg / d and non-Hispanic black)" 

in the United States (45). Since anthocyanin is poorly bio-

available, the risk of food supply toxicity is low. The Joint 

FAO/WHO Committee on Food Additives has concluded 

that anthocyanins have an unquestionable daily intake of 

2.5 mg/kg (46). Anthocyanin protection and toxicology tests 

suggest that animal acute toxicity is extremely poor, and 

there are no findings that anthocyanin usage in humans is 

adverse with a regular dietary intake (47). Similarly, it was 

reported that anthocyanins are considered safe and are 

recommended, along with physical activity, to reduce 

stress-related diseases and no adverse effects of anthocya-

nin consumption have been documented (27). 

Mechanism of anthocyanin degradation  

The anthocyanin color change was described (48). Anthocy-

anins are commonly used in aqueous solutions as four pH 

species: QB (quinoid base), FC (flavylium cation), carbinol, 

or PB (pseudo base) and Chalcone. Anthocyanins are used 

in acidic conditions (pH<2) in deep-red cation (FC). In-

creased pH values cause a rapid loss of proton blue or vio-

let quinoid (QB) form. “Flavylium cation (FC) hydration oc-

curs at the same time as carbinol, or pseudo base (PB) is 

produced, eventually entering the colorless Chalcone (CH) 

balance. The pH of FC, QB, PB and CH relatively varied (48); 

this means that ionic anthocyanins modify the molecular 

structure according to the prevailing pH, leading to varying 

colors and shades at respective pH values”. The pH modifi-

cation can achieve the average stabilization period of an-

thocyanine; experience can greatly aid food producers. The 

degradation index (DI) comprises three degradation com-

ponents: first, the increase in absorption due to browning; 

The other is absorbance from colorless carbinol bases and 

the impact of bathochromic changes due to less stable an-

thocyanin structures (49). At high temperatures, anthocya-

nin degrades more quickly than at low temperatures (50). 

During two stages, heating damage can occur. First and 

foremost, hydrolysis takes place in glycosidic anthocyanin 

bonds so that aglycons are unstable and therefore released 

into carbinol and Chalcone (Fig. 4) (51). 

 

Figure 4. Degradation mechanism of anthocyanin compounds (130)  
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 Anthocyanin decoloration may be caused by active 

enzyme-driven breakdown processes (52, 53). (52), suggest-

ing that three families are involved in the degradation of 

anthocyanin: Peroxidase, polyphenol oxidase and β-

glucosidase. There are two known mechanisms for antho-

cyanin degradation. Another method is to oxidize Peroxi-

dase directly. The second step involves deglycosylation of 

glucosides and oxidation of polyphenol or Peroxidase. 

There are non-enzymatic factors that affect the color and 

stability of anthocyanin, which may improve its tolerance 

to anthocyanin degradation enzymes (53, 54). “Degradation 

of anthocyanins through isothermal heating is expressed in 

obeying first-order kinetics for juice and concentrate of 

sour cherry” (48), strawberries (55) and blackberries (56). 

Kinetic models are also used to test food health scientifical-

ly, quickly and economically. The critical quality parame-

ters can also be predicted using kinetic modelings such as 

constant rate, reaction order and energy activation to pre-

dict food losses during storage and thermal processing. 

Nutrient deficiency is a significant factor in food produc-

tion. 

Anthocyanin stability  

Anthocyanins are natural food coloring agents, but con-
sistency issues limit their use (57). Anthocyanin is relatively 

unstable and can rapidly degrade and form colorless or 

undesired brown compounds during extraction and storage 

due to its high reactivity (58). The most significant factors 

affecting stability are pH, temperature, light, storage, oxy-

gen, enzymes and metal ions (22). Besides affecting food 

products directly, the deterioration of anthocyanin can re-

sult in benzene ring aldehydes production that affects ' hu-

man health (38). 

pH stability  

Shivon Sipahli reported that anthocyanin HCl-acidified eth-

anol extracts provide excellent stability when exposed to 

low pH, low heat and dark light. Anthocyanins' kinetic deg-

radation has indicated that it could be heated to up to 70 °C 

at gradually decreasing antioxidant content (57). It was also 

clearly shown (59) that increasing pH causes more destruc-

tion of anthocyanin. It also indicates at lower pH (< 5.0), 

anthocyanin is stable while unstable at alkaline (29), de-

creased pH to 2.8 in anthocyanin solutions, flavylium cation 

structure changes provide more extended stability (38). It 

was also reported that roselle anthocyanin is stable at an 

acidic pH (1-4) (60). 

