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Abstract  

The combination of yeast antagonists and Acibenzolar-S-Methyl (ASM) was 

tested against Fusarium graminearum on a spring wheat cultivar PAN3471. 

Two strains of Papiliotrema flavescens (Strains WL3 and WL6) and a strain of 

Pseudozyma sp. (MGO1) were combined with full strength ASM at anthesis, 

half strength ASM at anthesis and quarter strength ASM at late boot stages. 

The yeast and ASM treatments were applied prior to F. graminearum inocu-

lation and disease progress was assessed over time. The combination of 

yeast and ASM treatments effectively reduced Fusarium Head Blight (FHB) 

severity and deoxynivalenol (DON) concentration compared to when the 

treatments were used alone. A positive correlation was observed between 

the Area Under Disease Progress Curve (AUDPC) and Percentage Seed Infec-

tion (PSI) (r = 0.44) whereas a negative correlation was observed between 

AUDPC and Hundred Seed Weight (HSW) (r = -0.77) and PSI and HSW       (r = -

0.44). The best combination treatment providing the highest reduction in 

final disease severity (41.83%), high HSW and moderate PSI was 0.075 g/l 

ASM at anthesis plus P. flavescens strain WL3. The highest DON reduction 

(19.35%) was by the treatment 0.075 g/l ASM at anthesis plus P. flavescens 

strain WL6. The best treatment was P. flavescens combined with 0.075 g/l 

ASM at anthesis. Although Pseudozyma sp. strain MGO1 did not provide the 

best FHB and DON reduction, its combination with ASM application im-

proved disease control efficacy. To the best of our knowledge, this study 

presents the first report of the combination of P. flavescens and ASM in the 

management of FHB caused by F. graminearum in wheat plants.  
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Introduction  

One of the major effects of Fusarium Head Blight (FHB) in crops is the pro-

duction of mycotoxins in infected grains (1-3). These mycotoxins are a 

threat to human and animal health and have been reported to increase dis-

ease severity during infection by possibly disabling the plants’ natural de-

fence mechanisms (2, 4, 5). FHB infection is accompanied by the production 

of Fusarium-Damaged Kernels (FDKs) which cannot be used as either food, 

feed or seed (5, 6). The mycotoxins that are produced by F. graminearum 

[teleomorph Gibberella zeae (Schwein.) Petch], a predominant causal agent 

of FHB, are deoxynivalenol (DON) (and its derivatives), nivalenol (NIV) (and 

its derivatives) and zearalenone (ZEA) (5, 7, 8). Apart from DON being the 
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least harmful type B trichothecene mycotoxin, it is the 

most frequently detected mycotoxin and thus an indicator 

for mycotoxin contamination in FHB-infected grains (3, 4, 

9). Previous studies indicate that pre-harvest control of 

FHB infection and development is the most promising 

means of reducing mycotoxin contamination on grains (5, 

6, 10). This is because mycotoxin detoxification methods 

have limited efficacy on harvested grains and these meth-

ods have not yet been approved for use on grains with my-

cotoxin levels above acceptable limits (10). 

 Certain fungicides, such as triazole-based fungi-

cides, have been used against FHB with reported efficacies 

(11-14). In resistance breeding programmes, some pro-

gress has been made which includes the identification of 

possible sources of resistance (such as the Chinese cultivar 

‘Sumai 3’) (2, 5, 15). Although some FHB control efforts 

have shown potential in disease reduction, there are cur-

rently no registered fungicides or bio-fungicides, and no 

commercially available resistant wheat varieties in most 

parts of the world (2, 6, 16). Current research into the con-

trol of FHB has been aimed at the use of natural antago-

nists, resistance breeding and integrated management (2, 

5, 6, 14, 17). These methods are of research interest since 

they address the issues associated with fungicide use 

which include chemical residues in/on food and the devel-

opment of resistant pathogen strains (due to excessive 

use) (2, 4, 18). Biological control of plant diseases has been 

studied over the years with reported efficacy. Its ad-

vantages include reduced environmental hazards 

(compared to chemical use), reduced likelihood of re-

sistance development, and the production of durable 

plant protection (19). BCAs can be applied on plant resi-

dues (13), plant tissue (13), soil (20, 21) and/or seed. Soil 

treated with Trichoderma harzianum and T. viride in-

creased shoot dry weight, root dry weight and grain yield 

in the control of Sclerotium rolfsii (22). On the same study, 

the two Trichoderma species were reported to promote 

plant health by normalizing peroxidase (POX), phenylala-

nine ammonia lyase (PAL) and catalase (CAT) post inocula-

tion with S. rolfsii. Streptomyces sp. RC 87B reduced FHB 

severity and DON by up to 39% and 85% respectively, on 

wheat during field trials (13). When applied on wheat stub-

ble, Strptomyces sp. RC 87B reduced F. graminearum inoc-

ulum by at least 46% 90 days post inoculation (13). 

