

REVIEW ARTICLE

Traditional plants utilized for the viral disease treatment

Ushashee Mandal, B Jyotirmayee & Gyanranjan Mahalik^{*}

Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India

*Email: gyanranjan.mahalik@cutm.ac.in

OPEN ACCESS

article History

Received: 17 September 2021 Accepted: 23 December 2021

Available online Version 1.0 (Early Access): 27 February 2022

Additional information

Peer review: Publisher thanks Sectional Editor and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints & permissions information is available at https://horizonepublishing.com/ journals/index.php/PST/open_access_policy

Publisher's Note: Horizon e-Publishing Group remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Indexing: Plant Science Today, published by Horizon e-Publishing Group, is covered by Scopus, Web of Science, BIOSIS Previews, Clarivate Analytics, etc. See https:// horizonepublishing.com/journals/index.php/ PST/indexing_abstracting

Copyright: © The Author(s). This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/ by/4.0/)

CITE THIS ARTICLE

Mandal U, Jyotirmayee B, Mahalik G. Traditional plants utilized for the viral disease treatment . Plant Science Today (Early Access). https://doi.org/10.14719/pst.1491

Abstract

Ethnobotanical research is a well-established field of science that attracts a lot of interest in medicine. Plants are responsible for over 80% of folk remedies used in primary care worldwide. Traditional and herbal medicine knowledge is essential in scientific research, especially when the literature and survey data are not adequately examined. Viral diseases affect millions of individuals worldwide, and they have a significant impact on human health and socioeconomic growth. Many infectious and non-infectious illnesses have long been treated with medicinal plants. The value of medicinal plants has risen in recent centuries. The human immunodeficiency virus (HIV) alone affects almost 40 million people. Coronavirus disease is now the most common viral illness globally, affecting an estimated 176 million people worldwide (COVID-19). A wide range of plant species was found to be effective in treating viral diseases. This review summarizes viral illness, disease outbreaks, and medicinal plants and herbs with antiviral properties useful in drug development programmes.

Keywords

Coronavirus (COVID-19), Ethnobotany, Folk, HIV, Traditional medicines, Viral diseases

Introduction

Traditional herbal remedies and other forms of medicine in India use approximately 6000 different plants. India's diversity is unrivalled, with 16 diverse agroclimatic zones, 25 biotic provinces, ten vegetation zones and 426 biomasses (1). According to a WHO report, more than 80% of the world's population relies on traditional medicine, which typically involves plant extracts or active ingredients. (2-4). Rabies has been confirmed to be one of India's oldest zoonotic viral illnesses and has plagued the country since Vedic times, almost 3000 years ago (5). Because of this, the vast majority of the world's population relies on plants to meet their basic therapeutic needs, particularly in less developed countries. Consequently (6, 7). Homegrown plants (as used in Ayurveda as referenced in the Charaka Samhita and Susruta Samhita or other customary medication practices), plant inferred compounds (also known as phytoconstituents), plant concentrates of specific plant parts, and dietary supplements and nutraceuticals find wide application in treating illnesses ranging from standard to uncommon irresistible and non-irresistible ailments (8).

In India, the Rig-Veda, written between 4500 and 1600 BC, is the eldest storehouse of human old-style Knowledge on medicinal plant use (9). The study aims to learn more about how plants treat viral diseases, such as which plant components are used and how herbal antiviral medications are

2 MANDAL ET AL

made and given (10). Even though viral infections almost always follow secondary bacterial infections, viral infections play a substantial influence on the global incidence of transmissible illnesses (11). Vaccines for major viral diseases like HIV and hepatitis C virus (HCV) are still in the early stages of development. They have a slim chance of success because millions of people are already chronically infected with these viruses (12). COVID19 pandemic, which is caused by the SARSCoV2 coronavirus, has engulfed the entire globe; every day, people are dying due to the masses, and there appears to be no way of stopping this global fitness calamity without an actual treatment (13). COVID19 currently affects over 210 countries and territories throughout the world. COVID19 has negatively impacted many countries around the world. A wide variety of natural ingredients are being used to develop antiviral drugs. This review focuses on a summary of medicinal plants and herbs with antiviral activities that could benefit drug development programmes. India's health policy must be rethought and revised to expand disease control efforts. A thorough assessment and reorganization of the healthcare system are urgently required to ensure equity and highquality care (14).

Description of the viral diseases and plants used in viral diseases treatment

Influenza flu

Influenza A virus has been around for a long time has harmed human health, and is now posing a threat to humanity. Using natural plant extracts, which contain polyphenols important in controlling and reducing disease outbreak symptoms, was one treatment method. For example, from 1918 to 1920, India was struck by a highly lethal influenza epidemic as part of the global Spanish flu pandemic (15, 16). The pandemic, also called the Bombay Influenza or Bombay Fever in India, kills up to 17-18 million people, the maximum of any country (Table 1, 2 & 3) (17-19).

Table 1. Plants and plants parts used in the treatment of viral diseases (22-26)

Pure natural herbs are used in Ayurvedic therapies to combat the spread of the flu. This medicine encourages people to drink particular herbs or decoctions to boost their immunity. (20). The plants used in the treatment are as follows: Geranium (Geranium sanguineum L.) extract helps treat influenza infections as this possesses a broad range of beneficiary activities. Cistus incanus have the dominant polyphenolic additives, the catechins that have influenza activities found to be green in several human and avian influenza virus strains reduction. These days, polyphenol-rich extracts of Punica granatum have been studied for anti-influenza virus activity. It has been shown that Echinacea supplements can increase mucin and proinflammatory cytokines production in epithelial cells of nasal, mucous and tracheobronchial tissues. (21). Green Tea (Camellia sinensis) has many different beneficial activities containing polyphenolic compounds. (-)- epigallocatechin gallate (EGCG), (-)- epicatechin gallate, (-)- epigallocatechin, (-) -epicatechin, and (+)- catechin is among the catechins responsible for green tea's health benefits. Green tea catechins have an antiviral effect on various viruses by interfering with their reproduction cycle (22).

L-theanine and γ -aminobutyric acid (GABA) are nonproteinaceous amino acids found in tea leaves. L-Theanine is the maximum ample non-proteinaceous amino acid that contributes to tea taste and features. GABA is the second most plentiful non-proteinaceous amino acid that contributes to tea characteristics and is regulated more via the range than by using outside variables (23). Pathogenic avian IV (HPAIV) of the H5 and H7 viruses and Human H1N1type IV virus has been inactivated in mobile tradition with *Echinacea purpurea* extract (Echinaforce®). This shows that the extract interferes with cells' viral front and reduces virus receptor binding activity. For IV replication and dissemination, this standard formulation of *Echinacea* at the indicated dose might be a beneficial supplement that is widely available and inexpensive (24).

Sl. No.	Plants used	Vernacular name	Family	Parts Used
		Influenza flu		
1	<i>Camellia sinensis</i> (L.) Kuntze	Green Tea	Theaceae	Leaves
2	Cistus incanus L.	Hairy Rockrose	Cistaceae	Leaves
3	<i>Citrullus lanatus</i> (Thunb.) Matsum. & Nakai	Wild Watermelon	Cucurbitaceae	Fruit
4	Echinacea purpurea (L.) Moench	Echinacea	Compositae (Asteraceae)	Aerial Parts, Roots
5	Geranium sanguineum L.	Geranium	Geraniaceae	Roots
6	Ocimum sanctum L.	Tulsi	Lamiaceae (Labiatae)	Leaves
7	Punica granatum L.	Pomegranate	Lythraceae (Punicaceae)	Peel, Fruit
		Common cold		
8	Achyrocline satureioides (Lam.) DC.	Marcela	Asteraceae	Whole Plant
9	Allium haemanthoides L.	Loosha	Amaryllidaceae	Whole Plant
10	Allium sativum L.	Garlic	Amaryllidaceae	Bulb
11	Allium ursinum L.	Wild Garlic	Amaryllidaceae	Bulb
12	Allium ursinum L.	Wild Garlic	Amaryllidaceae	Bulb

