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Abstract   

Four ASM (acibenzolar-S-methyl) concentrations were applied on wheat 

plants at different growth stages prior to inoculation with 1x105 conidia/ml 

of Fusarium graminearum. Thereafter, disease severity was monitored and 

recorded over time. All ASM concentrations reduced disease severity com-

pared to the control. The best treatment, providing the lowest Area Under 

the Disease Progress Curve (AUDPC) units, high average Hundred Seed 

Weight (HSW) and reduced average Percentage Seed Infection (PSI), was 

0.075 g/L ASM applied at anthesis. A weak but significant positive correla-

tion was observed between AUDPC and PSI (r = 0.33; p = 0.0001). However, a 

moderate and weak negative correlation was observed between AUDPC and 

HSW (r = - 0.41; p < 0.0001) and HSW and PSI (r = - 0.18; p = 0.04) respectively. 

Higher ASM concentrations were more effective when applied at anthesis 

and lower concentrations at late boot. Moreover, repeated applications 

(applied at both late boot and anthesis) did not improve disease reduction. 

A disease reduction and deoxynivalenol (DON) reduction of up to 28.97% 

(0.075 g/L ASM applied at anthesis) and 18.79% (0.0375 g/L ASM applied at 

anthesis) was observed. However, DON and zearalenone (ZEA) reduction did 

not always correspond with disease severity reduction of tested treatments. 

This accentuates the importance of the development of integrated control 

strategies for the improved and effective management of Fusarium head 

blight (FHB) in wheat.   
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Introduction   

Fusarium head blight (FHB) is an economically important disease of cereal 

crops worldwide causing yield and quality losses and the contamination of 

grains with mycotoxins, such as deoxynivalenol (DON) and zearalenone 

(ZEA) (1, 2). These mycotoxins can have deleterious effects on both human 

and animal health (1, 2). FHB is caused by a Fusarium-species complex con-

sisting of up to 17 species, amongst which F. graminearum sensu stricto 

[teleomorph: Gibberella zeae (Schwein.) Petch] and F. culmorum (Fc) (W.G. 

Smith) Saccardo are the most virulent species worldwide (1, 3-5).  

 Previous efforts in the control of FHB have focused mainly on chemi-
cal control, the use of biological control agents (BCAs) and resistance breed-

ing (1). Regardless of previously reported efficacies, the inconsistency and 

lack of durability of some BCAs, and the residue and resistance develop-
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ment concerns associated with fungicides are major limi-

tations in the development of FHB control strategies (1). 

Some researchers believe that improving host genetic re-

sistance could provide more meaningful, durable and con-

sistent protection against FHB and its mainly produced 

mycotoxin, DON (6-9).  

 FHB and DON resistance in small grain crops is com-
plex and quantitatively inherited and can be achieved by 

the expression of at least two of the five resistance types, 

namely: (i), resistance to initial infection; (ii), resistance to 

spread in infected tissue; (iii), resistance to kernel infec-

tion; (iv), tolerance; and (v), resistance to accumulation of 

toxins (1, 9). In recent years, the mapping of quantitative 

trait loci (QTL), such as Fhb1 derived from the Chinese 

wheat cultivar ‘Sumai 3’, has been researched extensively 

as a potential source of FHB resistance (1). Due to FHB re-

sistance being acquired quantitatively, resistance breed-

ing programmes have been slow resulting in only a few 

moderately resistant cultivars being produced thus far (1, 

9).  

 The over-expression of some resistance genes such 

as those incited by jasmonic acid (JA), ethylene (ET) and 

salicylic acid (SA) have been reported to improve FHB re-

sistance (1, 10). This is by the activation of the host de-

fence mechanisms resulting in enhanced induced systemic 

resistance (ISR) (signalled by JA and ET) and systemic ac-

quired resistance (SAR) (signalled by SA) which differ ac-

cording to the nature of the elicitor and the regulatory 

pathways involved (10, 11).  

 Moreover, previous research has reported on JA 

signalling being more important in the control of necrot-

rophic and hemi-biotrophic pathogens (such as F. gra-

minearum) compared to SA signalling (12, 13). However, it 

has also been reported that these signalling pathways are 

complex and may act cumulatively in resistance develop-

ment (10-12, 14). That is, SA and JA signalling pathways 

may not interfere with one another but work individually 

in the plant to result in a collective improvement of wheat 

resistance (10, 11). 