 It has been suggested that the best way to manage 

FHB is through integrated control strategies (11, 15, 23). 

Several studies on the incorporation of biological control 

agents (BCAs) in an integrated strategy for the control of 

FHB have been reported (24, 25). The co-culture of Crypto-

coccus flavescens OH 182.9 and C. aureus OH 71.4 signifi-

cantly reduced FHB severity (by 32% on average) com-

pared to individual applications (25). The integration of 

resistance inducers with BCAs in the management of FHB 

in wheat has been previously studied (26). However, this 

study reports for the first time the combination of Aciben-

zolar-S-Methyl (ASM) and yeast antagonists in an integrat-

ed management strategy of FHB caused by F. gramine-

arum. The aim of this study was to test the efficacy of com-

bining ASM with yeast antagonists for the reduction of FHB 

severity and DON contamination in wheat. The effective-

ness of the combined treatments as against each of the 

treatments alone was measured using the following pa-

rameters: (i) measure disease severity, (ii) Hundred Seed 

Weight (HSW), (iii) Percentage Seed Infection (PSI) and (iv) 

mycotoxin concentration (DON and ZEA) in harvested 

grains.  

 

Materials and Methods  

Planting and experimental design  

Sixty-five planting pots of 25 cm diameter were filled up to 

90% capacity with composted pine bark potting medium. 

Thereafter, spring wheat five seeds [cultivar PAN3471 ob-

tained from Pannar Seed (Pvt) Ltd, Greytown, Republic of 

South Africa] were sown at even spacing in each pot which 

constituted an experimental unit. The trial consisted of 16 

treatments (Table 1) with five replicates each. A complete-

ly randomised design was used for this experiment. The 

pots were placed in a growing area with insect netting 

(approximately 15% shading) and a drip irrigation system 

was used where each pot received water for 2 mins four 

times a day. Osmocote Exact Mini 5-6 M 15-3.9-9.1 + 1.2 Mg 

+ TE [supplied by Greenhouse products (Pvt) Ltd, Hel-

derkruin, Republic of South Africa (RSA)], an ammonium 

based slow-release fertilizer, was applied in each pot at a 

rate of 2.5 g/l of potting media. 

Table 1. The description of the 16 treatments designed for the integration 
trial which consists of Acibenzolar-S-Methyl (ASM) and biological control 
agent (BCA) treatments.  

Treat-
ment no. 

Treatment 
name Description 

1 ASM1 0.075 g/L ASM at anthesis (Feeke’s 10.5.1) 

2 ASM2 0.019 g/L ASM at late boot stage (Feeke’s 10) 

3 ASM3 0.0563 g/L ASM at anthesis (Feeke’s 10.5.1) 

4 BCA1 Papiliotrema flavescens WL3 

5 BCA2 Papiliotrema flavescens WL6 

6 BCA3 Pseudozyma sp. MGO1 

7 ASM1 + 
BCA1 

0.075 g/L ASM at anthesis (Feeke’s 10.5.1) +  
P. flavescens WL3 

8 ASM1 + 
BCA2 

0.075 g/L ASM at anthesis (Feeke’s 10.5.1) +  
P. flavescens WL6 

9 ASM1 + 
BCA3 

0.075 g/L ASM at anthesis (Feeke’s 10.5.1) +  
Pseudozyma sp. MGO1 

10 ASM2 + 
BCA1 

0.019 g/L ASM at late boot stage (Feeke’s 10) +  
P. flavescens WL3 

11 ASM2 + 
BCA2 

0.019 g/L ASM at late boot stage (Feeke’s 10) +  
P. flavescens WL6 

12 ASM2 + 
BCA3 

0.019 g/L ASM at late boot stage (Feeke’s 10) + 
Pseudozyma sp. MGO1 

13 ASM3 + 
BCA1 

0.0563 g/L ASM at anthesis (Feeke’s 10.5.1) + 
 P. flavescens WL3 

14 ASM3 + 
BCA2 

0.0563 g/L ASM at anthesis (Feeke’s 10.5.1) +  
P. flavescens WL6 

15 ASM3 + 
BCA3 

0.0563 g/L ASM at anthesis (Feeke’s 10.5.1) +  
Pseudozyma sp. MGO1 

16 Control No ASM and no yeast antagonist 

Key: Feeke’s 10 and Feeke’s 10.5.1 are wheat growth stages presented by the 
Feeke’s scale (28).  
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Inoculum preparation  