13	Althaea officinalis L.
14	Anchusa italica Retz.
15	Cinnamomum zeylanicum Bl.
16	<i>Citrus limon</i> (L.) Burm. f.
17	Citrus reticulata Blanco
18	Citrus sinensis (L.) Osbeck
19	Eucalyptus camaldulensis
20	Falcaria vulgaris Bernh.
21	Gochnatia polymorpha (Less.) Cabrera
22	Illicium verum Hook. f.
23	Lallemantia iberica (M. Bieb.) Fisch. & C.A. Mey.
24	Malva neglecta Wallr.
25	Matricaria recutita (L.) Rauschert
26	Mentha piperita L.
27	Mikania sp.
28	Nectaroscordum tripedale
29	Nepeta elymatica Bornm.
30	Nerium oleander L.
31	<i>Ocimum selloi</i> Benth.
32	Ocimum sanctum L.
33	Origanum majorana
34	Phleum pratense L.
35	Plantago psyllium L.
36	Punica granatum L.
37	Quercus brantii Lindl.
38	Salvia hydreangae DC. ex Benth.
39	Salvia multicaulis Vahl.
40	Stachys lavandulifolia Vahl.
41	Tanacetum parthenium L.
42	Verbena sp.
43	Zingiber officinale Roscoe
44	Ziziphus jujube Mill.
45	Amaryllis belladonna L.
46	<i>Blumea laciniata</i> (Wall. ex Roxb.)
47	Elephantopus scaber L.
48	Mussaenda pubescens Dryand.
49	Narcissus tazetta L.
50	Ocimum sanctum L.
51	Schefflera heptaphylla (L.) Frodin
52	Scutellaria indica L.
53	Selaginella sinensis (Desvaux) Satou
54	Lithospermum erythrorhizon Sieb. Et Zucc.
55	Thymus daenensis L.
56	Zataria multiflora Boiss.

Celak Shirazi Thyme

Adenovirus infection Purple Gromwell

Marsh Mallow/ Khatmi

Bugloss

Lemon

Cinnamon

Mandarin tree

Orange tree

Sickleweed

Cambara

Star anise

Dragon's Head

Dwarf Mallow

Chamomile

Peppermint

Sicilian Honey Garlic

Green pepper basil

Guaco

Catnip

Nerium

Tulsi

Marjoram

Timothy grass

Pomegranate

Brant's Oak

Feverfew

Verbena

Ginger

March Lily

Cut leaf Blumea

Elephant's Foot

Mussaenda

Umbrella Tree

Nargis Tulsi

Skullcap

Fern Allies

Gol-e Arrooneh

False Whorled Sage

Jujube/ Red Date

Respiratory syncytial virus

Pink Cotton Lamb's Ear

Desert Indian wheat

River Red Gum

Malvaceae Boraginaceae Lauraceae Rutaceae Rutaceae Rutaceae Myrtaceae Apiaceae Asteraceae Illiciaceae Lamiaceae Malvaceae Asteraceae Lamiaceae Asteraceae Alliaceae Lamiaceae Apocynaceae Lamiaceae Lamiaceae Lamiaceae Poaceae Poaceae Lythraceae Fagaceae Lamiaceae Lamiaceae Lamiaceae Asteraceae Verbenaceae Zingiberaceae Rhamnaceae

Amaryllidaceae Compositae Asteraceae Rubiaceae Amaryllidaceae Lamiaceae (Labiatae) Araliaceae Lamiaceae Selaginellaceae

Boraginaceae Lamiaceae Lamiaceae

Petal Petal, Leaves, Roots Bark, Leaves Fruits, Leaves Roots, Leaves, Peel Leaves, Fruit Leaves Petal, Leaves, Stem Aerial Parts Posa, Seeds Grain Grain Petal, Branch Leaves Leaves Whole Plant Leaves, Grain Leaves, Grain Aerial Parts Leaves Flower, Leaves Branch Whole Plant Grain Fruit, Leaves Petal Petal Petal, Branch Roots Aerial Parts Rhizome Fruit, Peel, Kernel

Bulb Whole Plant Whole Plant Leaves, Roots Stem, Leaves, Roots Leaves

Aerial Parts Whole Plant

Roots Leaves, Stem

Measles

57	Artemisia dubia var. subdigitata (Mattf.) Y.R.Ling.	Shieh	Asteraceae	Aerial parts
58	Bambusa vulgaris Schrad. ex J.C.Wendl.	Bamboo	Poaceae	Leaves
59	Cinnamomum camphora (L.) J. Presl	Camphor Tree	Lauraceae	Leaves
60	Coriandrum sativum L.	Coriander	Apiaceae	Seeds, Old Leaves
61	Cymbopogon citratus (DC.) Stapf	Lemongrass	Poaceae	Leaves
62	Eclipta prostrata (L.) L.	False Daisy	Asteraceae	Leaves
63	Elephantopus scaber L.	Elephant's Foot	Asteraceae	Whole Plant
64	Elsholtzia cristata Willd.	Crested Late- Summer Mint	Lamiaceae	Leaves
65	Glycyrrhiza uralensis Fisch.	Chinese Liquorice	Fabaceae	Roots
66	<i>Houttuynia cordata</i> Thunb.	Chameleon Plant	Saururaceae	Leaves, Rhizome
67	Jasminum sambac (L.) Aiton	Jasmine	Oleaceae	Leaves
68	Lactuca indica L.	Indian Lettuce	Asteraceae	Leaves
69	Lactuca sativa L.	Lettuce	Asteraceae	Leaves
70	Morus rubra L.	Mulberry	Moraceae	Leaves
71	Nelumbo nucifera Gaertn.	Lotus	Nelumbonaceae	Leaves
72	<i>Ophiopogon japonicas</i> (Thunb.) Ker Gawl.	Fountain plant	Asparagaceae	Rhizome
73	Origanum majorana L.	Marjoram	Lamiaceae	Leaves
74	Perilla frutescens (L.) Britton	Beefsteak Plant	Lamiaceae	Leaves
75	Phaseolus vulgaris L.	Black beans	Fabaceae	Pod
76	Polycarpon prostratum (Forssk.) Asch. & Schweinf	Manyseed	Fabaceae	Stem, Leaves, Roots
77	Prosopis juliflora (Sw.) DC.	Prosopis	Fabaceae	Leaves, Pod
78	Pueraria thomsoni DC.	Japanese Arrowroot	Fabaceae	Root, Flower, Leaves
79	Saccharum officinarum L.	Sugarcane	Poaceae	Stalk
80	Scoparia dulcis L.	Licorice Weed	Plantaginaceae	Whole Plant, Seeds
81	Senna alata (L.) Roxb.	Candle bush	Fabaceae	Seeds
82	Typha elephantina Roxb.	Elephant grass	Typhaceae	Stem, Leaves, Roots
83	Wedelia chinensis (Osbeck) Merr.	Chinese Wedelia	Asteraceae	Leaves
		Malaria		
84	Aloe barbadensis (L.) Burm. f.	Aloe vera	Asphodelaceae	Gel, Latex
85	Andrographis paniculata Burm. f.	Green Chiretta	Acanthaceae	Aerial Parts
86	Callistemon citrinus (Curtis.) Skeels.	Lemon Bottlebrush	Myrtaceae	Aerial Parts
87	Eucalyptus globulus Labill.	Blue Gum	Myrtaceae	Leaves
88	Mormodica feotida Schumach. et Thonn.	Wild Cucumber	Cucurbitaceae	Fruits, Leaves, Roots
89	Nyctanthes arbor-tristis L.	Night-Flowering Jasmine	Oleaceae	Leaves
90	Vernonia amygdalina Del.	Bitter Leaf	Asteraceae	Leaves
		SARS and SARS-CoV2		
91	Artemisia annua L.	Sweet Wormwood	Asteraceae	Aerial Parts
92	Astragalus membranaceus (Fisch.) Bge.	Mongolian Milkvetch	Fabaceae	Roots
93	Atractylodes macrocephala Koidz. (AM)	Bai Zhu	Asteraceae	Rhizome
94	Glehniae radix	Coastal Glehnia Root	Apiaceae	Roots
95	<i>Glycyrrhiza uralensis</i> Fisch.	Chinese Liquorice	Leguminosae	Roots, Rhizome
96	Isatidis folium	Woad Chinese	Cruciferae	Leaves, Roots