 SAR is characterised by the activation and accumu-

lation of SA and the production of pathogenesis-related 

(PR) genes and thus protecting plants from further infec-

tion (11, 15). In plant disease control, SAR is the most stud-

ied compared to ISR since it provides specific and long-

lasting resistance against pathogens (15, 16). SAR can be 

triggered in plants by response to local infection and by 

the application of chemical inducers such as SA (10, 15, 

17). According to one report (15), spraying wheat plants 

with benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-

methyl ester (BTH), a synthetic functional analogue of SA, 

at early developmental stages resulted in induced re-

sistance against Erysiphe graminis f. sp. tritici É.J. Marchal, 

Puccinia recondita Roberge ex Desm. and Septoria spp.  

 The inoculation of wheat plants with BTH resulted 

in an enhanced expression of the PR1 gene which activates 

SA signalling and promotes wheat resistance to Fusarium 

infection (16). This suggested that SA signalling was trig-

gered thus activating SAR in the wheat plants and improv-

ing resistance to F. graminearum (10, 16). Moreover, fur-

ther study reported that the FHB resistance and BTH sensi-

tivity of the AtNPR1-expressed in wheat was comparable 

to that of the resistant ‘Sumai 3’ cultivar (16).  

 Results revealed that SA signalling was induced 

early (12 hrs) after the inoculation of wheat spikes with F. 

graminearum whereas JA signalling was induced later (48 

hrs) (14). This led to a possible conclusion that SA signal-

ling was responsible for basal resistance to FHB whereas 

JA signalling reduced further infection by the pathogen 

(14). This agrees with other studies where a cumulative 

effect between JA and SA signalling in the control of FHB 

was reported (10, 12). However, other research has report-

ed on SA and BTH being ineffective in inducing SA signal-

ling in wheat plants (13). Therefore, more research into 

understanding the complexity and efficacy of these elici-

tors in SAR induction and FHB resistance in wheat plants is 

crucial. Nonetheless, in the absence of effective FHB con-

trol strategies, the use of resistance inducers could provide 

an alternative control strategy to reduce FHB severity in 

wheat.  

 Acibenzolar-S-methyl (ASM), a derivative of BTH, is 

currently registered as a resistance inducer for tomatoes 

(Solanum lycopersicum L.) and mangoes (Mangifera indica 

L.). Small doses of ASM activate resistance in many crops 

against a wide range of diseases (18). The resistance in-

duced by ASM in monocotyledonous plants is more dura-

ble compared to that induced in dicotyledonous plants 

(18). Previous studies have been conducted on the efficacy 

of ASM to induce resistance in wheat plants against vari-

ous diseases (11, 19). However, there is limited research on 

the efficacy of ASM against FHB in wheat. Since the use of 

fungicides is accompanied by cost, residue and pathogen 

resistance development concerns, the use of small doses 

of ASM could mitigate these concerns and possibly provide 

effective FHB reduction. 

 In this study, the efficacy of ASM application in re-

ducing FHB disease severity and mycotoxin contamination 

upon F. graminearum infection was investigated. The 

effectiveness of ASM was measured using the following 

parameters: (i) disease severity over time, (ii) hundred 

seed weight (HSW), (iii) percentage seed infection (PSI) 

and (iv) mycotoxin (DON and ZEA) concentration in har-

vested grain.  

 

Materials and Methods   

Planting and experimental design   

Sixty-five planting pots of 25 cm diameter were filled up to 

90% capacity with composted pine bark potting medium. 

Thereafter, five seeds were sown at even spacing in each 

pot which constituted an experimental unit. The trial con-

sisted of 13 treatments (Table 1) with five replicates each. 

A 4 x 3 factorial design (four ASM concentrations and three 

inoculation periods/time) and a control was used for this 

experiment (Table 1). The pots were placed in a growing 

area with insect netting (approximately 15% shading) and 

a drip irrigation system was used where each pot received 
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water for 2 mins four times a day. Osmocote Exact Mini 5-6 

M 15-3.9-9.1 + 1.2 Mg + TE [supplied by Greenhouse prod-

ucts (Pvt) Ltd, Helderkruin, Republic of South Africa (RSA)], 

an ammonium based slow-release fertilizer, was applied in 

each pot at a rate of 2.5 g/L of potting media. 

