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Abstract   

White radish, scientifically known as Raphanus sativus L., is a yearly vegeta-

ble. Currently, it was being grown and widely used in the world, including 

Vietnam. These plants have been used as food or food processing. The os-

motic treatment of vegetables involves the removal of water from plants in 

which the solids from the osmotic solution are transported to the plant ma-

terial by osmosis. By this procedure, sucrose and saline solution are usually 

performed. White radishes were dehydrated in different hypertonic solu-

tions by combined sucrose and NaCl at three different concentrations, in-

cluding 9 runs. Mass transfer behaviour was applied according to three com-

mon models such as Fick’s second law, Weibull and Peleg’s equations based 

on the change of moisture and solid content of white radish during osmotic 

dehydration. The obtained results showed that the mass transfer was fast at 

initial stage and became slowly at the later stage. The effective moisture 

(Dm) and solid diffusivities (Ds) were ranged from 1.0186 to 1.2826x10-8 and 

from 1.0692 to 2.3322x10-8 (m2/s) respectively. The Peleg’s equation was 

found to be the best fitting for water loss and solid uptake thanks to the 

high determination coefficient (>97.64%) and the low average relative error 

(<3.174%). Raised up solution concentration resulted in higher water loss 

and mass gain.   
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Introduction   

White radishes are popular and widely cultivated root vegetables in the 

world, which occupy an important place in human nutrition. The consump-

tion of white radishes has attracted research interest because they are rich 

in valuable nutritional components as carbohydrate, vitamin and minerals 

which promote human health (1). The vitamin C in white radish is high 

which has a positive effect as strengthen and resistance con the body (2, 3). 

White radish is also known as “white ginseng”, because of its many good 

uses for human health and they also have a positive influence on preventing 

diseases (2–4). It contains glucosinolates and phenolic compounds which 

were function as anticancer, antibacterial, antioxidant (5), liver detoxifica-

tion (6). In recent years, intermediate moisture foods have been developed 

for human use, which draws attention from many researchers. The food-

stuffs are considered as an intermediate product, which was produced by 

osmotic dehydration. These products have several advantages such as a 

higher nutritional content than any other treatment method because os-

 

RESEARCH ARTICLE 

PLANT SCIENCE TODAY 
ISSN 2348-1900 (online) 
Vol 9(1):  191–197 
https://doi.org/10.14719/pst.1422 

HORIZON  
e-Publishing Group 

Evaluation of water loss and solute uptake during osmotic 
treatment of white radishes (Raphanus sativus L.) in salt-
sucrose solution    
Nguyen Minh Thuy1*, Nguyen Thi Ngoc Tham1, Vo Quang Minh2, Pham Thanh Vu2 & Ngo Van Tai1   

1Department of Food Technology, College of Agriculture, Can Tho University, Can Tho city, 900000, Vietnam 
2Department of Land Resources, College of Environment and Natural Resources, Can Tho University, Can Tho city, 900000, Vietnam    
 

*Email: nmthuy@ctu.edu.vn     

http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://horizonepublishing.com/journals/index.php/PST/indexing_abstracting
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14719/pst.1422
https://crossmark.crossref.org/dialog/?doi=10.14719/pst.1422&domain=horizonepublishing.com
http://www.horizonepublishing.com/
http://horizonepublishing.com/journals/index.php/PST/open_access_policy
https://doi.org/10.14719/pst.1422
mailto:nmthuy@ctu.edu.vn


 192    THUY  ET AL  

https://plantsciencetoday.online 

motic dehydration has little effect on the various internal 

components of food (7). In addition, it could use immedi-

ately or for further processing. Therefore, applying osmot-

ic dehydration is the right choice for white radish so that 

they can keep their good properties but also can produce 

products with high nutritional and sensory value.  

 Osmotic treatment or dehydration is an important 
and efficient process in food processing to save energy and 

money (7). During this process, the product is immersed in 

the hypertonic solution which enables the partial removal 

of water (8). Due to the difference of osmotic pressure be-

tween products and solutions that made to occurs the sim-

ultaneous counter-current mass transfer includes water 

loss and solid uptake (9, 10). The choice of an osmotic 

agent should consider because it affects not only the kinet-

ics of mass transfer properties but can also be important 

for the sensory and nutritional value of the product. Char-

acteristics commonly found in osmotic agents are low mo-

lecular weight, acceptable taste, smell and stability to oth-

er food ingredients. Moreover, the available and the price 

of used materials also need to consider, therefore using 

sugar and salt or combined two of them is a good choice 

for the dehydration process. As far as the hypertonic solu-

tion is concerned, the most important factors are the 

chemical composition and the concentration of the solu-

tion (11). 