107	Withania somnifera (L.) Dunal	Ashwagandha	Solanaceae	Roots, Stem, Leaves
106	<i>Tinospora cordifolia</i> (Thunb.) Miers	Giloy	Menispermaceae	Stem, Roots
105	Salvia miltiorrhiza Bge.	Red Sage	Lamiaceae	Roots
104	Phragmitis rhizoma	Reed Root		Roots
103	Radix saposhnikoviae (Turcz.) Schischk.	Divaricate Saposhnikovia Root	Umbelliferae	Roots, Rhizome
102	<i>Pyrrosia lingua</i> (Thunb.) Farw.	Felt Fern	Polypodiaceae	Leaves
101	Ocimum sanctum L.	Tulsi	Lamiaceae (Labiatae)	Whole Plant
100	Morus alba L.	Folium Mori/ Mulberry	Moraceae	Fruit, Root, Leaves
99	Mentha spicata L.	Spearmint	Lamiaceae)	Leaves
98	Lycoris radiata (L'Hér.) Herb.	Red Spider Lily	Amaryllidaceae	Root, Bulb
97	<i>Lonicera japonica</i> Thunb.	Japanese Japonica	Caprifoliaceae	Aerial Parts

Table 2. Details regarding viral diseases (22, 23)

Sl. No.	Disease	Agents	Symptoms	Infect	Spread	Treatment
1.	Flu	Influenza virus	Fever, aching muscles, headache, shortness of breath, persistent cold, runny and stuffy nose, sore throat, eye pain, vomiting, diarrhea.	Nose, throat, lungs, the epi- thelial lining of trachea, and bronchi	Flu cough, sneeze or talk, sending droplets with the virus into the air, touching own mouth, eyes or nose.	Oseltamivir (Tamilflu), Zanamivir (Relenza), Peramivir (Rapivab), Ba- loxavir (Xofluza).
2.	Common cold	Rhinovirus (RNA Virus)	Fever, headache, body aches, fatigue, nasal conges tion, sneezing, sore throat, cough.	-Mouth, eyes, nose	Coughs or sneezes, handshakes or hugs, kissing or shared drinks, touching a contami- nated surface, droplet infection.	Oxymetazoline nasal (Afrin), Aceta- minophen (Tylenol), Ibuprofen (Advil), Antihistamin Diphenhydra- mine (Benadryl).
3.	Respiratory syncyti- al virus infection	RSV (Respiratory Syncytial Virus)	Runny nose, dry cough, sore throat, fever, sneezing, headache, wheezing, bluish discoloration of the skin.	Bronchiolitis (Lungs)	Contaminated hands with infec- tious secretions, direct contact, air on infected respira- tory droplets	Acetaminophen (Tylenol), Nasal saline drops.
4.	Adenovirus infec- tion	Adenovirus	Common cold, fever, sore throat, acute bronchitis, pneumonia, pink eye, acute gastroenteritis.	The lining of the eyes, airways, lungs, intestines, urinary tract and nervous system.	Direct contact, the air by coughing and sneezing, touching the contaminated area or object.	Cidofovir, Ribavirin.
5.	Parainfluenza virus infection	Human Parainflu enza Viruses (HPIV)	Fever, runny nose, barky -cough, redness or swelling of the eyes, wheezing, harsh breathing, rattling felt over the chest.	Respiratory tract.	Sneezing, Contact with infected ob- jects and mouth, nose, or eye areas.	Saline nose drops, Analgesics like aspirin (Bufferin) or acetaminophen (Tylenol).
6.	Severe acute respir- atory syndrome (SARS)	SARS-associated syndrome (SARS- CoV)	Fever, dry cough, sore throat, headache, muscle aches, difficulty breathing, body aches, night sweats and chills.	Lungs, multiple cell types in several organs, immune cells, pulmonary epithelium.	Airborne respiratory droplets, skin-to- skin contact, saliva, touching a contami- nated surface.	Antiviral medications, Kaletra.
7.	Norovirus infection	Norovirus	Diarrhea, vomiting, nausea, stomach pain, fever, head- ache, body aches.	Small Intestine.	Direct contact, touch- ing contaminated surfaces, eating food, or drinking liquid contaminated with norovirus.	No medicine.
8.	Rotavirus infection	Rotavirus	Vomiting, watery diarrhea, fever, abdominal pain, dry mouth and throat, feeling dizzy, decreased urination.	Stomach, Intes- tines.	Fecal-oral route transmission, touch- ing a contaminated surface, ingestion of dirty water or food.	Oral rehydration.
9	Astrovirus infection	Astrovirus	Mild diarrhea, nausea, vom- iting, stomach ache, loss of appetite, body aches, fever	Gastrointestinal tract	Fecal-oral route from person to person contact, through contaminated food or water.	No Vaccines, By neutralizing mono- clonal antibodies

10.	Measles	Morbillivirus	Cough, runny nose, inflamed eyes, sore throat, fever, red blotchy skin rash, white spots inside the mouth.	Respiratory tract, other parts of the body through the blood- stream.	Airborne respiratory droplets, saliva, touching a contami- nated surface, skin- to-skin contact, mother-to-baby pregnancy, labor, or nursing.	MMR Vaccine (Measles Mumps Rubel- la), Acetaminophen (Tylenol), Ibu- profen (Advil), Vitamin A supple- ments, GamaSTAN S/D (Immune globulin intramuscular).
11.	Mumps	Paramyxovirus (RNA Virus)	Swollen, painful salivary glands, fever, headache, fatigue, appetite loss.	Brain, Parotid gland.	Airborne respiratory droplets (coughs or sneezes), touching contaminated sur- faces (blanket or doorknob), direct contact with the nose and throat discharge.	MMR Vaccine (Measles Mumps Rubel- la Vaccine), Acetaminophen (Tylenol), Ibuprofen (Advil, Motrin IB).
12.	Rubella	Rubella Virus	Mild fever, headache, red rash on the body, muscle pain, runny or stuffy nose, swollen lymph nodes, red eyes.	Skin, Lymph nodes.	Close contact with tiny drops of fluid from the nose and throat when sneez- ing and coughing, airborne respiratory droplets, saliva.	MMR (Measles Mumps Rubella) Vac- cine, Acetaminophen (Tylenol).
13.	Chickenpox/ Varicella	Varicella zoster virus	Itchy, blister-like rash on the skin.	Skin.	Saliva, skin-to-skin contact with infect- ed persons, airborne droplets.	Analgesic and antihistamine, vaccine of chickenpox.
14.	Chikungunya virus infection	Chikungunya Virus (CHIKV)	Fever, severe joint pain, muscle pain, headache, fatigue, rash.	Joint.	Animal, Insect bites or stings, blood to blood contact.	Acetaminophen (Tylenol) or Parace- tamol.
15.	Hepatitis A	Hepatitis A Virus	Fatigue, sudden nausea, vomiting, abdominal pain, loss of appetite, low-grade fever, dark urine, joint pain, jaundice, intense Itching.	Liver.	Close contact with an infected person, ingestion of con- taminated food and water.	No medicine.
16.	Hepatitis B	Hepatitis B Virus	Yellowing of eyes, abdominal pain, dark urine, belly pain.	Liver.	Close contact with contaminated blood, open sores, or body fluids.	Entecavir (Baraclude), Tenofovir (Viread), Lamivudine (Epivir), Adefo- vir (Hepsera), Telbivudine (Tyzeka).
17.	Hepatitis C	Hepatitis C Virus	Fatigue, nausea, loss of appetite, yellowing of the eyes and skin.	Liver.	Blood products (Unclean needles or unscreened blood), mother to baby by pregnancy, labor or nursing.	Ribavirin, Grazoprevir.
18.	Hepatitis D	Hepatitis Delta Virus	Yellow skin and eyes, stom- ach upset, belly pain, fa- tigue, joint pain, dark urine, light-colored stool.	Liver.	Blood products (Unclean needles or unscreened blood), mother to baby by pregnancy, labor or nursing.	Pegylated interferon-alpha.
19.	Hepatitis E	Hepatitis E Virus	Jaundice, lack of appetite, nausea.	Liver.	Fecal-oral route due to fecal contamina- tion of drinking water, contaminat- ed food or water.	Ribavirin, Pegylated interferon- alpha.
20.	Warts	Human Papilloma Virus	Fleshy, painless growth on the skin, small bumps, rough to touch, sprinkled with tiny black pinpoints, clotted blood vessels.	Skin layer (Epidermis).	Skin to skin contact.	Salicyclic acid, Cryotherapy.
21.	Oral/ Genital Herpes	HSV (Herpes Sim- plex Virus) 1 causes oral herpes, HSV 2 causes genital herpes	Blistering sores in the mouth or genital organs, pain dur- ing urination, Itching, ulcers scabs.	Mouth or geni- tal organs.	Sexual contact with infected persons, skin-to-skin con- tact.	Acyclovir (Zovirax), Famciclovir (Famvir), Valacyclovir (Valtrex).