ASM and F. graminearum applications   

Five litres (5L) of tap water were poured in clean beakers 

and placed on a bench top in the laboratory for one hour to 

facilitate the release of excess chlorine. ASM granules 

(purchased from Syngenta (Pvt) Ltd, Halfway house, Johan-

nesburg, RSA) were weighed out according to the assigned 

treatments and dissolved in 1 L of tap water each. This was 

repeated for all treatments resulting in four ASM concentra-

tions and a negative control (tap water only, no ASM). For 

each treatment, the ASM solution was transferred into a 

clean and labelled 1 L polystyrene spray bottle. According 

to the ASM application specifications, the recommended 

dosage on tomato plants is 0.075 g/L. The treatments in this 

study were therefore derived from this recommended dos-

age. The resulting concentrations were: 0.075 g/L (100%, 

full strength), 0.0563 g/L (75%, three-quarter strength); 

0.0375 g/L (50%, half strength) and 0.019 g/L (25%, quarter 

strength). 

 Using a fine mist nozzle, the plants were sprayed 

with the ASM solutions until run-off at three application 

times [late boot (BBCH 45) (20), anthesis (BBCH 61) (20) and 

late boot and anthesis]. The treatments were applied sepa-

rately, away from other treatments, to prevent spray drift. 

This was repeated for all 13 treatments.  

 At anthesis, a F. graminearum conidia suspension 

was prepared using fully grown F. graminearum sensu stric-

to strain F20 cultures. This strain was obtained from a stock 

solution in the Discipline of Plant Pathology stock culture 

laboratory, University of KwaZulu-Natal, Pietermaritzburg, 

South Africa and was previously isolated from infected 

wheat heads in a wheat cultivation field. In each culture 

plate, 4 mL of sterile distilled water was poured and a flame

-sterilized L-bent glass rod was used to dislodge the myce-

lia. The suspension was shaken briefly and sieved through a 

sterile cheesecloth to remove mycelia and agar debris. Us-

ing a haemocytometer, the conidia concentration was ad-

justed to 1x105 conidia/mL and the solution was transferred 

into a clean 1 L polystyrene spray bottle. For all treatments, 

wheat heads were sprayed with a fine mist of the F. gra-

minearum strain F20 conidia suspension until run-off. For 

the late boot ASM treatments, F. graminearum was sprayed 

at anthesis. For the treatments where ASM was applied at 

anthesis, F. graminearum was sprayed 48 hrs after ASM ap-

plications. The wheat heads were covered with plastic bags 

for 24 hrs to enhance disease development. Disease severi-

ty was measured using a visual scale (21) and disease rat-

ings were recorded from first symptom appearance to com-

plete infection of the control treatment. 

 Before harvesting, seed maturity was monitored by 

sampling wheat spikelets at random throughout the field to 

determine whether the grains were ready for harvest. When 

all the plants had fully matured and had a golden-brown 

appearance, the wheat heads were harvested per treat-

ment replicate by cutting them off from the straws using a 

pair of scissors and were placed in appropriately labelled 

collection bags. The heads were dried in a ventilating oven 

set at 55 oC for 4 days, where they were continuously moni-

tored and repositioned every 2 days to prevent heat dam-

age of the seeds. Thereafter, the wheat heads were 

threshed and the seeds were transferred into appropriately 

labelled envelopes. The trial was repeated once. 

 The hundred seed weight (HSW) and percentage 

seed infection (PSI) were determined per treatment repli-

cate for the two experiments. For the PSI, the seeds were 

first surface sterilized by submerging them in 70% ethanol 

for 30 secs, followed by 30 secs in 2% sodium hypochlorite 

and then rinsed for 1 min in sterile distilled water. There-

after, the seeds were air-dried under the laminar flow for 10 

mins, cultured on freshly prepared PDA plates and incubat-

ed at 25 oC for 4 days. Since each treatment had five repli-

cates, each replicate had three plates of which each plate 

had 15 seeds. The experiment was repeated once resulting 

in 30 plates per treatment. The number of Fusarium-

infected seeds per plate was recorded and used to calculate 

the PSI. 

