Pharmacological, biological and phytochemical aspects of Thymus munbyanus Boiss. & Reut.: A review

Hamza Elbouny1*, Brahim Ouahzizi1, Eimad Dine Tariq Bouhlali1,3, Khalid Sellam1,2 & Chakib Alem1

1 Biochemistry of Natural Resources Team, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University, Zitoune 11201 Meknes, BP, Morocco
2 Biology, Environment and Health Team, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University, Zitoune 11201 Meknes, BP, Morocco
3 National Institute for Agricultural Research, Regional Center of Errachidia, Morocco

*Email: h.elbouny@edu.umi.ac.ma

Abstract
Thymus munbyanus Boiss. & Reut., is a small shrub endemic to Morocco and Algeria, and it is commonly used to treat several diseases, including digestive, circulatory, genital, skin, urinary, nervous and respiratory diseases. The extracts of this thyme are rich in a wide variety of phenolic compounds such as polyphenols and volatile phenols and exhibit numerous biological activities. The present review summarizes the literature investigations reported on Thymus munbyanus concerning various pharmacological and biological properties as well as phytochemical aspects. This species revealed a richness in phenolic compounds in its volatile oils, including thymol and carvacrol, as well as in its non-volatile extracts including phenolic acids phenolic acids (rosmarinic acid, caffeic acid, salvianolic acid, ferulic acid, etc.), flavonoids (luteolin, gallicatechin, quercetin, isorhamnetin, etc.). Moreover, powerful antioxidant and antimicrobial properties were reported for this Thymus species, which are attributed to its richness in bioactive antioxidantants. Furthermore, this thyme was found to possess important nephroprotective, hepatoprotective, and tumor cytotoxic properties. In conclusion, Thymus munbyanus is an important natural source of bioactive phenolic compounds that can be used for developing alternative natural drugs for the treatment and prevention of several pathologies.

Keywords
Biological properties; pharmacological properties; phytochemical aspects; Thymus munbyanus

Introduction
Countless Lamiaceae species are used as medicinal and aromatic plants all over the world. This herbal family is one of the most important angiosperm families that consists of 236 genera and more than 7000 species. It also contains numerous species with medicinal and economic importance around the world. Among those 236 genera, the genus Thymus is one of the most important and diversified genera, comprising over 300 species distributed throughout the world (1). The plants of this genus have been used since ancient times for their beneficial health properties, which are attributed to their richness in phytochemical components, especially essential oils and polyphenols.

Thymus species are widely used medicinal plants in folk medicine, food, and pharmaceutical industries due to their pharmacological features. Moreover, these species have been used in the treatment of several diseas-
es, including digestive, circulatory, genital, skin, urinary, nervous and respiratory diseases (2,3).

Thymus munbyanus Boiss. & Reut. (*T. munbyanus*), is a small shrub endemic to Morocco and Algeria and it is commonly used in North Africa and several other countries to treat several diseases. This species englobes four subspecies namely *T. munbyanus* subsp. *munbyanus*, *T. munbyanus* subsp. *coloratus*, *T. munbyanus* subsp. *ciliates*, and *T. munbyanus* subsp. *abylaeus* (4). Moreover, this thyme was reported in several studies for its interesting biological and pharmacological properties.

In the present review, we will summarize and discuss the studies reported on *T. munbyanus*, including phytochemical, pharmacological, and biological investigations.