A F. graminearum (strain F20) conidia suspension previous-

ly stored at -80 oC, was thawed under a laminar flow cabinet 

at ambient temperature. This strain was obtained from the 

Discipline of Plant Pathology stock culture laboratory, Uni-

versity of KwaZulu-Natal, Pietermaritzburg, South Africa. 

The F. graminearum strain was previously isolated from 

infected wheat heads in a wheat cultivation field. Conidia 

were then streaked out onto fresh potato dextrose agar 

(PDA) plates and incubated at 25 oC for 5 days. Thereafter, 

the culture was subcultured by cutting out a 1 mm3 agar 

plug from the actively growing edges of the mycelia and 

then placed faced down at the centre of a fresh PDA plate. 

This was repeated on 20 PDA plates and the plates were 

incubated at 25 oC for 7 days. Thereafter, the plates were 

placed under ultraviolet-A (UVA) light (360 nm wavelength) 

for 14 days to induce fungal sporulation. 

 The yeast strains Papiliotrema flavescens [strains 

WL3 and WL6, previously isolated from wheat (Triticum 

aestivum L.) leaves] and Pseudozyma sp. [strain MGO1 pre-

viously isolated from Mondo grass (Ophiopogon japonicus 

(L.f.) Ker-Gaw) leaves] with proven efficacy against F. gra-

minearum in vitro (27) were used in this study. These 

strains had been identified by Inqaba Biotechnological in-

dustries (Pvt) Ltd (Muckleneuk, Pretoria, RSA) using Inter-

nal Transcribed Spacers (ITS) sequencing and molecular 

identification. The yeast strains were streaked out from 

their respective stock solutions (previously stored at -80 oC) 

onto fresh PDA plates with 10 replicates each and there-

after incubated at 25 oC for 5 days. Thereafter, 4 ml of ster-

ile distilled water was pipetted onto each plate using a mi-

cropipette under aseptic conditions. Using a flame-

sterilized L- bent glass rod, the culture was suspended in 

the water by lightly rubbing the surface of the plate. The 

aliquot was decanted into a sterile and appropriately la-

belled conical flask. This was repeated for all the plates 

resulting in three flasks containing each yeast isolate.  

 Conidial suspensions of F. graminearum F 20 were 

prepared as above. The aliquot was transferred into a ster-

ile Schott bottle which was vigorously shaken to allow the 

suspension of conidia in the solution. The aliquot was 

sieved through a sterile cheesecloth to remove mycelia and 

agar debris. Thereafter, the conidial concentration was 

adjusted to 1×105 conidia/ml using a haemocytometer and 

then made up to 10 l. The spore concentrations of each of 

the 3 yeasts were adjusted to 1×107 spores/ml and the solu-

tions were made up to 4 l each. 

Treatments application  

Acibenzolar-S-Methyl (ASM) granules were purchased from 

Syngenta (Pvt) Ltd, Halfway house, Johannesburg, RSA. To 

prepare ASM concentrations, beakers were filled with tap 

water and placed on a bench top for an hour to allow the 

release of excess chlorine. ASM granules were weighed 

(0.019 g, 0.0563 g and 0.075 g) and each amount separately 

dissolved in 1 L of the tap water. The ASM solutions were 

transferred to previously cleaned and appropriately la-

belled 1 l pump spray bottles. With the nozzle adjusted to 

emit a fine mist, the plants were sprayed with the appropri-

ate ASM solutions until runoff at the appropriate growth 

stages (Table 1). 

 Wheat heads were sprayed with the appropriate 

yeast spore suspensions until runoff according to the as-

signed treatments presented in Table 1. In all in vivo inocu-

lations, plants of the same treatment were sprayed sepa-

rately, away from the other plants to prevent spray drift. 