22.	Small Pox	Varicia virus (DNA Virus)	Fever, headache, severe fatigue, severe back pain, vomiting.	Respiratory passages, then skin.	Droplet infection (contagion possi- ble via wounds in the skin).	Tecovirimat (TPOXX), Cidofovir, Brin- cidofovir.
23.	Ebola	Ebola virus	Fever, intense weakness, muscle pain, headache, sore throat, vomiting, stomach pain.	Organs, liver, kidney, immune system.	Direct contact with body fluids such as blood from infect- ed people or ani- mals, tissues, saliva, sweat.	Ervebo (Ebola vaccine rvsv-ZEBOV).
24.	Molluscum conta- giosum	Poxvirus (Molluscum conta- giosum virus)	Round, firm, painless bumps on the skin, Itching.	The trunk of the body, arms and legs.	Direct contact, touching a con- taminated object	Potassium hydroxide, Podophyllotox- in, Imiquimod, Benzoyl peroxide, Tretinoin.
25.	Lassa fever	Lassa virus	Fever, weakness, sore throat, severe headache, chest pain, back pain, vom- iting, abdominal pain, and diarrhea.	Liver, spleen, kidneys.	Urine or feces of Mastomys rats to humans, direct contact with blood, body fluids, urine, the stool of Lassa fever patient	Ribavirin, Fluid and electrolytes.
26.	Dengue fever	Dengue virus (DENV)	High fever, headache, rash, muscle joint pain, vomiting, nausea, lymph nausea.	Organs, internal bleeding.	Bite of an infected Aedes species A.aegypti or A. Albopictus mosqui- to, from mother to child, infected blood, lab or healthcare setting exposures.	Acetaminophen (Tylenol).
27.	Yellow fever	Yellow fever virus	High fever, jaundice, head- ache, muscle aches, joint aches, chills.	Liver, kidney, heart, and gas- trointestinal tract	Bite of Aedes mos- quitoes (Aedes aegypti mosqui- toes).	17D vaccine (Live attenuated viral strain).
28.	Marburg hemor- rhagic fever	African fruit bat, Rousettus aegyptiacus	Fever, chills, headache, and muscle aches, hemorrhagic fever.	The circulatory system of Hu- man beings, African bats, or green monkeys.	Exposure to Africar green monkeys and certain bats, exposure to an infected human.	Balancing fluid and electrolyte, main- taining oxygen and blood pressure.
29.	Crimean- Congo hemorrhagic fever	Tick-borne virus Nairovirus	Fever, muscle ache, dizzi- ness, neck pain and stiff- ness, backache, headache, sore eyes and photophobia.	Ticks, cattle, sheep and goats	Infected ticks, the blood of cattle or sheep or goats.	Ribavirin drug.
30.	Polio	Poliovirus	Fatigue, fever, muscle weak- ness, headache, nausea.	Throat and intes tines.	Contaminated - food or water (fecal-oral trans- mission)	Pain relievers, NSAIDs (Ibuprofen, Diclofenac, and Aceta- minophen), polio vaccine.
31.	Rabies	Rabies virus	Muscle spasms or paralysis with weak muscles, fear from water, dizziness, fa- tigue, fever, nausea, or vomiting.	Animal bite (stray dogs).	The saliva of infected animals.	Favipiravir (T-705) drug (broad- spectrum Antiviral).
32.	Viral meningitis	Echovirus, Po- liovirus, cox- sackievirus	Headache, fever, and stiff neck.	Brain and Spinal cord.	Saliva or stool of infected person.	Antiviral medications.
33.	Viral encephalitis	HSV Type 1, HSV Type 2, Mosquito born virus, Entero- virus	Fever, headache.	Brain.	Cough and sneez- es from infected persons.	Antiviral medications (Acyclovir (Zovirax), Ganciclovir (Cyotovene), Foscarnet (Foscavir)).
34.	AIDS	HIV	Flu-like symptoms, ab- dominal pain, weight loss, fever or night sweats, swol- len lymph nodes.	Immune system.	Infected blood, semen, vaginal fluids, needles, syringes.	Antiretroviral therapy.
35.	Human papillo- mavirus	HPV	Genital wart, wart, cervical cancer.	Genitals or sur- rounding skin.	Skin to skin con- tact or sexual contact with an infected person.	Imiquimod, Podofilox, Sinecatechins.
36	Viral gastroenteri- tis	Norovirus, Rota- virus	Diarrhea, abdominal cramps, nausea or vomit- ing, fever.	ntestine.	Contact with an infected individual, infected food, or water.	Promethazine, prochlorperazine, metoclopramide, ondansetron.

37.	Viral pneumonia	RSV, SARS CoV-2	Flu-like symptoms, Dry cough, fever, chills, short- ness of breath, rapid breath- ing.	Lungs.	Coughing, sneezing.	Oseltamivir (Tamiflu), Zanamivir (Relenza), Ribavirin (Virazole).
38.	Zika	Aedes mosquito	Fever, red-eye, joint pain, headache.	Brain cells.	Mosquito bites.	No medicine.
39.	COVID-19	Coronavirus	Fever, cough, cold, loss of taste or smell.	Lungs, respirato- ry tracts.	Physical contact with an infected person.	2-DG drug.
40.	Rift valley fever	Arbovirus	Fever, muscle pains, head- aches, loss of sight, confu- sion, bleeding, liver prob- lems.	Domesticated animals.	Blood, body fluids, or tissues of infected animals or infected mosquitoes.	No medicine.
41.	Monkeypox	Monkeypox virus	Fever, headache, muscle pains, swollen lymph nodes, feeling tired.	Rodents and primates.	Lesions, body fluids, respiratory droplets of infected rodents, primates, human beings.	Smallpox vaccine.
42.	Plague	Yersinia pestis bacteria	Swollen lymph nodes in the groin, armpit, or neck.	Lymph nodes.	Infected flea.	Antibiotics (streptomycin, gentami- cin, doxycycline, ciprofloxacin).
43.	Listeriosis	Listeria monocyto genes	- Sepsis, meningitis, encepha- litis.	Brain, spinal cord.	Through contaminat- ed food or sexual contact with infected persons.	Ampicillin.
44.	Human infection with avian influenza A(H5N8)	Influenza virus	Flu-like symptoms.	Trachea, brain, and intestines.	Infected birds (saliva, mucus, feces).	Oseltamivir (Tamiflu), peramivir (Rapivab), or zanamivir (Relenza).
45.	Typhoid	Salmonella typhi	High fever, headache, stom- ach pain, weakness.	Bloodstream, gastrointestinal tract.	Contaminated food and water.	Ciprofloxacin, ceftriaxone.
46.	Human infection with seasonal reas- sortant A(H1N2)	Influenza virus	Respiratory infection.	Nose, throat, lungs.	Through cough and sneeze of an infected person.	Antiviral drugs.
47.	Diphtheria	Corynebacterium diphtheriae	Difficulty in breathing, heart failure, paralysis.	Throat, nose.	Through respiratory droplets, the saliva of an infected person.	DTaP vaccine.
48.	Hantavirus	Sin Nombre virus	Fatigue, fever, muscle aches, headache, dizziness, chills, nausea, vomiting, diarrhea, abdominal pain.	, Heart, lungs, kidney.	Through fresh urine, droppings, or saliva of infected rodents.	No medicine.
49.	Swine flue	Swine Influenza Virus, H1N1 Virus	Fever, cough, sore throat, chills.	Upper and lower respiratory tracts.	Through infected pigs, coughing and sneezing infected droplets in the air.	Oseltamivir (Tamiflu), Zanamivir (Relenza).
50.	Nipah virus	Nipah virus	asymptomatic infection, acute respiratory illness, encephalitis	Respiratory tract, brain, heart.	Coughing and sneez- ing infected droplets in the air, pigs, fruit bats.	No medicine.