Mycotoxin analysis   

The target mycotoxins were DON and ZEA since they are the 
most prevalent mycotoxins in FHB infections. The roQTM 

QuEChERS kits KSO-8909 and KSO-9507 were used for sam-

ple extraction and dispersive Solid Phase Extraction (dSPE) 

respectively. These were purchased from Separations (Pvt) 

Ltd, Johannesburg, RSA. Mycotoxin extraction (22) was per-

formed with modifications.  

 Wheat seeds from the two experiments were pooled 

according to treatments resulting in 13 samples for myco-

toxin analysis. For each sample, the seeds were ground into 

fine powder using a Mikro-Feinmuhle-Cullati (MFC) plant 

grinder (22). A 5 g subsample was added into a 50 ml roQ 

QuEChERS extraction tube along with the following rea-

gents: Milli-Q water (10 ml), acetonitrile with 5% formic acid 

(10 ml) and the contents of the roQ QuEChERS extraction 

packet (KSO-8909) which consisted of 4.0 g MgSO4, 1.0 g 

Treat-
ment 

number 

ASM concen-
tration  

(%) 

ASM concen-
tration  

(g/L) 
ASM application time(s) 

1 25 0.019 Late boot stage (BBCH 45) 

2 25 0.019 Anthesis (BBCH 61) 

3 25 0.019 Late boot stage and anthesis 

4 50 0.038 Late boot stage (BBCH 45) 

5 50 0.038 Anthesis (BBCH 61) 

6 50 0.038 Late boot stage and anthesis 

7 75 0.056 Late boot stage (BBCH 45) 

8 75 0.056 Anthesis (BBCH 61) 

9 75 0.056 Late boot stage and anthesis 

10 100 0.075 Late boot stage (BBCH 45) 

11 100 0.075 Anthesis (BBCH 61) 

12 100 0.075 Late boot stage and anthesis 

13 0 (Control) 0.000 Anthesis (BBCH 61) 

Table 1. The acibenzolar-S-methyl (ASM) concentrations and application 

times applied on wheat plants in vivo.  
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NaCl, 1.0 g SCTD and 0.5 g SCDS (22).  

 The tube was shaken for 1 min by hand and then 

centrifuged at 4000 rpm (3000 g) for 5 mins (Beckman Coul-

ter®, Avanti® J-26 XPI centrifuge) (22). Six millilitres (6 ml) of 

the supernatant were transferred into a roQ QuEChERS 15 

ml centrifuge tube (KSO-9507) containing 900 mg MgSO4 

and 150 mg primary secondary amine (PSA) (22). The tube 

was shaken by hand for 30 secs and then centrifuged as 

above (22). Thereafter, 1 ml of the supernatant was filtered 

through a 0.45 m pore filter and transferred into a 1.5 ml 

autosampler vial (all purchased from Separations (Pvt) Ltd, 

Johannesburg, RSA) (22). This was repeated for all the sam-

ples and the vials were left open in a laminar flow cabinet 

overnight to dry (22).  

 The samples were analysed for the quantification of 

DON and ZEA using high performance liquid chromatog-

raphy (HPLC). The HPLC system consisted of an LC-2030 

pump connected to an LC-2030/2040 PDA detector, LC-2030 

controller and LC-2030 autosampler. Chromatographic sep-

arations were performed on a Kinetex® 5m Biphenyl 100A LC 

Column (100 x 2.1 mm) connected to a guard column Secu-

rityGuardTM filled with the same phase (2.1 to 4.6 mm) (all 

purchased from Separations (Pvt) Ltd, Johannesburg, RSA). 

The mobile phase consisted of aqueous 5 mM ammonium 

acetate with 0.1% acetic acid, 5 mM ammonium acetate in 

methanol with 0.1% acetic acid, acetonitrile and Milli-Q 

water. The flow rate was 0.20 mL/min and the injection vol-

ume was 50l. The retention times for DON and ZEA were 

2.563 and 10.193 mins respectively. Quantification was rela-

tive to external standards of 1-8 g/mL in acetonitrile. Three 

quantification readings were conducted per sample. 