The heads were then covered with perforated, light-weight 

plastic bags for 24 hrs. to encourage humidity. Forty-eight 

hrs after yeast inoculation, the wheat heads were sprayed 

with conidial suspensions of F. graminearum until runoff 

and thereafter covered with the same plastic bags for 24 

hrs to encourage disease development. Yeast and F. gra-

minearum inoculations were each performed once. Disease 

severity was measured using a visual scale originally de-

scribed by (29) and disease ratings were recorded in inter-

vals over time. The experiment was repeated once. 

 When the plants had a golden-brown appearance 

and had reached maturity, wheat heads were cut off from 

the straws and put in appropriately labelled collection 

bags according to treatment replicates. Harvested grains 

were placed in a ventilating oven set at 55oC for a period of 

4 days. During this period, the bags were constantly moni-

tored and shuffled to prevent heat damage of the grains. 

Thereafter, the wheat heads were threshed, and the seeds 

were transferred into appropriately labelled envelopes. 

These were stored in a cold room set at 4oC for further ex-

periments.  

 HSW and PSI were determined per treatment repli-

cate for the 2 experiments. For the PSI, the seeds were sur-

face sterilized, cultured on freshly prepared PDA plates and 

incubated at 25oC for 4 days. Since each treatment had 5 

replicates, each replicate had 3 plates which each had 15 

seeds. The experiment was repeated once resulting in 30 

plates per treatment. The number of Fusarium-infected 

seeds per plate was recorded and used to calculate the PSI 

using the following formula: 

 
Mycotoxin analysis  

The target mycotoxins were DON and ZEA since they are 
the most prevalent mycotoxins in FHB infections. The roQTM 

QuEChERS kits KSO-8909 and KSO-9507 were used for sam-

ple extraction and dispersive Solid Phase Extraction (dSPE) 

respectively. These were purchased from Separations (Pvt) 

Ltd, Johannesburg, RSA. Mycotoxin extraction was per-

formed according to (30), with modifications. Wheat seeds 

from the 2 experiments were pooled according to treat-

ments for mycotoxin analysis. For each sample, the seeds 

were ground into fine powder using a Mikro-Feinmuhle-

Cullati (MFC) plant grinder in the Plant Pathology seeds 

laboratory. A 5 g subsample was added into a 50 ml roQ 

QuEChERS extraction tube along with the following rea-

gents: Milli-Q water (10 ml), acetonitrile with 5% formic 

acid (10 ml) and the contents of the roQ QuEChERS extrac-

tion packet (KSO-8909) which consisted of 4.0g MgSO4, 1.0 

g NaCl, 1.0 g SCTD and 0.5 g SCDS (30).  
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 The tube was shaken for 1 min by hand and then 

centrifuged at 4000 rpm (3000 g) for 5 mins (Beckman Coul-

ter®, Avanti® J-26 XPI centrigufe) (30). Six ml (6 ml) of the 

supernatant were transferred into a roQ QuEChERS 15 ml 

centrifuge tube (KSO-9507) containing 900 mg MgSO4 and 

150 mg primary secondary amine (PSA) (30). The tube was 

shaken by hand for 30 secs and then centrifuged as above 

(30). Thereafter, 1 ml of the supernatant was filtered 

through a 0.45 µm pore filter and transferred into a 1.5 ml 

autosampler vial (all purchased from Separations (Pvt) Ltd, 

Johannesburg, Republic of South Africa) (30). This was re-

peated for all the samples and the vials were left open in a 

laminar flow cabinet overnight to dry.  

 The samples were analysed for the quantification 

of DON and ZEA using High Performance Liquid Chroma-

tography (HPLC) (30). The HPLC system consisted of an 

LC-2030 pump connected to an LC-2030/2040 PDA detec-

tor, LC-2030 controller and LC-2030 autosampler. Chro-

matographic separations were performed on a Kinetex ® 

5 µm Biphenyl 100A LC Column (100 x 2.1 mm) connect-

ed to a guard column SecurityGuardTM filled with the 

same phase (2.1 to 4.6 mm) (all purchased from Separa-

tions (Pvt) Ltd, Johannesburg, Republic of South Africa). 

The mobile phase consisted of aqueous 5 Mm ammoni-

um acetate with 0.1% acetic acid, 5 mM ammonium ace-

tate in methanol with 0.1% acetic acid, acetonitrile and 

Milli-Q water. The flow rate was 0.20 ml/min and the in-

jection volume was 50 µl. The retention times for DON 

and ZEA were 2.563 and 10.193 mins respectively. Quan-

tification was relative to external standards of 1-8 µg/ml 

in acetonitrile. Three quantification readings were con-

ducted per sample. 