Table 3. Disease outbreak of the viral disease in India (23)

Sl. No.	Disease	Affects
1.	Nipah Virus	7 August 2018; 31 May 2018
2.	Zika Virus Infection	26 May 2017
3.	Chikungunya	17 October 2006; 17 March 2006
4.	Avian Influenza	23 February 2006, 21 February 2006
5.	Japanese Encephalitis (JE)	13 September 2005
6.	Meningococcal Disease	14 June 2005, 30 May 2005, 17 May 2005, 12 May 2005, 9 May 2005
7.	Dengue Fever	12 November 2003, 30 October 2003
8.	SARS (Severe Acute Respiratory Syndrome)	14, 13, 12, 10, 9, 8, 7 May 2003; 30, 29, 28, 26, 25, 24, 23, 22, 21, 19, 18, 17 April 2003
9.	Plague	20 February 2002
10.	Cholera	14 August 2001

lanatus (wild watermelon) inhibited influenza virus multiplication the most effectively (25).

In MDCK cells, PPE (Pomegranate Polyphenol Extract) inhibits Influenza A virus replication by inhibiting the virus' ability to replicate. Viral ribonucleoprotein (RNP) entrance into the nucleus or virus RNP translocation from the nucleus to the cytoplasm were not altered by PPE in MDCK cells. Toxicologically, Punicalagin inhibited viral replication, prevented viral agglutination of chicken RBCs, and had antiviral effects on the virus. Thus, oseltamivir's antiinfluenza properties were boosted when it was used in conjunction with the PPE. PPE suppressed human influenza A/ Hong Kong (H3N2) in vitro (26). Quercetin and its derivatives used in complementary therapy and traditional medicine in treating influenza and other inflammatory diseases found in fruits and vegetables contain flavanol compounds that have a strong reputation for inflammatory diseases treatment (27).

Common cold

cause of its similarity to exposure to cold weather (29). For sinensis are medicinal herbs that are beneficial in the treathaementhoides is cooked and its boiled liquid is consumed; extract of Citrus reticulata showed antiviral activity against officinalis petal, Anchusa italic petal, leaf and root, Eucalyp- Nobiletin, two polymethosylated flavones, were found to tus comaldulensis L. leaf, Lallemantia iberica grain, Malva have more significant anti-RSV activity than ribavirin, the neglecta grain, Matricaria recutita petal and branch, positive control. Tangeretin dose-dependently reduced the Ziziphus jujube fruit, peel and kernel, Quercus branti fruit and leaf; Salvia hydreange and Salvia multicaulis petal, Stachys lavandulifolia petal and branch, Tanacetum parthenium root is taken as boiled liquid; Petal, leaf and stem of nificant levels of flavonoids and phenolic acids in lipopoly-*Falcaria vulgaris, Zingiber officinale* leaf and root is brewed; Nectaroscordeum tripedale entire plant is taken as raw; leaf tivity against RSV with a long selectivity list, and dramatiand grain of Nepeta elymatica is taken as brewed and dry cally reduced NO, TNF-γ, IL-6 and PGE2 production (39). with yogurt; Nerium oleander leaf and grain is used as steam sniff; Phleum pretense L. branch is used as brewed; Plantago psyllium entire plant is used as brewed or boiled liquid; Punica granatum grain is taken in dried form eaten with food (30). Citrates and Vitamin C are detected in EXO-CLS (exosome-like nanovesicles from Citrus limon L. juice). They exhibited a substantial protective impact against oxidative stress when taken up by mesenchymal stromal cells (MSCs) in vitro (31, 32).

When common cold symptoms first appeared, patients were randomly allocated to receive either the herbal mixture (Matricaria chamomile, Glycyrrhiza glabra, Althaea officinalis, Malva sylvestris, Adiantum capillus-veneris, Hyssopus officinalis and Ziziphus jujube) or an inactive placebo. Compared to placebo, the herbal blend substantially reduced the intensity of coughing and overnight awakenings. Children with intermittent asthma may benefit from a short

Wild watermelon juice (WWMJ) has anti-influenza course of this traditional herbal preparation, which is adproperty that restricts the adsorption and viral replication ministered at the commencement of a viral respiratory in late stages, leading to virus internalizing reduction. As a tract infection (33). Anise Seeds are rich in calcium, iron, result, it's employed as a valuable food by-product in devel- copper and potassium sources. They are also a good supplioping anti-influenza medications and agents. For example, er of manganese zinc and magnesium. For safe usage as a in Madin-Darby canine kidney cells, the juice of Citrullus superfood supplement, anise seeds and essential oils are promising and raw components in the pharmaceutical and culinary sectors. It comprises anethole, estragole, eugenol, pseudo-eugenol, coumarins, scopoletin, umbelliferon and estrols, as well as hydrocarbon terpenoids and polyacetylenes as its primary constituents. Phytochemically and clinically, the plant's oil has a positive impact (34).

> Alpha Terpineol, L-terpinene-4-ol and Beta-Linalool were the primary chemicals produced from an aqueous extract of essential oil from the aerial portion of Origanum majorana L. (35). The Z. jujube fruit is a traditional remedy as well as food. It strengthens and nourishes the liver and spleen as well. For example, lignans and flavonoids are among the many types of triterpenoid compounds that can be found in plants. TCM relies on ZJF's digestive, cardiovascular, neuroprotective, sedative-hypnotic and anxiolytic properties and its ability to strengthen and replenish the middle Qi and nourish the blood to help people relax and cope with anxiety (36).

Respiratory syncytial virus infection

The common cold was discovered in the 1950s, but it ap- Amaryllis belladonna L., Blumea laciniata, Elephantopus pears to have been around since the dawn of civilization scaber L., Mussaenda pubescens Dry, Narcissus tazetta L., (28). The term "cold" was coined in the 16th century be- Schefflera heptaphylla (L.), Scutellaria indica L., Selaginella prevention of Common Cold, entire plant of Allium ment of respiratory virus infections (37). Supercritical fluid bulb of Allium ursinum is cooked or taken as raw; Althaea the respiratory syncytial virus (RSV) in vitro. Tangerine and development of RSV-induced plagues on HEp-2 cells and inhibited the expression of RSV phosphoprotein (P protein) (38). An ethanolic extract of *M. piperita* leaves includes sigsaccharide-stimulated RAW 264.7 cells, shown antiviral ac-

Adenovirus infection

A significant component of shikonin, Radix Lithosperm eyrthrorhizon, has various biological properties that limit the growth of Adenovirus type 3 infection and was thus employed in ancient Chinese medications (40). Thymus daenensis, Thymus vulgaris and Zataria multiflora, 3 medicinal plants of Lamiaceae, were planted in Iran to test the compound's ability to treat adenovirus infection. Monoterpene phenols, particularly thymol and carvacrol, are abundant in T. daenensis oil. It is also rich in pcymene and βcaryophyllene (41). Flavonoids and carvacrol, 2 plant components, have anti-inflammatory properties. In addition to reducing oxidative stress, Z. multiflora can be applied to remedy oxidative damage. Z. multiflora was also found to reduce malondialdehyde levels and preserve nitric oxide levels in the serum. Furthermore, Z. multiflora and its components, carvacrol and thymol, were found to progress se- asthma, malaria, cough and cold. This plant stimulates inrum IgE levels, decrease pro-inflammatory cytokines (IL-4, terferon-y, IL-4, T-helper cells and NK cells, reducing bacte-TGF and IL-17) and raise anti-inflammatory cytokines (IFN-y rial burden through phagocytosis 17 (53). Mosquitocidal and FOXP3) (42).