Data analysis   

A general linear model (GLM) was used to run an Analysis of 

Variance (ANOVA) on the percentage inhibition data from 

the primary and secondary screening experiments. Disease 

severity data was used to calculate the Area Under the Dis-

ease Progress Curve (AUDPC) for all treatments (23) before 

subjected to ANOVA. If the ANOVA was significant (P ≤ 0.05), 

the means were separated using the Duncan’s multiple 

range test (DMRT) at 5% significance level using SAS soft-

ware Version 9.4 (24).  

 HSW, PSI and disease severity data were checked for 

homogeneity within the repeated trials and were then 

pooled according to treatments. Thereafter, an ANOVA was 

conducted on the pooled data and the treatment means 

were separated using the DMRT at a 5% significance level. 

Pairwise correlations were determined between AUDPC, 

HSW and PSI for the pooled data using the Spearman’s cor-

relation test. The rate of disease progress (r) was calculated 

using the Vanderplanks’ logistic equation (25) expressed 

below: 

 
where;   t1- initial day of rating 

 t2- final day of rating 

 x1-initial disease value 

x2– final disease value 

. 

Results  

Evaluation of ASM applications and application times   

Differences in disease severity levels amongst the treat-

ments were observed (Fig. 1 and Fig. 2). For example, at 16 

days post inoculation (dpi), the ASM treatment 0.019 g/L 

ASM applied at late boot had an average disease severity of 

40.17% whereas the control had an average disease severi-

ty of 70.00% (Fig. 1). The control (0 g/L ASM at anthesis) had 

the highest disease severity in all rating days during the 

trial (Fig. 2) with the final disease severity of 88.46%, thus 

the highest AUDPC, lowest average HSW and highest aver-

age PSI. 

 Higher ASM concentrations were more effective 

when applied at anthesis and lower concentrations at late 

boot (Table 2). Moreover, repeated applications (applied at 

both late boot and anthesis) did not improve disease reduc-

tion. These were not significantly different at p < 0.05. 

Differences between ASM concentrations were not signifi-

cant for the AUDPC and HSW but significantly different (p = 

0.003) for the PSI (Table 2). However, differences between 

growth stages were significant at p < 0.05 for all three pa-

rameters measured (Table 2). 

 The best treatment, providing the lowest AUDPC 

units, high average HSW and reduced average PSI was 0.075 

g/L ASM applied at anthesis. Following this were treatments 

0.019 g/L ASM at late boot and 0.0563 g/L ASM at anthesis 

respectively, providing effective disease reduction and high 

average HSW (Table 2). The calculated rate of disease pro-

gress (r) varied across all the ASM treatments and the con-

trol (Table 2). The interaction between the ASM concentra-

tions and the growth stages were significant for all three 

parameters measured (Table 2). 

Correlation analysis   

Pairwise correlations between AUDPC, HSW and PSI are 

presented in Table 3. Significant correlations were ob-

served for all the pairwise combinations. A week positive 

correlation was observed between AUDPC and PSI (r = 0.33; 

p = 0.0001). However, a moderate and very week negative 

correlation was observed between AUDPC and HSW (r = - 

0.41; p < 0.0001) and HSW and PSI (r = - 0.18; p = 0.04) re-

Fig. 1. Visual differences in disease severity levels between two treatments at 
16 dpi; (A) ASM at 0.019g/L ASM applied at late boot stage compared to (B) 
control treatment with no ASM application  
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spectively. The highest negative correlation observed was 

between AUDPC and HSW. 

Mycotoxin analysis   

DON concentrations ranged from 13.45-19.45 ppm whereby 

the control had a DON concentration of 16.56 ppm (Table 

4). On the other hand, ZEA concentrations ranged from 1.92

-9.48 ppm whereby the control had the third lowest ZEA 

concentration (2.98 ppm) (Table 4). Three treatments, 

namely 0.019 g/L ASM at late boot stage, 0.0563 g/L ASM at 

anthesis and 0.075 g/L ASM at late boot stage, did not re-

duce DON concentration when compared to the control. 

However, only two treatments, namely 0.019 g/L ASM at 

late boot stage and 0.0563 g/L ASM at anthesis, reduced 

ZEA concentration in harvested grain. 