Data analysis  

HSW, PSI and disease severity data obtained were checked 

for homogeneity within the repeated trials and the data 

were thereafter pooled. Disease severity data was used to 

calculate the Area Under the Disease Progress Curve 

(AUDPC) for all treatments (31) before subjected to ANOVA. 

If the ANOVA was significant (P ≤ 0.05), the means were 

separated using the Duncan’s Multiple Range Test (DMRT) 

at 5% significance level using SAS software Version 9.4 (32). 

Pairwise correlations were determined between AUDPC, 

HSW and PSI for the pooled data using the Spearman’s 

correlation test (32). The rate of disease progress (r) was 

calculated using the Vanderplanks’ logistic equation (33) 

expressed below: 

 

where; t1 = initial day of rating; t1 = final day of rating;   x1 = 

initial disease value; x2 = final disease value.  

 

Results  

Disease severity and seed infection studies  

The 0.075 g/l ASM treatment at anthesis plus P. flavescens 
WL6 had the lowest disease severity rating in all rating 

days and thus the lowest final average disease severity 

(50.92%) compared to the control (87.53%) (Table 2). This 

means that the number of infected spikes for the treat-

ment 0.075 g/l ASM at anthesis plus P. flavescens WL6 were 

significantly less than those for the control treatment. The 

control treatment had the highest average disease severity 

 

Treatment 
No.  Treatment name 

Number of days (Disease Rating days) 

0 15 19 22 25 29 33 43 

1 0.075 g/L ASM at anthesis 0 22.83 31.75 36.75 41.33 46.13 51.75 52.38 

2 0.019 g/L ASM at late boot stage 0 27.58 38.62 44.46 56.33 63.63 68.31 73.94 

3 0.0563 g/L ASM at anthesis 0 31.83 39.25 44.88 54.25 56.75 60.08 64.88 

4 P. flavescens WL3 0 34.04 44.88 51.54 58.42 68.63 70.71 73.00 

5 P. flavescens WL6 0 20.75 34.04 38.88 44.50 49.46 54.15 56.54 

6 Pseudozyma sp. MGO1 0 15.29 37.38 42.38 49.87 55.71 62.58 69.35 

7 0.075 g/L ASM at anthesis plus P. flavescens WL3 0 21.21 31.96 39.25 47.17 54.88 59.36 63.10 

8 0.075 g/L ASM at anthesis plus P. flavescens WL6 0 10.80 24.08 27.71 36.33 41.96 50.08 50.92 

9 0.075 g/L ASM at anthesis plus Pseudozyma sp. MGO1 0 16.29 30.42 36.96 44.15 48.83 57.79 59.88 

10 0.019 g/L ASM at late boot stage plus P. flavescens WL3 0 22.50 32.38 39.67 47.58 51.54 56.96 62.38 

11 0.019 g/L ASM at late boot stage plus P. flavescens WL6 0 22.38 32.06 35.71 47.79 51.75 58.21 59.46 

12 0.019 g/L ASM at late boot stage plus Pseudozyma sp. MGO1 0 19.17 34.88 38.00 49.46 53.42 59.25 67.27 

13 0.0563 g/L ASM at anthesis plus P. flavescens WL3 0 14.63 27.04 33.42 42.58 48.00 50.50 59.46 

14 0.0563 g/L ASM at anthesis plus P. flavescens WL6 0 15.38 28.63 38.83 47.38 52.63 55.71 60.92 

15 0.0563 g/L ASM at anthesis plus Pseudozyma sp. MGO1 0 22.48 36.54 43.21 55.92 61.13 63.63 69.88 

16 Control 0 49.92 60.48 66.69 74.62 79.88 83.00 87.53 

Effects F-value P-value 

Treatments 30.5 0.0001 

Time (Days) 492.43 0.0001 

Treatments*Time (Days) 0.95 0.633 

%CV 26.7 

Table 2. The average Fusarium Head Blight (FHB) severities of the 16 treatments throughout the disease rating days  
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in all rating days (Table 2). 

 There were significant differences between the 

treatments for the AUDPC, HSW and PSI at p ≤ 0.0006, p ≤ 

0.0001 and p ≤ 0.06 respectively (Table 3). The lowest 

AUDPC and PSI values were observed for treatments 0.075 

g/l ASM at anthesis plus P. flavescens WL6 and 0.075 g/l 

ASM at anthesis plus Pseudozyma sp. MGO1 respectively. 