Measles

In the 4th century BC or as late as AD 500, people were infected with a forerunner to the measles (43, 44). To prevent measles, coriander seeds and old leaves are cooked and bathed by the youngster. Phiopogon japonicus includes Perilla frutescens var. crispa, Pueraria thomsoni, Elsholtzia cristata, Ophiopogon japonicus and Glycyrrhiza *uralensis* are used as a fine powder is regarded as one of the best treatments for years. Children drink boiling jasmine leaves to prevent measles, while Houttuynia cordata juice is used to treat cough (45). Lemongrass, marjoram, old coriander leaves are cooked for cleaning the children's bodies. The herbs such as Elsholtzia cristata leaves, Wedelia chinensis leaves, lettuce leaves, Lactuca indica, mulberry leaves, bamboo leaves, Ecliptaalba hassk, Senna novel coronavirus (2019-nCoV), and has also been termed alata seeds, Glycyrrhiza uralensis or sugarcane and ripe human coronavirus 2019 (HCoV-19 or hCoV-19) and came to mulberry leaves, *Eclipta prostrata*, *Glycyrrhiza uralensis*, lotus leaf, black beans, clean water are cooked to form a Rhizoma phragmitis, Glehniae radix, Radix saposhnikoviae, condensed liquid (46).

Artemisia dubia Wall. ex Besser, Cinnamomum camphora, Elephantopus scaber, Polycarpon prostratum, Prosopis juliflora, Scoparia dulcis, Typha elephantina are important plant species used in treating measles. Mostly leaves and roots are used in producing medicine against measles other than rhizomes, fruits and whole plants (47). Plants known as *Bambusa vulgaris* treat hepatitis, measles and kidney problems in Asian and African countries. According to the results, the methanolic extract had the maximum free radical scavenging capability and flavonoid concentration (48). Each chemical variety of camphor (Cinnamomum camphora) has a distinct essential oil makeup. It includes camphor as its primary component, along with eugenol, cineole, nerolidol, limonene, safrole, borneol and camphene, as well as myrcene and p-cymene (49).

Malaria

The malaria epidemic in India peaked in the 1950s, with an estimated 75 million cases and 0.8 million deaths each year (World Wellbeing Organization, Nation Office for India). By 1961, the National Malaria Control Programme (NMCP) had altogether diminished the number of complex cases to 50000 and there had been no detailed fatalities (50). Vernonia amygdalina, Callistemon citrinus, Mormodica feotida, Cyphostemma adenocaule, Aleo vera, Eucalyptus *globulus* are essential plants used in treating malaria. Stem, bark and leaves were often used (51). Andrographis paniculata and Nyctanthes arbor-tristis are the ethnomedicinal plants among 38 commonly used plants used in malaria treatment and prevention from Odisha tribal areas. Studies show the anti-malarial compound presence against Plasmodium falciparum (52). In addition to sesquiterpenes (the Future Research Challenges primary one is eugenol), the tulsi leaves contain monoterpenes. By mobilizing mucus 15, a liquid extract of leaves coupled with honey and ginger is used to treat bronchitis,

and antibacterial properties of silver nanoparticles made from A. vera leaf extract. In experimental settings, Aloe vera extract was toxic to Anopheles stephensi larvae and pupae, even at low dosages. Silver nanoparticles produced in green were extremely poisonous to Anopheles stephensi. When applied in outdoor settings, silver nanoparticles produced by A. vera reduce A. stephensi larvae numbers (54).

SARS (Severe Acute Respiratory Syndrome) and SARS-COV (COVID-19)

SARS, SARS CoV-2 (Covid-19), and MERS are the serious known coronaviruses that infect humans. The virus that causes COVID-19 (coronavirus disease 2019), the respiratory ailment that started the COVID-19 pandemic, is the severe acute respiratory syndrome coronavirus 2 (SARSCoV2). It was formerly known by its preliminary designation, 2019 India in the year 2020 (55, 56). Folium mori, Radix menthae, Isatidis folium and many more are the essential plants used in treating SARS (57). Withania somnifera (Ashwagandha) has two inhibitors Withanoside V and Somniferine, Tinospora cordifolia (Giloy), has one inhibitor, Tinocordiside and Ocimum sanctum (Tulsi) has three inhibitors Vicenin, Isorientin 4'-O-glucoside 2"-O-p-hydroxybenzoate and Ursolic acid against SARS-CoV-2 (58). Lycoris radiata, Artemisia annua, Pyrrosia lingua and Lindera aggregate demonstrated anti-SARS-CoV benefits with the median effective concentration of 200 Chinese herbal extracts. Antiviral drugs that impede COVID-19 development can be obtained from ethnomedicinal plants (59).

Glycyrrhiza uralensis, Lonicera japonica, Atractylodes macrocephala, Astragalus membranaceus, Salvia miltiorrhiza and many other plants are used in COVID-19 clinical treatment (60). SARS Coronavirus Main Protease and Papain-like Protease were shown to be inhibited by the tulsinol family of compounds A-G and dihydrodieuginol B. Due to its immunomodulatory characteristic and ACE II binding properties, Ocimum sanctum extract can be used as a preventative strategy against CoV (61). The patient who obtained Traditional Chinese Medicine decoction within 3 days of admission had a notably shorter time to negative SARS-CoV -2 swabs from the nasopharynx and mouth and a shorter time to negative SARS-CoV-2 urine, stool and blood samples. TCM decoction taken more than seven days before admission may be associated with longer hospitalization days, more extended disease period and slower SARS-CoV-2 conversion to the negative state. Hence, they recommended receiving TCM decoction therapy in the early stages of their illness (62).

A lot of hurdles must be overcome in addition to the various benefits. Traditional Knowledge of plants is dissolving day by day because of insufficient recording and low intergen-

erational knowledge transfer. Furthermore, due to the rapid land-use change, most vital medicinal plants are rapidly vanishing. Secondary metabolites may stimulate synthesis 4. via a particular regulatory pathway and a unique transport route in specific organs, tissues and cells. Molecular regulatory mechanisms of active component production and metabolism in medicinal plants are needed at various development stages and stress situations. The molecular regulatory mechanisms can be discovered using new methods for $^{-6.}$ studying genomes, transcriptomics and metabolomics. These may reveal changes in metabolic pathways of the main active constituents of medicinal plants. In recent years, many advanced biotechnological approaches have been used to select and evaluate medicinal plants for use in traditional and modern medical preparations and drug discovery. However, throughout laboratory-based assays detected during clinical trials, the toxicities of plant metabo- 8. lites are occasionally missed. Because the isolation and purification of pure plant-derived chemicals are very com- 9. plicated, time-consuming and labour-intensive, failures in clinical trial phases are highly disheartening. Ethnobotanical research and pharmacological and phytochemical characterization are critical for expanding overall Knowledge of plant pharmacophylogeny curative effect.

Conclusion

This review revealed the importance of educating herbal medicines and the selective use of botanicals to treat viral illnesses. Traditional herbal drugs have fewer side effects and are less expensive, so people extensively use them. Herbal plants are effective conventional pharmaceuticals for the treatment of viral infections. However, scientific research into the efficacy of these plants in the treatment of ailments as suggested by traditional healers is required.