 

Discussion   

ASM is a plant resistance activator that has been used in 

many plants to incite resistance against various pathogens 

(18). ASM is translocated systemically in plants and follows 

ASM Concentrations (g L-1) Growth Stage(s) AUDPC Units Average HSW (g) Average PSI (g) (r) 

0.019 Anthesis 460.31±42.2bc 2.12±0.17bcd 69.00±4.26cd 0.20 

0.019 Late boot 348.65±47.47c 2.42±2.0.07abc 65.67±8.34cd 0.22 

0.019 Anthesis and Late boot 412.61±20.28bc 2.12±0.11abcd 62.00±3.83cd 0.18 

0.0375 Anthesis 509.38±41.29b 2.55±0.10a 66.00±4.38cd 0.21 

0.0375 Late boot 364.65±33.41c 2.06±0.17cd 67.89±4.70cd 0.21 

0.0375 Anthesis and Late boot 432.84±48.04bc 2.26±0.15abcd 75.11±2.91bc 0.24 

0.0563 Anthesis 375.44±38.62c 2.35±0.17abc 59.44±5.31d 0.28 

0.0563 Late boot 404.60±19.73bc 2.22±0.07abcd 74.67±3.13bc 0.24 

0.0563 Anthesis and Late boot 457.20±30.42bc 1.94±0.08d 89.78±1.89a 0.20 

0.075 Anthesis 340.54±47.71c 2.46±0.13ab 68.81±4.48cd 0.22 

0.075 Late boot 438.12±22.06bc 2.56±0.08abc 84.00±2.71ab 0.21 

0.075 Anthesis and Late boot 627.83±41.65a 2.09±0.11bcd 72.11±4.58bcd 0.17 

0 (Control) Anthesis 718.14±34.43a 1.93±0.03d 93.67±1.40a 0.22 

Effects           

ASM Concentrations F value 1.86 0.82 2.99   

  P value 0.14 0.49 0.03   

Growth Stages F value 6.57 3.98 4.47   

  P value 0.002 0.02 0.01   

ASM Concentrations*Growth Stages F value 5.44 2.30 3.95   

  P value < 0.0001 0.03 0.001   

%CV   27.61 17.38 19.94   

Table 2. The Area Under the Disease Progress Curve (AUDPC), average Hundred Seed Weight (HSW) (g), average Percentage Seed Infection (PSI) (%) and rate of 

disease progress (r) for the 12 acibenzolar-S-methyl (ASM) treatments and Control tested against Fusarium head blight (FHB) of wheat.  

Values followed by the same superscript letter are statistically identical according to the Duncan’s Multiple Range Test (DMRT) at a 5% significance level  

Table 3. Pairwise correlation between the Area Under the Disease Progress 
Curve (AUDPC), Hundred Seed Weight (HSW) and Percentage Seed Infection 
(PSI) for the different acibenzolar-S-methyl (ASM) treatments against Fusari-

um head blight (FHB).  

  AUDPC HSW PSI 

AUDPC 1.00 - 0.41* 0.33** 

HSW   1.00 - 0.18*** 

PSI     1.00 

Key: (*) = significant at p < 0.0001; (**) = significant at p = 0.0001; (***) = signifi-
cant at p = 0.0445.  

Table 4. Concentrations of deoxynivalenol (DON) and zearalenone (ZEA) in harvested grains for the 12 treatments and the control. Percentage reduction is in 
comparison with the Control treatment  

Treatment 
DON ZEA 

Concentration (ppm) Percentage reduction (%) Concentration (ppm) Percentage reduction (%) 

0.019 gL-1 ASM at anthesis 13.57bc 18.09 5.59abcdef * 

0.019 gL-1 ASM at late boot stage 19.45a * 2.39ef 19.83 

0.019 gL-1 ASM at late boot stage and anthesis 16.52abc 0.25 7.90abc * 

0.0375 gL-1 ASM at anthesis 13.45c 18.79 9.48a * 

0.0375 gL-1 ASM at late boot stage 15.04bc 9.18 4.60bcdef * 

0.0375 gL-1 ASM at late boot stage and anthesis 16.53abc 0.19 3.77cdef * 

0.0563 gL-1 ASM at anthesis 17.00ab * 1.92f 35.79 

0.563 gL-1 ASM at late boot stage 14.50bc 12.46 6.78abcde * 

0.0563 gL-1 ASM at late boot stage and anthesis 16.42abc 0.88 7.63abcd * 

0.075 gL-1 ASM at anthesis 14.33bc 13.47 8.87ab * 

0.075 gL-1 ASM at late boot stage 16.60abc * 4.73bcdef * 

0.075 gL-1 ASM at late boot stage and anthesis 14.90bc 10.02 6.29abcdef * 
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a SA signalling pathway thus inducing SAR (18). Most ASM 

treatment concentrations used were able to reduce the 

disease severity compared to the control. 