 Various models have been developed by research-

ers to predict the mass transfer behaviour during the os-

motic process. To describe the mass transport phenome-

na, Fick’s second law has been developed as a mathemati-

cal model by various researchers (12). It has been devel-

oped two-parameter absorption equation based on Fick’s 

law of diffusion (13). However, some models are simple 

and validate the experimental data, but their use is limited 

to certain cases and they do not take into account the 

mechanism in which the results depend, the Weibull equa-

tion also developed. Some other models with very com-

plex mechanisms find it difficult to represent the experi-

mental validation owing to the number of parameters in-

volved in the models. The work aimed to investigate a pre-

dictive model of the water loss and solute uptake during 

the osmotic dehydration of white radishes and examine 

the predictive capacity of Fick, Weibull and Peleg’s equa-

tion to the experimental data.    

 

Materials and Methods   

Sample preparation  

The white radishes (Raphanus sativus L.) were bought at 
local market in Can Tho city, Vietnam. After collection, 

these were washed, peeled and cut into shape (length x 

diameter = 12 x 4 cm) as a constant parameter during os-

motic treatment. 

 The hypertonic solutions were prepared by random-

ized combining three levels of sugar (10; 12.5; 15%w/v) and 

salt (2; 3; 4%w/v). 

 The prepared white radishes were immersed in 
treatment solution at ambient temperature with a ratio of 

sample: solution was 1:20 (w/v) in order to avoid the influ-

ence of the changes in the concentration of solution at 

osmotic period. The duration of treatment was 7 hrs; the 

sample was randomly taken out after hourly interval. The 

moisture content and the solid content measurement of 

treated sample was measured after washing the osmotic 

agents and removing the surface water by absorbent pa-

per to give the exactly results. 

Mass transfer kinetics  

The calculation of the water loss (WL) and solid gain (SG) 

were followed by Equations 1 and 2 based on the moisture 

and the solid content of sample respectively (14). 

   (1) 

 

   (2) 
 

where M0 and Mt are the initial weight (g) and the weight at 

time (t) of the treated white radishes respectively (g); X0 

and Xt  are the initial moisture content (%) and at time (t) 

of the treated white radish respectively; S0  and St  are the 

initial and time (t) solid content of the treated white radish 

respectively (%). 

 The moisture and solid ratio (MR and SR, respective-

ly) were calculated as described by Doymaz and İsmail (14) 

(Equation 3 and 4). 

              (3) 

 

               (4) 

 

where WL and SG are the water loss and solid gain when 

the osmotic dehydration processes are in equilibrium. 

Equation 5 and 6 for calculation of WLe and SGe respective-

ly (15).  

     (5) 

 

      (6) 

where S1 and S2 are rate constants and t is the time of each 
measurement.  

Fick’s second law of diffusion   

Fick’s second law of diffusion was used to describe the 

mass transfer kinetics characteristics during the osmotic 

dehydration; however, for long osmotic periods in this 

study, the models could be simplified into Equation 7 (16). 

         (7) 

 

where Dm and Ds are the effective moisture and solid diffu-

sivity (m2s-1) respectively, t is the osmotic dehydration time 

(s) and L is the half-thickness of the samples (m). 

Weibull model   

Weibull mathematical model was selected to fit the experi-

ment data from osmotic dehydration process based on 

previous researches (17, 18) (Equation 8). 
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      (8) 

where α and β are the shape and scale parameters of the 

Weibull model respectively. 

Peleg’s equation  

The Peleg’s equation was applied to describe the water 

loss/solid uptake curves that asymptotic equilibrium (13), 

which proposes a two parameter non-exponential model as 

described by the Equation 9 (19, 20). 

          (9) 

 

where Mt is the amount of water or solids at time t, g;  M0is 

the initial amount of water or solids, g; t is the time, h; k1 

and k2 are Peleg’s constants. 