Phytochemistry

T. munbyanus is a natural source of bioactive phytochemicals. This thyme is reported to have important amounts of total polyphenols and volatile oils. Several studies investigated the chemical composition of the essential oils of the four subspecies of *T. munbyanus*. Benomari et al. (2020) determined the chemical composition of three subspecies of *T. munbyanus* (*T. munbyanus* subsp. *abylaeus*, *T. munbyanus* subsp. *ciliates*, and *T. munbyanus* subsp. *coloratus*). This study showed that the main components of the three subspecies were α-terpinyl acetate (51.7%), α-terpineol (9.7%), and borneol (6.8%) for *T. munbyanus* subsp. *abylaeus*, carvacrol (65.7%), g-terpinene (13.6%), and p-cymene (7.9%) for *T. munbyanus* subsp. *ciliates*, and camphor (25.9%), myrcene (16.9%), and 1,8-cineole (6.5%) for *T. munbyanus* subsp. *coloratus* (5). Moreover, the chemical composition of *T. munbyanus* subsp. *munbyanus* essential oil was evaluated by Bendif et al. (2018). The results showed that (E)-nerolidol (13.7%), terpinenol (10.6%), and camphor (7.6%) are the major compounds of this subspecies (6). In another study, Ouknin et al. (2018) analyzed the chemical composition of the essential oil of this species and revealed that it contains carvacrol (31.7%), β-terpinene (21.9%), p-cymene (14.7%), and thymol (7.6%) as the major volatile compounds (7). These studies indicated that the composition of the volatile oils differs from one subspecies to another. Thus, some subspecies contain in their composition volatile phenolic compounds, namely thymol and carvacrol. Regarding the chemical composition of the non-volatile extracts of *T. munbyanus*, there are only a few reports. The study of Bendif et al. (2020) revealed that the extract of *T. munbyanus* contains phenolic constituents including phenolic acids (rosmarinic acid, caffeic acid, salvianolic acid, ferulic acid, etc.), flavonoids (luteolin, gallocehtechin, quercetin, isorhamnetin, etc.), and glycosides (luteolin 7-O-glucuronide, quercetin 3-O-glucuronide, eriodictyol-7-O-hexoside, etc.) (8). These polyphenolic constituents are present in great amounts in this species and have important bioactivity. However, they are less studied when compared to volatile oils. Therefore, more phytochemical investigations on the polyphenolic phytochemicals of this thyme are needed. After all, these studies showed that this species is rich in a wide variety of bioactive compounds in both volatile and non-volatile extracts (Fig. 1).

Antioxidant activity

Thyme plants are an important source of natural antioxidants. Numerous *Thymus* species from different countries around the world are reported to exhibit powerful antioxidant effects (9–11). Likewise, *T. munbyanus* antioxidant potential was studied using different methods. The antioxidant activity of chloroform, ethyl acetate, and n-butanol extracts, as well as isolated compounds from *T. munbyanus* using total antioxidant capacity and free
radical scavenging activity assays were analyzed. The results of these studies showed that the different solvent extracts have an antioxidant effect comparable to that of the antioxidant standards butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), whereas some of the isolated compounds, including methyl caffeate, tetrahydroxflavanone, and pluchoic acid exerted a higher antioxidant effect than those of antioxidant standards which are known to be potent antioxidants (12, 13). Moreover, the antioxidant potential of the essential oils of *T. munbyanus* has been evaluated in several studies. Benchabane et al. (2014) evaluated the antioxidant activity of *T. munbyanus* essential oil using DPPH free radical and thiobarbituric acid reactive substances assays and reported that *T. munbyanus* essential oil exerted a powerful antioxidant activity, which was similar to that of BHT (14). Moreover, Bendif et al. (2016) studied the antioxidant activity of essential oils from different parts (Leaves/stems and flower) of *T. munbyanus* using DPPH, ABTS, and FRAP in-vitro antioxidant tests. The results of this study showed that all the oils showed moderate antioxidant activity. Leaves with stems essential oils exhibited a considerably higher activity compared to flowers essential oils, but significantly lower than that exerted by the standard antioxidant Trolox (15). Furthermore, the powerful antioxidant potential reported for this thyme is generally attributed to the presence of powerful phenolic antioxidants in its volatile and non-volatile extracts in important amounts.

Antimicrobial activity

Thymus species essential oils exhibit a broad range of biological properties, including antibacterial and antifungal activities. Heni et al. studied the antibacterial activity of *T. munbyanus* essential oil against *Listeria monocytogenes* and *Bacillus cereus*, which are implicated in the contamination and poisoning of food. The results of this study demonstrated that the essential oil of this thyme exhibited a very good antibacterial activity against the two pathogenic strains. These pathogens displayed high sensitivity against the essential oil with inhibition diameters of 28.6 mm (*L. monocytogenes*) and 40 mm (*B. cereus*) and with a relatively low minimum inhibitory concentration (0.18 mg/ml) (16). Moreover, Bendifa et al. screened the antimicrobial activity of the essential oils of *T. munbyanus* using the disc diffusion method against four bacterial strains (*Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, and *Enterococcus faecalis*) and one yeast strain (*Candida albicans*). The results revealed that the essential oil of this thyme had a moderate antimicrobial effect on *S. aureus*, *E. coli*, and *C. albicans* with inhibition zone diameters in the range of 9 to 10 mm (15). Other studies investigated the antimicrobial properties of *T. munbyanus* essential oils against different microbial strains (17, 18) and showed that the essential oil of this thyme displays good antimicrobial effects.