 The disease severity for all the treatments increased 
steadily throughout the duration of the trials where the 
control had the highest disease severity in all rating days. 
According to the calculated AUDPC, the best ASM treatment 
was 0.075 g/L ASM at anthesis. A disease reduction of up to 
28.97% compared to the control was achieved by using this 
ASM concentration, thus indicating that the application of 
ASM can reduce FHB severity. This treatment (0.075 g/L 
ASM at anthesis) also had the highest average percentage 
reduction in AUDPC units (52.60%) compared to the con-
trol. This is also the recommended ASM concentration 
(0.075 g/L) for applications on tomato plants. 

 As a result of FHB infection, Fusarium-damaged ker-
nels (FDKs) are produced which have a shrivelled and dis-
coloured appearance and are fairly light-weight (26). This 
leads to yield and quality losses as these grains can no 
longer be used as either food, feed or seed (5, 9). A third-
highest average HSW was obtained for the best ASM treat-
ment (0.075 g/L ASM at anthesis) as well as the sixth lowest 
average PSI. This suggests that apart from reducing disease 
severity, ASM application improved crop yield by reducing 
the number of FDKs. This also agrees with the pairwise cor-
relation analysis conducted in this study which revealed 
that HSW had a negative correlation with AUDPC and PSI, 
whereas a positive correlation was observed between the 
AUDPC and PSI.  In this study, the best treatment was ex-
pected to have the lowest PSI. However, this was not the 
case. This could be attributable to latent infections or post-
harvest disease spread which could lead to an increase in 
PSI.  

 The higher ASM concentrations (0.075 g/L and 0.0563 
g/L) were more effective when applied at anthesis whereas 
the lower ASM concentrations (0.0375 g/L and 0.019 g/L) 
were more effective when applied at the late boot stage. 
Disease protection usually begins between 4 to 6 days after 
ASM application on tomatoes (27). Therefore, it was ex-
pected that earlier application [at late boot (14 days before 
anthesis in this study)] would provide more disease reduc-
tion. For the higher ASM concentrations to effectively re-
duce disease severity when applied 48 hrs before F. 
graminaearum, there could be a possible immediate or 
faster induction of basal resistance by SAR.  

 Wheat spikes inoculated with only F. graminearum 
triggered SA signalling after 12 hrs of pathogen inoculation 
(14). It was concluded that SA signalling could be responsi-
ble for basal resistance against F. graminearum in wheat 
(14). Therefore, it is possible that higher ASM concentra-
tions lead to faster accumulation of the elicitor in the plant 
and thus primes the plants for disease resistance faster 
than at lower concentrations. This could mean that at low-
er ASM concentrations, more time is required for the uptake 

and accumulation of the elicitor which could result in the 
slow translocation of the elicitor throughout the plant and 
thus delayed resistance priming of the plants against FHB 
infection.  

 Sodium salt of salicylic acid (NaSA) and isonicotinic 
acid (INA), were reported to significantly reduce FHB severi-

ty compared to the untreated control when sprayed three 

days prior to inoculation with Gibberella zeae (28). These 

inducers as well as β-amino-n-butyric acid (BABA), signifi-

cantly reduced FHB severity when low concentrations (1 

mM) were applied 10 days prior to pathogen inoculation. 

This is in alignment with the performance of ASM treat-

ments reported in the present study where lower concen-

trations were more effective when applied at late boot 

stage and higher concentration at anthesis (48 hrs prior to 

pathogen inoculation). However, in another study there 

was no significant effect on 100-kernel weight associated 

with the application of resistance inducers (28).  