The highest HSW was observed for the treatment 0.0563 g/l 

ASM at anthesis plus P. flavescens WL3. The PSI values of 8 

out of 15 treatments were not significantly different from 

the control (Table 3). As a result, some treatments with low 

AUDPC and HSW values were associated with high PSI val-

ues. An example of this was 0.075 g/l ASM at anthesis plus 

P. flavescens WL6, which had the lowest AUDPC units, the 

third highest HSW and a below-average PSI that was not 

significantly different from the control. The control had the 

highest AUDPC units, lowest HSW and highest PSI. The 

highest rate of disease progress (r) was observed for 

Pseudozyma sp. MGO1 and the lowest for 0.0563 g/l ASM at 

anthesis (Table 3). However, there was not much differ-

ence in the rate of disease progress between treatments 

and thus statistical analysis was omitted. 

Correlation between AUDPC, HSW and PSI  

Significant correlations were observed for all pairwise com-

binations (Table 4). A moderate positive correlation was 

observed between AUDPC and PSI (r = 0.44) which was sig-

nificant at p = 0.0002. A strong and moderate negative cor-

relation was observed between AUDPC and HSW (r = -0.77) 

and PSI and HSW (r = -0.44) respectively. These were signifi-

cant at p < 0.0001 and p = 0.0003, respectively. The highest 

negative correlation was observed between AUDPC and 

HSW. 

Mycotoxin analysis  

A reduction of up to 19.45% in DON concentration was ob-

tained and this was by the treatment 0.075 g/l ASM at an-

thesis plus P. flavescens WL3 ( Table 5). Although statistical-

ly similar to the DON concentration of the control, the other 

treatments with low DON concentrations were 0.075 g/l 

ASM at anthesis and 0.075 g/l ASM at anthesis plus P. fla-

vescens WL6 respectively. The treatment 0.019 g/l ASM at 

late boot stage was the only treatment that had a DON con-

centration higher than that of the control. ZEA was not de-

tected in all tested treatments and the control, as indicated 

Table 3. The average Area Under the Disease Progress Curve (AUDPC), average Hundred Seed Weight (HSW) (g), average Percentage Seed Infection (PSI) (%) and 
rate of disease progress (r) for the 16 treatments tested against Fusarium Head Blight (FHB) in vivo  

Treatment AUDPC Average HSW (g) Average PSI (%) (r) 

0.075 g/L ASM at anthesis 1113.27±122.90cd 2.96±0.23ab 39.58±12.02bc 0.06 

0.019 g/L ASM at late boot stage 1830.14±127.38bc 2.26±0.15b 61.11±12.58ab 0.08 

0.0563 g/L ASM at anthesis 1389.00±182.12bc 2.81±0.24ab 54.17±5.13abc 0.05 

Papiliotrema flavescens WL3 1579.20±60.66b 1.86±0.21c 52.78±4.39abc 0.06 

Papiliotrema flavescens WL6 1158.57±118.53bcd 2.92±0.23ab 34.72±1.79bc 0.07 

Pseudozyma sp. MGO1 1268.36±111.00bcd 2.79±0.23ab 56.94±8.67abc 0.10 

0.075 g/L ASM at anthesis plus P. flavescens WL3 1237.34±167.87bcd 2.85±0.29ab 37.50±8.06bc 0.08 

0.075 g/L ASM at anthesis plus P. flavescens WL6 936.16±182.93d 3.32±0.22ab 49.31±2.63abc 0.09 

0.075 g/L ASM at anthesis plus Pseudozyma sp. MGO1 1140.69±154.95bcd 3.18±0.19ab 31.94±8.60c 0.08 

0.019 g/L ASM at late boot stage plus P. flavescens WL3 1223.48±88.46bcd 3.06±0.10ab 51.39±10.42abc 0.07 

0.019 g/L ASM at late boot stage plus P. flavescens WL6 1208.75±146.97bcd 3.11±0.22ab 41.67±9.00bc 0.06 

0.019 g/L ASM at late boot stage plus Pseudozyma sp. MGO1 1244.82±134.54bcd 3.01±0.22ab 50.69±2.86abc 0.09 

0.0563 g/L ASM at anthesis plus P. flavescens WL3 1060.53±156.16cd 3.41±0.26a 36.11±11.05bc 0.09 