Hepatoprotective activity

The liver is a vital organ with important metabolic functions, including body detoxification. However, hepatic dysfunction can cause serious complications. Liver disorders are associated with multiple factors such as biological, chemical, and drug overdose (19). Several plants were investigated for their hepatoprotective effects, including *Thymus* species (20). Furthermore, investigation was carried out to analyze the hepatoprotective effect of *T. munbyanus* against 2,4-dichlorophenoxyacetic acid (2,4-D) induced hepatic oxidative stress in albino Wistar rats by evaluating the biomarkers of hepatic function (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase), glutathione (GSH) levels, protein, and albumin contents, lipid peroxidation marker (malondialdehyde MDA), enzy-matic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione s-transferase (GST) enzymes), and histopathological evaluation. This study revealed that the alterations induced by 2,4-D at a dose of 5 mg/kg bw in the histological and biochemical parameters of the liver were significantly attenuated. It was reported that 2,4-D increased the biomarkers of hepatic function and MDA level significantly, decreased protein and albumin contents and hepatic GSH level, and the major enzymatic antioxidants, as well as the development of histological alterations of liver tissue with severe damages on liver cells. However, *T. munbyanus* extract attenuated all the alterations significantly in the histological and biochemical parameters of the liver (21). This study reported promising findings on the hepatoprotective potential of this *Thymus* species. However, testing of this thyme using other methods and different models is recommended to confirm its hepatoprotective effects.

Nephroprotective activity

The kidney is a vital organ that displays crucial functions, including the elimination of metabolic nitrogen waste, regulation of the pH, the fluid and electrolyte balance, production of hormones, and activation of vitamin D (22). However, renal dysfunction can lead to serious complications, including cardiovascular disease, hypertension, anaemia, etc. (23). Numerous medicinal plants were investigated for their nephroprotective effects (24). They can attenuate the biochemical, functional, and structural renal toxicities and represent effective nephroprotective alternatives (25). Likewise, Trea et al. tested the protective effects of *T. munbyanus* aqueous extract against 2,4-D induced nephrotoxicity at a dose of 5 mg/kg of body weight in male albino rats. This chemical compound causes oxidative stress and renal injury in the kidney, which increases the potential markers of renal filtration (urea and creatinine), malondialdehyde, and carbonyl protein levels, a decrease in uric acid, GSH, and antioxidant enzymes levels (SOD, GPx, and GST). The results showed that *T. munbyanus* extract supplementation for one month restored some blood parameters and alleviated the adverse cytotoxic effects of 2,4-D by increasing the levels of certain antioxidants, consequently attenuating the intensity of oxidative stress induced by 2,4-D and attenuated the histological alterations observed in the kidneys (26).

Tumor Cytotoxicity and anti-proliferative activity

Bendif et al. investigated the tumor cytotoxicity of *T. munbyanus* flowers, leaves, and stems essential oils against three human tumor cell lines, namely human glioblastoma.
multiforme, human breast adenocarcinoma, and human malignant melanoma. The results of this study revealed that the essential oils exhibited a slight cytotoxic effect against all cell lines. Flowers essential oils showed the highest cytotoxic effect against malignant melanoma cell line (IC50 Value = 46.95 μg/mL), whereas the lowest effects were shown by stems and leaves essential oil against the same tumor cell line (15). Tefiani et al. (2015) compared the anti-proliferative activity of the essential oils of T. munbyanus and an Apiaceae species (Ammoides pusilla) against human acute mononuclear leukemia cell line (THP-1). The results showed that T. munbyanus essential oil showed a significant (p<0.05) anti-proliferative activity, in which after seven days of incubation at a concentration of 100 μg/mL of essential oils, the proliferation percentage of THP-1 cells was 13% for T. munbyanus comparing to 64% for A. pusilla (27).