 A more enhanced disease reduction was expected in 

treatments where ASM concentrations were applied twice 

(at the late boot stage and at anthesis) (repeated applica-

tion treatments) due to the increased frequency of ASM 

applications (27). However, the repeated application treat-

ments for the higher concentrations (0.075 g/L and 0.0563 

g/L) had higher AUDPC values compared to their single ap-

plications. It is possible that the increased frequency of 

ASM applications resulted in increased plant stress thus 

making the plants more susceptible to infection instead of 

priming them for resistance as expected. Moreover, ASM 

applications in the repeated application treatments were 

within the recommended application interval times (not 

less than 7 days) for tomato plants set by Syngenta 

(information found on the product label of ASM). Therefore, 

the application of higher ASM concentrations twice in 14 

days could have led to plant toxicity thus encouraging FHB 

disease development. Moreover, in a study where ASM con-

centrations at various application intervals were tested 

against Bacterial spot in tomato plants, the ideal applica-

tion intervals were 8 and 10 days (27). 

 At lower ASM concentrations (0.0375 g/L and 0.019 g/

L), the repeated application treatments had AUDPC values 

higher than those of late boot applications but lower than 

those of anthesis applications. Although they were more 

effective than anthesis applications, repeated application 

treatments did not improve disease reduction. Nonethe-

less, the repeated application treatments for the lower ASM 

concentrations were more effective compared to those of 

the higher concentrations. 

 From the mycotoxin analysis, most ASM treatments 

were able to reduce DON concentrations whereby the best 

DON reduction was by the treatment 0.0375 g/L ASM at an-

thesis (18.79%). This treatment had one of the highest 

AUDPC values and interestingly a high HSW and low PSI. 

According to literature, a reduction in disease severity most 

Control 16.56abc 0.00 2.98def 0.00 

F value 2.66   3.06   

P value 0.02   0.0082   

%C.V. 11.19   43.49   
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likely results in DON reduction and high seed weight (1, 5, 

9). Therefore, treatments with high AUDPC values were ex-

pected to have low HSW and high PSI but this was not the 

case. 

 Three treatments had DON concentrations higher 

than that of the control. These include 0.019 g/L ASM at late 

boot stage, 0.0563 g/L ASM at anthesis and 0.075 g/L ASM at 

late boot stage. Two of these treatments, namely 0.019 g/L 

ASM at late boot stage and 0.0563 g/L ASM at anthesis, were 

the only treatments that reduced ZEA concentration 

(19.83% and 35.79%, respectively). However, most treat-

ments had ZEA concentration higher than that of the con-

trol. Therefore, there was no apparent correlation between 

ZEA concentrations and other tested parameters in this 

study. 

 Research with ASM treatments on crops such as Cicer 

arietinum L. led to increased accumulations of polyphenols 

and anti-oxidants. These include ascorbate and glutathi-

one, which could protect cells during stress events and im-

prove tolerance to pathogens attack (29, 30). In response to 

ASM treatments, metabolomic studies have also identified 

changes in amino acids, organic acids and sugar accumula-

tions which include glucose, malic acid and sucrose (31). 

Reactive oxygen species (ROS) are essential second mes-

sengers in stomatal-based defence (32). Application of ASM 

on Japanese radish resulted in induced stomatal closure by 

inducing ROS production through peroxidase. The stomatal 

closure induced by the ASM treatment was effective in pre-

venting invasion of Japanese radish by Pseudomonas can-

nabina pv. alisalensis. 

 In the present study, the relationship between 

AUDPC and mycotoxin (DON and ZEA) reduction was incon-

sistent. However, to the best of our knowledge, this is the 

first report of ASM being tested against FHB and mycotoxin 

reduction caused by F. graminearum on wheat. This study 

reveals the potential of ASM applications as an effective 

control strategy of FHB. Although ASM was effective in re-

ducing FHB severity on wheat plants, further research is 

required to better understand the effect of ASM on myco-

toxin concentrations in grains.  

 

Conclusion   

The application of ASM at small doses effectively reduced 

FHB disease severity and provided inconsistent DON reduc-

tion. Regardless of the observed efficacy, the integration of 

ASM with other effective control strategies could further 

provide enhanced FHB reduction. Moreover, field trials to 

test the spectrum of activity of ASM in various environ-

ments or in environments similar to those present in wheat 

commercial cultivation areas is crucial.   
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