Temperature and light stability  

The stability of anthocyanins was greater at the lowest stor-

age temperature (4 °C) (61, 62), which indicated that acylat-

ed anthocyanins were much more stable than nonacylated 

anthocyanins at all storage temperatures. Both extracts, 

however, were stable when stored at 0 °C. Therefore, the 

consequence of low temperature (≤50 °C) on the stability of 

anthocyanin is imperative. Because the heat treatment at 

55 °C had no discernible effect on the color, it may be as-

sumed that the roselle extract's red hue stabilized at that 

temperature, Anthocyanins' thermal degradation tempera-

ture of 80 °C (63, 64) also reported a decrease in the absorb-

ance of anthocyanins in higher temperatures (100 °C). At 

marginally increased pH 5.0 were discovered New anthocy-

anin and gum arabic acid solutions (65). A solution of "0.51 

mg/ml was heated to 80 °C and 126 °C for 80 min (66). A 

similar report indicated that adding coumaric, cinnamic 

and ferulic acids as co-pigments to roselle anthocyanin 

extracts resulted in significant anthocyanin concentration 

and color stability over 60 days storage at 10 °C (67). 

 Investigation was on the effect of temperature on 

anthocyanin at different temperatures (37, 50 and 100 °C) 

(under light) (7). Higher temperatures (50 to 100 °C) destroy 

anthocyanin faster, implying that it should be avoided for 

anthocyanin processing, storage and usage. On the other 

hand, the anthocyanin is stable between 4 °C and 37 °C and 

may therefore be utilized for storage (68). 

 Investigated anthocyanin degradation under light 

and discovered that it is temperature-dependent and that 

exposure to light may destroy anthocyanin molecules (48). 

According to anthocyanin studies, the chalcone type of an-

thocyanin has little effect in the visual range but loses sub-

stantially in absorbance as temperature increases. Cooling 

the copigments solution produces changes in the copig-

ments complex, responsible for quantitative color recovery 

(48). Encapsulation was used to obtain light stability of an-

thocyanin (69). 

Color stability  

As consumers increasingly reject synthetic pigments, there 

has been increasing interest in food colorants from natural 

or naturally derived sources (70). The worry is increasing 

since it has been revealed that synthetic pigments or anti-

oxidants may affect cardiovascular disease (70). Anthocya-

nin is a natural colorant that is extensively utilized in the 

food industry. Spray-dried encapsulated anthocyanins Col-

or stability, encapsulated with polysaccharides accompa-

nied by sufficient processing to improve anthocyanin stabil-

ity for practical usage in food systems, noticed that malto-

dextrin and Arabic gum combinations had the highest en-

capsulation performance. C3 is more efficient in stabilizing 

diglycosides as compared to mono glycosides. Glycosyla-

tion of C5 reduces the pigment density. Acylation improves 

anthocyanin stability, and the increase in acyl moieties 

tends to alter the colors from red to blue (71). For instance, 

metal ions such as iron and magnesium enhance the stabil-

ity of anthocyanins by creating complexes (29). 

Storage stability  

In a research, there examined the durability of pigment-
copigments complexes generated during a 6 month storage 

period (72). Throughout the storage period, the addition of 

ferulic and caffeic acids significantly increased the color 

intensity of pelargonidin 3-glucoside. According to a study, 

no deterioration was seen during the refrigerated storage 

of anthocyanin at (4 °C) (73). It was indicated that anthocya-

nin stability and color concentration was achieved for over 

60 days storage at 10 °C through addition of coumaric, cin-

namic and ferulic acids as co-pigments (67). 

Enzymatic stability  

The stability of anthocyanins is due to their modification. 

Following the production of anthocyanidin aglycones, cyto-
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solic modification processes include glycosylation, methyl-

ation and acylation (Fig. 6). Knowledge of these modifica-

tion processes' biochemistry and molecular biology, as well 

as the enzymes involved, has exploded in the past decade 

attributable to the molecular zcloning of the enzyme genes 

from various plant species (74). Reports are on anthocya-

nins' decolorization to the activity of a β-glycosidase (75). 

Several additional researchers, notably (76) shown that 

crude vegetable extracts may substantially degrade antho-

cyanins only when phenols are present. Polyphenol oxi-

dase, they claim, is the enzyme responsible for this activity. 

In this case, the anthocyanin would be destroyed as a con-

sequence of its interaction with the quinone generated by 

the oxidation of an appropriate phenol substrate. Accord-

ing to research, acylation increases the stability of anthocy-

anins, whereas structural changes increase their bioactivity 

(77). 