Discussion
Thymol plants are known to have important amounts of phenolic compounds and exhibit strong antioxidant effects. Several studies showed that the species of this genus are rich in flavonoids, phenolic acids, and their derivatives (28,29). For example, Sarfaraz et al. (2021) carried out a chemical analysis of the methanolic extract polyphenolic composition of 11 Iranian Thymus species. The results of the analysis showed that these species possess high amounts of polyphenols in which rosmarinic acid, salvianolic acid, and cinnamic acid are the major phenolic acids, and apigenin, epicatechin, and naringenin as the major flavonoids. Moreover, Boros et al. (2010) evaluated the chemical composition of five Hungarian Thymus species. The results of the analysis of this study showed that the hydro-methanolic extracts of these species are rich in phenolic acids and flavonoids. Phenolic acids (rosmarinic acid, ferulic acid, caffeic acid, chlorogenic acid), flavanones (naringenin, eriodictyol and dihydroquercetin), flavones (apigenin), as well as flavonols (quer cetin and rutin) were present in every examined Thymus species in which rosmarinic acid was the dominant compound (1.436 - 83.49 mg/g) (30). Likewise, T. munbyanus possess significant amounts of these polyphenols, including phenolic acids such as rosma

The extracts and essential oils of Thymus species, including T. munbyanus are an important source of these important metabolites. Furthermore, the chemical composition of the essential oils of T. munbyanus contains bioactive volatile phenols, namely thymol and carvacrol (7). Thymus species are a source of these volatile phenolic phytochemicals. Several studies investigated the chemical composition of several Thymus species essential oils and showed that thymol and carvacrol are abundant volatile compounds, including T. serpyllum and T. algeriensis (31), T. daenensis and T. kotschyanus (32), T. kotschyanus and T. vulgaris, etc. (33).

Due to the beneficial effects of the different extracts of T. munbyanus on several pathologies and the richness of these extracts in a wide variety of bioactive compounds, this species can be considered as an important source of potent drugs in the future. However, more studies should be carried out, especially on the polyphenolic extracts of this species, to evaluate their bioactivity against several diseases such as diabetes, hyperlipidemia, atherosclerosis, etc.
Conclusion
This present study aims to review the phytochemical, pharmacological, and biological activities reported on *T. munbyanus*. This thyme showed that it is rich in a wide variety of volatile and non-volatile bioactive phenolic compounds, including rosmarinic acid, thymol, and carvacrol. The extracts of this thyme display significant antioxidant, antimicrobial, antitumoral, hepatoprotective, and nephroprotective properties. *T. munbyanus* can be used for developing alternative natural drugs for the treatment and prevention of several pathologies.

Acknowledgements
The authors express their gratitude to their respective institutions for the support. This work was funded by CNRST.

Authors contributions
HE and CA conceived of the presented idea and wrote the paper. KS, EDTB, along with BO revised and edited the paper. All authors have read and approved the final manuscript.

Compliance with ethical standards
Conflict of interest: The authors declare no conflict of interest.

Ethical issues: None.

References
6. Bendif H, Adouni K, Miara MD *et al*. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian *Thymus munbyanus* as valuable sources of antioxidants to be used on an industrial level. Food Chem 2018;260:289–98. https://doi.org/10.1016/j.foodchem.2018.03.108
12. Özen T, Koldas S, Tüfeçki AR *et al.* Phytochemical study and antioxidant activities of the water soluble aerial parts and isolated compounds of *Thymus munbyanus* subsp. *ciliatus* (Desf.) Greuter & Burdet *Thymus munbyanus* subsp. *ciliatus* (Desf.) [Internet]. 2021 [cited 2021 Sep 9]; Available from: https://semanticscholar.org
22. Åkesson A, Chaney RL. Cadmium exposure in the environment:

44. Mazumder K, Biswas B, Raja IM, Fukase K. A review of cytototoxic plants of the Indian subcontinent and a broad-spectrum analysis of their bioactive compounds. Molecules. [Internet]. 2020 [cited 2021 Sep 16];25(8);1904. https://doi.org/10.3390/molecules25081904

https://plantsciencetoday.online