Authors contributions

GM: Conceptualization and design of this work; UM and JB (equal contribution to both authors): Writing, collection, interpretation and arrangement of data; GM: Critically revised the manuscript; All the authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no 17. conflicts of interest.

Ethical issues: None.

References

- 1. Asthana A, Anil Kumar, Gangwar S, Dora J. Pharmacological Perspectives of *Cynodon dactylon*. Res Pharmaceut Biol Chem Sci. 2012;3(2):1135-47.
- World Health Organization (WHO). Summary of WHO guidelines for the assessment of herbal medicines. Herbal Gram. 1993;28:13 -14.
- 3. Mamman PH, Mshelia WP, Susbatrus SC, Sambo KW. Antibacterial effects of crude extract of *Azadirachta indica* against *Escherich*-

ia coli, *Salmonella* spp. and *Staphylococcus aureus*. Int J Med Med Sci. 2013;5(1):14-18.

- . Pattanayak S, Mandal TK, Bandyopadhyay SK. Use of plants as digestive stimulator and tonic in three southern districts of West Bengal, India. Int J Herbal Med. 2015;3(5):01-08.
- Bharati K, Vrati S. Viral vaccines in India: an overview. Proc Natl Acad Sci India Sect B Biol Sci. 2012; 82(1):181-98. https//doi.org/ 10.1007/s40011-011-0014-9
 - Dogra KS, Chauhan S, Jalal JS. Assessment of Indian medicinal plants for the treatment of asthma. J Med Plants Res. 2015; 9 (32):851-62. https://doi.org/10.5897/JMPR2015.5890
- Kotwal GJ, Kaczmarek JN, Leivers S, Ghebremariam YT, Kulkarni AP, Bauer G, CDEB, Preiser W, Mohamed AR. Anti-HIV, antipoxvirus, and anti-SARS activity of a non-toxic, acidic plant extract from the Trifolium species Secomet-V/ anti-Vac suggests that it contains a novel broad-spectrum antiviral. Ann NY Acad Sci. 2005;1056:293-302. https://doi.org/10.1196/annals.1352.014
 - Rates SM. Plants as Source of Drugs. Toxicon. 2001;39(5):603-13. http://doi.org/10.1016/S0041-0101(00)00154-9
 - Ngono NRA, Koanga MML, Tchinda TA, Magnifouet NH, Motso PR, Mballa BZ, Ebelle ERM, Ndifor F, Biyiti L, Amvam PH. Ethnobotanical survey of some Cameroonian plants used for the treatment of viral diseases. Afr J Plant Sci. 2011;5(1):15-21. https:// doi.org/10.5897/AJPS.9000106
- Pompei R, Flore O, Marccialis MA, Pani A, Loddo B. Glyrrhizic acid inhibits Virus Growth and inactivates Virus Particles. Nature. 1979; 281(5733):689-90. https://doi.org/10.1038/281689a0
- Rollinger JM, Steindl TM, Schuster D, Kirchmair J, Anrain K, Ellmerer EP, Langer T, Stuppner H, Wutzler P, Schmidtke M. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein. J Med Chem. 2008; 51(4):842-51. https://doi.org/10.1021/jm701494b
- Mehendale R, Joshi M, Patravale V. Nanomedicines for treatment of viral diseases. Critical Reviews[™] in Therapeutic Drug Carrier Systems. 2013;30(1);1-49. http://doi.org/10.1615/ CritRevTherDrugCarrierSyst.2013005469
- Adhikari B, Marasini BP, Rayamajhee B, Bhattarai B, Lamichhane G, Khadayat K, Adhikari A, Khanal S, Parajuli N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res. 2020; 35(3):1298-1312. https://doi.org/10.1002/ptr.6893
- John TJ, Dandona L, Sharma VP, Kakkar M. Continuing challenge of infectious diseases in India. The Lancet. 2011;377(9761):252-69. https://doi.org/10.1016/S0140-6736(10)61265-2
- 15. Tsoucalas G, Antonios K, Markos S. The 1918 Spanish Flu Pandemic, the origins of the H1N1-virus strain, a glance in history. Eur J Clin Biomed Sci. 2016;2.4:23-28.
- 16. Deja Flu: Spanish Lady killed 14 million in British India a century ago. Times of India 2020.
- 17. Chhina SAM. Explained: When corpses of Influenza victims were dumped in the Narmada River in 1918. Indian Express 2021.
- 18. Coronavirus: What India can learn from the deadly 1918 Flu. BBC 2020.
- Mayor S. Flu experts warn of the need for pandemic plans. British Med J. 2000;321(7265):852. https://doi.org/10.1136/ bmj.321.7265.852
- Choudhari S, Priya VV, Gayathri R. Herbal remedies for Swine flu. Res J Pharm Techno. 2016; 9(10):1789-92. https:// doi.org/10.5958/0974-360X.2016.00362.0
- 21. Hudson JB. The use of herbal extracts in the control of influenza. J Med Plants Res. 2009; 3(13):1189-95.
- 22. Mahmood MS, Mártinez JL, Aslam A, Rafique A, Vinet R, Laurido C, Ali S. Antiviral effects of green tea (*Camellia sinensis*) against

Trad Complement Altern Med. 2016;13(2):176-84. https:// doi.org/10.4314/ajtcam.v13i2.21

- 23. Yu Z, Yang Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (*Camellia sinensis*) provides new insights into the safe and 39. effective alteration of tea flavor and function. Crit Rev Food Sci 60(5):844-58. Nutr. 2020; https:// doi.org/10.1080/10408398.2018.1552245
- 24. Pleschka S, Stein M, Schoop R, Hudson JB. Antiviral properties 40. and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J. 2009;6(1):1-9. https:// doi.org/10.1186/1743-422X-6-197
- 25. Behera K, Mandal U, Panda M, Mohapatra M, Mallick SK, Routray S, Parida S, Mahalik G. Ethnobotany and folk medicines used by the local healers of Bhadrak, Odisha, India. Egyptian J Bot. 2021; 61(2):375-89. https://doi.org/10.21608/EJBO.2020.26337.1474
- 26. Haidari M, Ali M, Casscells III SW, Madjid M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomed. 2009;16 (12):1127-36. https://doi.org/10.1016/j.phymed.2009.06.002
- 27. Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ., Ghavami S. Quercetin as a Natural Therapeutic Candidate for the Treatment of Influenza Virus. Biomolecules. 2021;11(1):10. https:// doi.org/10.3390/biom11010010
- 28. Eccles R, Weber O. Common cold. Springer Science & Business Media; 2009. https://doi.org/10.1007/978-3-7643-9912-2
- 29. Tyrrell DAJ. Interferons and their clinical value. Clin Infect Dis. 1987;9(2):243-49. https://doi.org/10.1093/clinids/9.2.243
- 30. Delfan B, Kazemeini H, Bahmani M. Identifying effective medicinal plants for cold in Lorestan Province, West of Iran. J Evid Based Complementary Altern Med. 2015;20(3):173-79. https:// 46. Gupta S, Mukherjee M. Some useful medicinal plants used doi.org/10.1177/2156587214568458
- 31. Da Costa Mendieta M, Heck RM, Ceolin S, de Souza AD, Vargas NR, 47. Piriz MA, Borges AM. Medicinal plants indicated for flu and colds in the South of Brazil. Rev Eletr Enf. 2015;17(3):1-8. http:// dx.doi.org/10.5216/ree.v17i3.28882
- 32. Baldini N, Torreggiani E, Roncuzzi L, Perut F, Zini N, Avnet S. Exosome-like Nanovesicles. Isolated from Citrus limon L. Exerts Anti-Oxidative Effect. Curr Pharm Biotechnol. 2018;19(11):877-85. https://doi.org/10.2174/1389201019666181017115755
- 33. Li Y, Liu Y, Ma A, Bao Y, Wang M, Sun Z. In vitro Antiviral, antiinflammatory and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci Biotechnol. 2017;26(6):1675-83. https://doi.org/10.1007/s10068-017-0217-9
- 34. Makrane H, Aziz M, Berrabah M, Mekhfi H, Ziyyat A, Bnouham M, Eto B. Myorelaxant activity of essential oil from Origanum majorana L. on rat and rabbit. J Ethnopharmacol. 2019;228:40-49. https://doi.org/10.1016/j.jep.2018.08.036
- 35. Liu SJ, Lv YP, Tang ZS, Zhang Y, Xu HB, Zhang DB, Wei SM. 51. Ziziphus jujuba Mill. A plant used as medicinal food: a review of its phytochemistry, pharmacology, quality control and future research. Phytochem Rev. 2020;1-35. https://doi.org/10.1007/ s11101-020-09709-1
- 36. Sobhani Z, Nikoofal-Sahlabadi S, Amiri MS, Ramezani M, Emami 52. SA, Sahebkar A. Therapeutic effects of Ziziphus jujuba Mill. Fruit in traditional and modern medicine: A review. Med Chem. 2020;16(8):1069-88. https:// doi.org/10.2174/1573406415666191031143553
- 37. Venu LN, Austin A. Antiviral efficacy of medicinal plants against respiratory viruses: Respiratory Syncytial Virus (RSV) and Coronavirus (CoV) / COVID 19. J Phytopharmacol. 2020;9(4):281-90. https://doi.org/10.31254/phyto.2020.9412