Anthocyanin encapsulation  

Different delivery methods have been developed to address 

the fact that the integration of phenolic compounds into 

foods and pharmaceutical products is a challenge because 

of their instability and degradation during processing and 

storage. Encapsulation is one of the best approaches 

among them all (4). Encapsulation is an effective method 

for avoiding colorant degradation and premature color de-

velopment. When anthocyanins are encapsulated, their 

stability improves because of an effective barrier between 

them and external environmental variables like light and 

temperature. They are also protected against enzymes and 

reactive substances by encapsulation. Spray drying (78), 

freeze-drying (79, 80), emulsification (36, 81, 82), liposomal 

encapsulation (83), gelation (84, 85) and complexation have 

all been described (86). Due to the anthocyanin instability 

and sensitivity to deterioration, during processing and stor-

age, different delivery methods have been devised to pro-

tect these phenolic compounds and ensure their use in 

foods and pharmaceuticals (87). 

 Natural colors that have been encapsulated are 
more resistant to changes in temperature, light and pH. 

Products with color encapsulation have a longer shelf life, 

are more stable over a broader pH range and do not devel-

op color during storage. As a consequence, the chosen hue 

Figure 6. Anthocyanidins modulated via acylation, glycosylation and, methylation (80)  
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is instantly accessible following manufacturing. At the mo-

ment, food researchers are very interested in microwave 

encapsulation owing to its many potential benefits, includ-

ing reduced drying time, cheap cost, better product quality, 

and the ability to produce a range of dried products (88). 

For example, (88) reported that Margarine with roselle en-

capsulated anthocyanin was more stable than non-

encapsulated anthocyanin. Also, previously published re-

views addressed encapsulating agents and methods for 

stabilizing and delivering anthocyanins (82, 89, 90). 

Anthocyanin copigmentation  

Copigmentation is a "process through which anthocyanins 

form complexes with copigments such as phenolic, metal 

ions and biopolymer (48). In addition to increasing color 

intensity, this process also protects colored flavylium cati-

ons from water molecules' nucleophilic assault and im-

proves antioxidant capabilities. Copigmentation ideas from 

theory and experiment have recently been presented in a 

complete description of modulating anthocyanin stability 

and color via copigmentation (91). The kind of copigments 

used is critical for successful copigmentation. For instance, 

phenolic substances such as hydrolyzable tannins (92), fla-

vonoids (93) and phenolic acids (94, 95) all copigments with 

anthocyanins through - stacking and hydrogen" bonding. It 

was demonstrated that adding phenolic acids (ferulic, cin-

namic and coumaric) to roselle anthocyanin extracts in-

creased anthocyanin levels and improved color stability 

during storage and also showed noticeable antioxidant and 

antimicrobial activities (66). Similarly, in their Copigmenta-

tion experiments of H. sabdariffa anthocyanin extract with 

ferulic acid (96) found that ferulic acid significantly en-

hanced the heat stability of anthocyanins. It was showed 

that β -carotene bleaching assay and higher color stability 

during storage at 25 °C, 40 °C and 60 °C than original blue-

berry" anthocyanins (97). 

Effect of stability on the medicinal value of anthocyanin  

Rich anthocyanin foods can enhance overall health by 
providing nutrients. Its poor environmental stability com-

plicates the incorporation of anthocyanin into food and 

medicinal items (71). Some studies have shown that antho-

cyanins, a healthy food ingredient used throughout the 

globe, may pose significant risks to public health 

(cardiovascular disease, inflammation, obesity and diabe-

tes) from food additive chemical synthesis (90, 98). Further-

more, anthocyanin degradation can also result in benzene 

ring aldehyde, posing health issues (99). Anthocyanins' 

pharmacological and other functions are directly propor-

tional to their antioxidant activity, which can also be lost 

due to stability issues. Anthocyanin isolates and Flavonoids

-rich mixtures can protect against DNA cleavage, estrogen 

activity, inhibition of the enzyme, enhanced cytokines syn-

thesis (i.e., regulatory immune), anti-inflammation, lipid 

Peroxidation, reducing the capillary permeability and mem-

brane improvements (100, 101). 

Post-harvest deterioration mechanism  

Post harvest degradation refers to several unwanted physi-

cal and biochemical modifications that reduce the shelf life 

and durability of the products and make them inappropri-

ate for consumption (102). Post-harvest is the last step in 

crop production that includes harvesting, processing, 

decoring, washing, pre-cooling, grading at packaging, stor-

age, transportation and post harvest treatments. When a 

crop is harvested from the parent plant, it starts to deterio-

rate (103). Both the plants, after harvesting, are still living 

entities; hence they are deprived of a supply of hormones, 

nutrients and water. Therefore they should be treated care-

fully and these perishables are very vulnerable to injury. 