0.0563 g/L ASM at anthesis plus P. flavescens WL6 1146.89±85.97bcd 3.34±0.18ab 50.69±9.17abc 0.08 

0.0563 g/L ASM at anthesis plus Pseudozyma sp. MGO1 1364.83±124.09bcd 3.01±0.13ab 44.44±4.09bc 0.08 

Control 1964.98±97.08a 1.77±0.23c 72.92±6.84a 0.07 

F value 3.42 4.30 1.82   

P value 0.0006 <0.0001 0.06   

%C.V. 20.67 22.89 33.69   

Values followed by the same superscript letter are statistically identical  
Table 4. Pairwise correlation between the Area Under the Disease Progress 
Curve (AUDPC), Hundred Seed Weight (HSW) and Percentage Seed Infection 
(PSI) for the 16 treatments tested against Fusarium Head Blight.  

  AUDPC HSW PSI 

AUDPC 1 -0.77* 0.44** 

HSW   1 -0.44*** 

PSI     1 

Key: (*) = p < 0.0001; (**) = p = 0.0002; (***) = p = 0.0003  
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by 0.00 ppm in Table 5. 

 

Discussion 

In this study, we demonstrated that the combination of a 

plant defence inducer (ASM) with yeast antagoist reduced 

the severity of FHB and DON concentration in wheat. There 

is limited research on the integration of plant defence in-

ducers with yeast antagonists in the management of F. gra-

minearum in wheat. However, our results reveal good po-

tential for FHB and DON reduction in wheat. When ASM was 

applied alone, the treatment 0.075 g/l ASM at anthesis had 

the lowest AUDPC units (1113.27), highest HSW (2.96 g) and 

the lowest DON concentration (12.45 ppm). When the bio-

control agents were applied alone, the treatment P. fla-

vescens WL6 had the lowest AUDPC units (1158.57) and 

highest HSW (2.92 g), but P. flavescens WL3 had the lowest 

DON concentration (13.28 ppm). These treatments were 

previously tested prior to the current experiment (27) 

where their potential was studied. Although there is not 

much literature on the study of ASM for FHB control, ASM 

has been tested on other plant pathogens (34, 35). In a 

study to test the effect of ASM against Botrytis cinera on 

table grapes, ASM reduced the incidence of gray mold by up 

to 85% (34). Yeast biocontrol agents such as Cryptococcus 

flavescens OH 182.9 have been studied and reported to 

effectively reduce FHB and DON concentrations in wheat 

(24-26). 

 The integration of ASM and biocontrol agents im-
proved FHB reduction compared to when the treatments 

were applied alone. The best integration treatments 

providing the highest FHB and DON reduction were 0.075 g/

l ASM at anthesis plus P. flavescens WL6 (41.83%) and 0.075 

g/l ASM at anthesis plus P. flavescens WL3 (19.35%) respec-

tively. Moreover, the treatment 0.075 g/l ASM at anthesis 

plus P. flavescens WL6 had the highest reduction in AUDPC 

units (52.91%), high DON reduction (12.54%), high HSW 

(3.32 g) and a PSI below 50%. It is important to note that 

the best integration treatments were comprised of treat-

ments that performed best amongst those applied alone, 

which was expected. In another study, the combination of 4 

resistance inducers with the yeast antagonist Cryptococcus 

flavescens OH 182.9 did not significantly reduce FHB severi-

ty compared to when applied alone (24). However, lowest 

FHB severity values were often associated with integrated 

treatments (24). Our study, therefore, is the first to report 

effective reduction of FHB and DON in wheat following the 

integration of ASM treatments and yeast biocontrol agents.  

 An increase in FHB severity is accompanied by an 
increase in Fusarium-infected kernels and a reduction in 
seed weight (4, 36). Similar correlations were also observed 
in our study thus aiding to the efficacy of these treatments 
in FHB management. Although majority the PSI values in 
our study were not significantly different to that of the con-
trol, the PSI of the tested treatments could potentially de-
crease with higher treatment application doses or integra-
tion with postharvest control methods. Pseudozyma sp. 
MGO1, which was isolated from the weed plant Ophiopogon 
japonicus (Mondo grass), although did not provide the best 
FHB and DON reduction compared to P. flavescens WL3 and 
P. flavescens WL6 treatments, the combination with ASM 
application resulted in increased efficacy. The treatment 
0.075 g/l ASM at anthesis plus Pseudozyma sp. MGO1 was 
the best treatment amongst those treated with Pseudozy-

Table 5. Concentrations of deoxynivalenol (DON) and zearalenone (ZEA) in harvested grains for the 15 treatments compared to the control.  