- pathogenic viruses in humans and animals (a mini-review). Afr J 38. Xu JJ, Wu X, Li MM, Li GQ, Yang YT, Luo HJ, Li YL. Antiviral activity of polymethoxylated flavones from "Guangchenpi", the edible and medicinal pericarps of Citrus reticulate 'Chachi'. J Agricul Food Chem. 2014;62(10):2182-89. https://doi.org/10.1021/ jf404310y
 - Shahrajabian MH, Sun W, Cheng Q. Chinese star anise and anise, magic herbs in traditional Chinese medicine and modern pharmaceutical science. Asian J Med Biol Res. 2019; 5(3):162-79. https://doi.org/10.3329/ajmbr.v5i3.43584
 - Gao H, Liu L, Qu ZY, Wei FX, Wang SQ, Chen G, Qin L, Jiang FY, Wang YC, Shang L, Gao CY. Anti-adenovirus activities of shikonin, a component of Chinese herbal medicine in vitro. Biol Pharm Bull. 2011;34(2):197-202. https://doi.org/10.1248/bpb.34.19
 - Saderi H, Abbasi M. Evaluation of anti-adenovirus activity of 41. some plants from Lamiaceae family grown in Iran in cell culture. Afr J Biotech. 2011; 10(76):17546-50. https://doi.org/10.5897/ AJB10.1686
 - Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharma-42. cological effects of Zataria multiflora Boiss L. and its constituents focus on their anti-inflammatory, antioxidant and immunomodulatory effects. Fundam Clin Pharmacol. 2018;32(1):26-50. https://doi.org/10.1111/fcp.12331
 - Kupferschmidt K. Measles may have emerged when large cities 43 rose, 1500 years earlier than thought. Sci. 2019. https:// doi.org/10.1126/science.aba7352
 - 44. Furuse Y, Suzuki A, Oshitani H. Origin of measles virus: divergence from rinderpest virus between the 11 th and 12 th centuries. Virol J. 2010;7(1):1-4. https://doi.org/10.1186/1743-422X-7-52
 - Hoi HT. The roles of medicinal herbs in the treatment of measles. 45. Int J Res Pharm Sci. 2020; 11 (3);3872-77. https:// doi.org/10.26452/ijrps.v11i3.2570
 - against measles from West Bengal. J Pharmacy. 2015;5(2):13-19.
 - Dash G, Mohanty KK, Sahoo D, Mahalik G, Parida S. Traditional medicinal plants used for the treatment of asthma in Bhubaneswar, Odisha. Int J Herb Med. 2018;6(5):57-60.
 - Adeyanju O, Akomolafe SF, Atoki V, Oboh G. The leaves of Bam-48. busa vulgaris (L.) ameliorate. Pro- oxidants induced nephrotoxicity in rats - In vitro. FUTA J Res Sci. 2019;15(1):102-12.
 - 49. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M. Camphor (Cinnamomum camphora), a traditional remedy with a history of treating several diseases. Int J Case Rep Images. 2013;4(2):86-89. https://doi.org/10.5348/ijcri-2013-02-267-RA-1
 - 50 Sharma SK, Tyagi PK, Padhan K, Upadhyay AK, Haque MA, Nanda N, Joshi H, Biswas S, Adak T, Das BS, Chauhan VS. Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Trans R Soc Trop Med Hyg. 2006;100(10):917-25. https://doi.org/10.1016/ j.trstmh.2006.01.007
 - Malinga GM, Baana K, Rutaro K, Opoke R, Atube F, Opika-Opoka H, Oryema C. An ethnobotanical study of plants used for the treatment of malaria in Budondo sub-county, Eastern Uganda. Ethnobot Res Appl. 2020;19:1-5. https://doi.org/10.32859/ era.19.04.1-15
 - Singh H, Dhole PA, Krishna G, Saravanan R, Baske PK. Ethnomedicinal plants used in malaria in tribal areas of Odisha, India. Indian Journal of Natural Products and Resources. 2018;9(2):160-67.
 - Goel N, Wadi I. A Review on Herbal Therapy for Respiratory Ail-53. ments. Int J Life Sci Pharma Res. 2016;5(2).
 - 54. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Suresh U. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera

Anopheles stephensi. Parasitol Res. 2015;114(4):1519-29. https:// doi.org/ 10.1007/s00436-015-4336-z

- 55. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL., Lauber C, Leontovich AM., Neuman BW., Penzar D. Coronaviridae study group of the International 61. Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. https://doi.org/10.1038/s41564-020-0695-z
- 56. Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. Zoonotic 62. origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): why is this work important? Zoolog Res. 2020; 41(3):213. https:// doi.org/10.24272/j.issn.2095-8137.2020.031
- 57. Shahrajabiana MH, Sun W, Shen H, Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, 63. encouraging using herbal medicine for COVID-19 outbreak. Acta Agric Scand B Soil Plant Sci. 2020;70(5):437-43. https:// doi.org/10.1080/09064710.2020.1763448
- 58. Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB, Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struc Dynamics. 2020; 26:1-4. https:// doi.org/10.1080/07391102.2020.1810778

- extract: towards an effective tool against the malaria vector 59. Shoaib A, Azmi L, Shukla I, Alqahtani SS, Alsarra IA, Shakeel F. Properties of ethnomedicinal plants and their bioactive compounds: Possible use for COVID-19 prevention and treatment. Curr Pharm Des. 2021;27(13):1579-87. https:// doi.org/10.2174/1381612826666201106092021
 - Akalın E, Ekici M, Alan Z, Elevli EO, Bucak AY, Aobuliaikemu N, Uresin AY. Traditional Chinese medicine practices used in COVID-19 (Sars-cov 2/Coronavirus-19) treatment in the clinic and their effects on the cardiovascular system. Turk Kardiyol Dern Ars. 2020; 48(4):410-24. https://doi.org/10.5543/tkda.2020.03374
 - Varshney KK, Varshney M, Nath B. Molecular Modeling of isolated phytochemicals from Ocimum sanctum towards exploring potential inhibitors of SARS coronavirus main protease and papain-like protease to treat COVID-19. SSRN 3554371. 2020. https:// ssrn.com/abstract=355437
 - Shi J, Lu Y, Zhang Y, Xia L, Ye C, Lü Y, Chen S, Xu Q, Tang B, Yin K, Zhang J. Traditional Chinese medicine formulation therapy in the treatment of coronavirus disease 2019 (COVID-19). American J Chinese Med. 2020;48(07):1523-38. https://doi.org/10.1142/ S0192415X20500755