 There are two differentiated mechanisms for deteri-

oration: physiological or primary and secondary or microbi-

ological (104). The fundamental cause of the decline of ca-

lyx and widespread brown color, leading to shelf life and 

decreased inconsistency, is physiological degradation (105

–107). Primary degradation includes an increase in the 

function of phenolic oxidative enzymes, including catechin 

and anthocyanidin, that eventually polymerize into con-

densed tannins (108–110). Mechanical damage, an inevita-

ble consequence of harvesting, causes physiological post 

harvest degradation. Calyx was typically injured during 

decoring, i.e., removing roselle calyx from the seeds, result-

ing in stress production, anthocyanin instability and ulti-

mately, pathogenic decay, fermentation, or calyx softening 

(111, 112). Secondary post harvest deterioration sometimes 

happens when a calyx has moderate to substantial injury 

from a wide variety of pathogens, typically 5 to 7 days later 

(113, 114). The gene coding for Catalase, ascorbate perox-

ides and secretive peroxides catalyzes the reduction of H2O2 

by utilizing ascorbate or a variety of organic or inorganic 

substrates as an electron donor is expressed during post 

harvest physiological deterioration (PPD) in cassava (115). 

(112, 113), Also, Hydroxyprolinerich glycoprotein HRGP1 

(111), and two Cytochrome P450 and CYP79D2 (AAF27289 

and AAF27290;(115) previously expressed during post har-

vest storage. Quantitative and qualitative losses for crops 

between harvest and consumption are unavoidable natural 

processes. Human involvement is required to mitigate this 

loss (116). For a global population of about 9.8 billion pre-

dicted to hit 2050 (117), food shortages, waste or both 

would further intensify food security issues globally. The 

average losses recorded in Malaysia for fruit and vegetables 

are still about 20% (103). Sufficient efforts should be made 

that would revamp existing procedures to reduce food 

waste and losses. 

Role of anthocyanin in post-harvest deterioration  

Anthocyanins can also play a significant role in enhancing 

post harvest processes and protective effects by preserving 

membrane integrity to decrease cell senescence and inhib-

iting lipid peroxidation (118). Anthocyanins improve fruit's 

antioxidant capacity, eliminating reactive oxygen species 

(ROS) activity and signaling mechanism. Therefore, it may 

delay over-breaking, limiting cell death induction and fun-

gal spread (53). Due to its extraordinary antioxidant power, 

anthocyanins were more widely used during the past 20 

years (112, 119, 120) and anthocyanins are widely consid-

ered to contribute to Hibiscus sabdariffa preventive impact 

significantly. A correlation between roselle antioxidant ac-

tivity and anthocyanin content has also been identified, 

indicating that these compounds may contribute to ro-
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selle's antioxidant impact (120). In addition to protecting 

plants from oxidative stress, anthocyanins may donate hy-

drogen atoms to free radicals, balancing the unpaired elec-

trons. Furthermore, pathways by which anthocyanins help 

plants in the control of abiotic stress are becoming increas-

ingly understandable. Many functions, including ROS scav-

engers, were forecast for anthocyanins generated during 

abiotic stress, photoprotectants, stress signals (121–123), 

xenohormesis (e.g., therapeutic stress). As a result of the 

growing interest in mechanisms by which abiotic stress-

tolerating anthocyanins help plants cope with abiotic stress 

(124–127) it has been reported that inductive anthocyanin 

synthesis is the result of gene activation, which enhances 

the plant's response to antioxidants so that tissues that are 

directly or indirectly affected by stress maintain their physi-

ological status. According to a study, the genes of particular 

plants are also activated under these circumstances and 

regulate the production of flavonoids, such as anthocya-

nins, resulting in a rise in phytochemicals under stress ex-

posure (11).   

 

Conclusion  and future developments 

Roselle anthocyanin has multiple roles due to its antioxi-

dant activity, including food coloring, free radical scaveng-

ing, pharmacological and medicinal properties. They are 

considered very unstable due to pH, temperature, light, 

enzymes and storage. From this review, anthocyanin is 

more stable in cold storage and low pH. A low pH and tem-

perature are required to keep anthocyanins stable. Other 

methods of stabilizing anthocyanins include glycosylating, 

copigmenting, acylating and encapsulating the pigments. 

Roselle calyx is protected from post harvest deterioration 

by scavenging free radicals by anthocyanin. It may also in-

dicate degradation throughout the detection of high levels 

of anthocyanin in the harvested calyx. To this date, there is 

no study available in the literature on roselle post harvest 

deterioration biomarkers. Still, in other plants like cassava, 

they reported that PPD might be a peroxidase-mediated 

process. So, the identification of significant anthocyanin 

biosynthesis genes such as CHS and F3H may serve as a 

potential biomarker of post harvest deterioration.  
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