Treatment 
DON ZEA 

Concentration 
(ppm) 

Percentage reduction 
(%) 

Concentration 
(ppm) 

Percentage reduction 
(%) 

0.075 g/L ASM at anthesis 12.45ab 14.69 0.00 0.00 

0.019 g/L ASM at late boot stage 15.39a * 0.00 0.00 

0.0563 g/L ASM at anthesis 13.74ab 5.82 0.00 0.00 

P. flavescens WL3 13.28ab 9.01 0.00 0.00 

P. flavescens WL6 13.94ab 4.48 0.00 0.00 

Pseudozyma sp. MGO1 14.07ab 3.54 0.00 0.00 

0.075 g/L ASM at anthesis plus P. flavescens WL3 11.77b 19.35 0.00 0.00 

0.075 g/L ASM at anthesis plus P. flavescens WL6 12.76ab 12.54 0.00 0.00 

0.075 g/L ASM at anthesis plus Pseudozyma sp. MGO1 12.94ab 11.28 0.00 0.00 

0.019 g/L ASM at late boot stage plus P. flavescens WL3 13.25ab 9.20 0.00 0.00 

0.019 g/L ASM at late boot stage plus P. flavescens WL6 14.21ab 2.61 0.00 0.00 

0.019 g/L ASM at late boot stage plus Pseudozyma sp. MGO1 13.25ab 9.18 0.00 0.00 

0.0563 g/L ASM at anthesis plus P. flavescens WL3 13.12ab 10.05 0.00 0.00 

0.0563 g/L ASM at anthesis plus P. flavescens WL6 13.53ab 7.29 0.00 0.00 

0.0563 g/L ASM at anthesis plus Pseudozyma sp. MGO1 13.02ab 10.76 0.00 0.00 

Control 14.59ab 0.00 0.00 0.00 

F value 1.53   0.00   

P value 0.13   0.00   

%C.V. 13.09   0.00   

Key: (*) = values less than zero (negative values) indicating an increase in DON concentration compared to the control. Values followed by the same superscript 
letter are statistically identical  
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ma sp. MGO1, providing a high DON reduction of 11.28% 
compared to other treatments. O. japonicus is a traditional 
Chinese medicinal plant with antifungal activities. There is 
currently no literature available on its antifungal properties 
being tested against F. graminearum. Our previous study 
(27) contains in vitro and in vivo screening experiments on 
the antifungal effect of yeast isolates (such as MGO1) isolat-
ed from O. japonicus against F. graminearum. Therefore, 
this is novel work which shows potential and requires more 
research.  

 Although the two P. flavescens strains belong to the 
same species, the differences in their efficacies against F. 
graminearum shows that they could be different strains. 
Nevertheless, the combinations of the P. flavescens WL6 
with 0.075 g/l ASM at anthesis was the overall best treat-
ment in this study. Moreover, further research on the deter-
mination of the best inoculum dosage, frequency of appli-
cation is required and could help improve the efficacy and 
reliability of the P. flavescens strains. Other studies in the 
control of plant diseases include testing ASM concentra-
tions higher than the ones used in this study (34, 35). There-
fore, future research can be aimed at determining the effi-
cacy of higher ASM concentrations in the control of FHB of 
wheat as well as the physiological effects of the treatments 
on the wheat plant.  

 

Conclusion  

This study provides extensive research into the efficacy of 
Acibenzolar-S-Methyl (ASM) in the integrated control of 
Fusarium Head Blight (FHB) incited by F. graminearum in 
wheat plants. The combination of ASM and the P. flavescens 
strains provided the best FHB and deoxynivalenol (DON) 
reduction compared to when either were applied alone. 
The highest reduction in final FHB severity and DON con-
centration was observed where 0.075g/l ASM was applied at 
anthesis in combination with P. flavescens strains WL6 and 
WL3 respectively. To the best of our knowledge, this study 
presents the first report of P. flavescens strains as combina-
tion treatments with ASM in the management of FHB 
caused by F. graminearum in wheat plants. Field studies are 
essential to determine the efficacy of combined use of ASM 
and the P. flavescens strains in environments similar to 
those present in commercial wheat cultivation systems. 
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