The Statgraphics centurions XV.I software was 

used for a non-linear regression analysis. The coefficient of 

determination (R2) was used to evaluate the goodness of fit 

and was calculated in this study by using the Equation 10. 

 

      (10) 

The average relative error was used as a criterion to evalu-

ate the best fitting (Equation 11) (21). 
 

          (11) 

 

where P is the average relative error, dimensionless; n is the 

number of experimental data; Ve is the experimental value 

(water loss or salt gain); Vc is the calculated value (water 

loss or salt gain).  

 

Results and Discussion   

The two main processes during osmotic dehydration are 

water loss and solid gain, the calculation of these processes 

is based on the change of moisture and solid content of 

white radishes. It could see clearly that the high rate of wa-

ter removal and solid uptake was observed at the initial 

stage, the slower process was followed in the later stage 

(Fig. 1). It also found that moisture loss, solid gain rise as 

the immersion time proceeds and reaches equilibrium con-

dition after a particular period. Comparatively the solid 

gain was lower than moisture loss in all cases. The signifi-

cant difference between the pressure of hypertonic solu-

tion and the food’s cell membrane drives the movement of 

water and solid. The rapid loss at the beginning of the pro-

cess is apparently due to the large pressure gradient be-

tween the dilute sap of the fresh fruit and the surrounding 

hypertonic medium (22, 23). The concentration of the solu-

tion is difference that resulted in the different in osmotic 

pressure gradients and hence, the higher concentration 

used made the higher water loss (or mass uptake) during 

the treatment period. The results also showed that by 

choosing the appropriate medium with a higher concentra-

tion, it is possible to promote the dehydration process. 

However, the content of solids uptake was also considered. 

For the mixed permeation medium, the simultaneous effect 

of salt and sugar on white radish mass transfer was also 

observed (21). 

 The use of sodium chloride promotes the dehydra-

tion process due to its ability to reduce water activity com-

bined with its low molecular weight allowing higher pene-

tration into food structures. However, the use of salt is also 

limited because salt gives the product a salty taste, result-

ing in a decrease in sensory value after the process ends. In 

addition, using sugar in the solution not only reduces the 

saltiness but also sucrose allows the formation of a sugar 

surface layer, which becomes a barrier to water removal 

and solute absorption (21, 24). Selected experimental and 

predicted curve for both mass transfer processes as water 

loss and solid uptake data based on three common equa-

tions including Peleg, Fick and Weibull equations. 

 The mass transfer behaviour followed Fick’s equa-

tion and the equation parameters were calculated and 

shown in Table 1 and 2. It can be seen that the rate con-

stants and equilibrium water loss values of white radish 

during osmotic treatment under different concentrations of 

agents used varied from 0.4859-0.8105 and 19.4668-

26.6833% respectively, whereas the obtained results of the 

solid gain process were 0.7453-2.1429 and 7.6247-8.7310% 

corresponding to the rate of constant and equilibrium solid 

gain. A comparison of these data indicates that the value of 

solid gain is lower than those of water loss, it was in agree-

ment with the earlier results (24). Diffusion is improved by 

higher solute concentration in osmotic solution. The effec-

tive moisture (Dm) as well as solid diffusivities (Ds) were 

ranged from 1.0186 to 1.2826x10-8 and from 1.0692 to 

2.3322x10-8(m2/s) respectively. This variability in diffusion 
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coefficient depends on the experimental conditions and 

procedures used for the determination of the moisture 

diffusivity, as well as on the data treatment methods, the 

product’s properties, composition, physiological state, and 

heterogeneity of its structure. These values are within the 

range of diffusion value (from 10−12 to 10−8 m2/s) normally 

expected for dehydrated foods (21, 25). However, it is diffi-

cult in comparison of diffusivities reported in previous re-

search because of the different methods of estimation but 

also the models conducted with the varieties of the food 

matrix, physical structure and food composition.  

 Weibull model based on the change of moisture and 

solid content of white radish during the osmotic period, the 
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Fig. 1. Water loss (WL, %) and solid gain (SG, %) of white radishes during osmotic treatment.  

Table 1. Water loss behaviour of white radishes during osmotic treatment by Fick’s equation 

Salt (%) Sucrose (%) S1 WL­e Dmx 10-8 (m2/s) R2 (%) P (%) 

2 

10 0.6666 19.5724 1.2111 97.19 5.014 

12.5 0.6875 21.4306 1.2826 97.28 5.323 

15 0.6264 26.6833 1.1565 96.60 4.173 

3 

10 0.5858 19.3713 1.2406 96.49 6.122 

12.5 0.8105 23.2262 1.4481 96.13 5.788 

15 0.6376 26.4589 1.2842 98.57 4.330 

4 

10 0.4859 19.4668 1.0806 98.32 5.115 

12.5 0.4996 27.3550 1.0186 98.99 3.175 

15 0.6330 32.4554 1.1756 98.27 3.993 

Note: WLe is the water loss in equilibrium; S1 is rate constants; Dm is the effective moisture diffusivity  

Salt (%) Sucrose (%) S2 SGe Ds x10-8(m2/s) R2 (%) P (%) 

2 

10 0.7453 7.6247 1.3824 90.5730 7.618 

12.5 0.7733 8.5889 1.1483 97.1347 3.094 

15 1.0129 8.6652 1.3854 96.4776 3.887 

3 

10 1.0210 7.9465 1.2752 97.4329 2.753 

12.5 0.7758 8.7310 1.0692 97.8380 3.232 

15 2.1429 8.4264 1.6912 94.9184 2.704 

4 

10 1.0470 8.6889 1.2500 96.8199 3.309 

12.5 1.1095 8.5753 1.4478 95.2097 3.869 

15 2.0461 8.5141 2.3322 90.8908 4.886 

Table 2. Solid gain behaviour of white radishes during osmotic treatment by Fick’s equation  

Note: SGe is the solid gain in equilibrium; S2 is rate constants; Da is the solid diffusivity 
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value of scale (αw & αs) and shape (βw & βs) parameters of 

moisture content and solid content are shown in Table 3. 

The value of αw and αs ranged from 0.7089 to 0.8054 and 

from 0.5419 to 0.7849 hrs respectively. It was also observed 

that the range of βw and βs corresponded to 2.3000-3.5184 

and 0.8636-2.4189as was found in some osmotic research in 

apple (26) and mushrooms (27). The Weibull distribution is 

reduced thus leading to a shape parameter (α) value lower 

than 1. Variation of parameters was analysed for variance 

between the effects of sugar and salt concentrations used. 

In these cases, the results showed that both the shape and 

scale parameters were affected by the salt and sugar con-

centrations in the osmotic solution. In general, the measure 

of change in moisture and dry matter content varies in-

versely with the concentration of salt and sugar in the solu-

tion. The variation of parameter α could be compared with 

the effective diffusion coefficient of the Fick diffusion model 

since those two parameters are kinetic constants for each 

model (27). The shape parameter is related to the velocity 

of the mass transfer at the beginning, the lower is the β val-

ue, the faster the water loss rate at the beginning. High salt 

concentration reduces their water holding capacity during 

salting of milkfish (28), cod and salmon (29). 

 Like previous studies, the change of moisture reduc-

tion and solid uptake curve is typically found (30, 31, 32). 

The non-linear regression analysis was applied for calcula-

tion of the Peleg’s parameters, which are shown in Table 4. 

It was observed that an inverse relationship between k1 and 

solution concentration can be observed in most of the actu-

al data, except for solutions is combined with 2% salt and 

10% sugar. The parameter 1/k1 describes the initial mass 

exchange rate, the lower k1 indicates the higher mass trans-

fer. The higher osmotic agents’ concentration in solution 

promoted the higher initial mass transfer. This behaviour 

could be due to a cellular response to the osmotic pressure 

increment in the osmotic process of apple in salt-sucrose 

solutions (33). Similar findings have been observed in earli-

er studies (34). 

 The osmotic process is simultaneous processes as 

water reduction and mass uptake. Regarding solid gain by 

using the solutions evaluated, the results showed that 

there is a direct relationship between solution concentra-

tion and the ability to boost solid gain during an osmotic 

process. The equilibrium points of osmosis are reaching 

when the gradient pressure of product and solution be-

come equal. The k2 parameter did not describe a trend with 

the raise of concentration for water loss, it was described as 

the equilibrium mass transfer point. Adding sucrose to the 

solution resulted in the increase of the parameter for water 

loss, while salt gain showed the inverse behaviour. Howev-

er, higher concentrations gave declined k2 for solid gain. 

The above is consistent with that, the difference in osmotic 

potential between the solution and the sample will result in 

a higher rate of solute and water diffusion (21, 35).  

 Experimental data within the dynamic segments of 

SG and WL and away from equilibrium conditions were 

used to evaluate the adequacy of the Fick, Weibull and 

Peleg’s equation. As the data was shown in Table 1-4, which 

present three equations’ parameter obtained from non-

linear regression analysis. The coefficient of determination 

Table 3. Mass transfer characteristics of white radishes during osmotic dehydration by Weibull’s equation  

Salt (%) Sucrose (%) 
Water loss Solid gain 

αw βw R2 P (%) αs βs R2 P (%) 

2 

10 0.7163 2.6857 98.12 2.889 0.7849 2.4189 97.79 3.169 

12.5 0.7485 2.6400 99.11 2.117 0.6498 2.3457 98.29 2.474 

15 0.7089 2.8390 98.54 2.486 0.6709 1.8750 99.15 1.831 

3 

10 0.8054 2.9993 99.56 1.360 0.6245 1.8155 98.84 2.149 

12.5 0.7499 2.3000 99.27 1.854 0.6016 2.3255 97.93 2.833 

15 0.7423 2.7557 99.46 1.551 0.5419 0.8636 99.07 2.003 

4 

10 0.7863 3.5184 99.34 1.661 0.6155 1.7541 98.04 2.901 

12.5 0.7323 3.4969 99.36 1.611 0.6611 1.7213 99.10 1.901 

15 0.7214 2.8359 99.17 1.901 0.6070 1.0022 98.88 2.264 

Note: α and β are the shape and scale parameters of the Weibull model  

Table 4. Mass transfer characteristics of white radish during osmotic treatment by Peleg’s equation  

Salt (%) Sucrose (%) 
Water loss Solid gain 

k1 k2 R2 P (%) k1 k2 R2 P (%) 

2 

10 1.642 0.943 98.41 2.777 1.652 0.883 97.64 3.174 

12.5 1.731 0.906 99.03 2.131 1.314 0.984 98.91 1.841 

15 1.709 0.952 98.89 2.202 1.142 0.945 99.01 1.913 

3 

10 2.141 0.858 99.44 1.417 1.028 0.980 99.21 1.725 

12.5 1.538 0.896 99.06 1.989 1.197 1.023 98.97 1.752 

15 1.792 0.911 99.41 1.627 0.521 0.979 98.88 2.183 

4 

10 2.392 0.881 99.36 1.627 0.978 0.987 98.61 2.236 

12.5 2.159 0.943 99.59 1.179 1.042 0.949 99.04 1.829 

15 1.760 0.936 99.31 1.687 0.643 0.944 98.22 2.484 

Note: k1 and k2 are Peleg constants  
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of the Fick, Weibull and Peleg’s equation ranging 96.13-

98.99%, 90.19-97.84%; 98.12-99.56%, 97.79-99.15%; 98.41-

99.59%, 97.64-99, 21% for SG and WL respectively, indicat-

ed that a good fit to the experimental data. The average 

relative error (P, %) values for each experimental condition 

investigated are also given. The criteria for selected model 

are the high values of R2 and the small values of P. Besides, 

the complex of model is also considered, the models with 

very complex mechanisms find it difficult to represent the 

experimental validation owing to the number of parame-

ters involved in the models. Based on the standard criteria 

suggest that Peleg’s equation adequately describes mass 

transfer kinetics terms during osmotic dehydration of white 

radishes at given solution concentrations. In fact, in Figure 

2a & 2b, lines representing the fit of the Peleg’s equation to 

the experimental data are plotted with the high correlation.  

 

Conclusion   

The influence of water loss and solid absorption rate in the 

osmotic dehydration of white radish was directly related to 

the osmotic solution concentration, express from mass 

transfer characteristics. Peleg’s equation gave the best fit-

ting for water loss and solid uptake experimental data and 

adequately used in describing the kinetics of mass transfer 

at the studied range. Therefore, this equation could be ap-

plied to simulate the kinetics of mass transfer during os-

motic dehydration process in the range of salt/sugar solu-

tion that was investigated.   
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