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Abstract  

The present investigation emphasized on the development and use of ento-

mopathogenic nematodes (EPNs) as a bio-insecticide. The success in con-

trolling insect pests in the soil environments increased the production and 

use of the adapted indigenous EPNs species for insect management in the 

fields. EPNs as biocontrol agents were capable for high virulence, easy for 

application, safe for non-target animals and eco-friendly in nature. These 

nematodes have ubiquitous nature. These occur in low population in their 

natural habitat which was mass multiplied in the laboratory. In the present 

investigation, 5 concentrations (30, 60, 90, 120 and 150IJs) of Heterorhabdi-

tis bacteriophora strain S15 were applied against the 3rd and 4th instar larvae 

of four major agricultural insect pests, namely Helicoverva armigera 

(Hubner), Spodoptera litura (Fabricus), Agrotis segetum (Denis and Schiff-

ermüller) and Mythimna separata (Walker) under laboratory conditions at 

different time exposure (24, 48, 72 and 96 h). It was observed that the 3rd and 

4th larval instars of all 4 insects  (H. armigera, S. litura, A. segetum and M. sep-

arata) were highly susceptible for the pathogenesis caused by H. bacteri-

ophora strain S15. Amongst all insects, both the larval instars of M. separata 

are highly susceptible for EPNs infection with highest 96% and 98% mortali-

ty in highest dose @150IJs. In 3rd instar larvae of other insects such as H. 

armigera, S. litura and A. segetum larval mortality ranges from 84%, 92% 

and 94% respectively. Among 4th instar larvae of H. armigera, S. litura and A. 

segetum the pathogenicity varies from 88%, 94% and 96%, respectively. The 

recorded median lethal concentration (LC50) in 3rd instar larvae of H. armige-

ra, S. litura,  A. segetum and M. separata varies from 36.15, 30.05, 30.97 and 

23.8IJs/larva. Similarly in 4th instar larvae of H. armigera, S. litura, A. segetum 

and M. separata, LC50 ranged from 31.41, 28.64, 26.92 and 20.64IJs/larva re-

spectively. Statistically significant variations were observed in the data rec-

orded on the mortality, in all the treatments. EPNs are the best weapon to 

overcome insect resistance problems and must be employed to manage 

insect population.  

  

Keywords  

Agrotis segetum, Biocontrol, Helicoverpa armigera, Mythimna separata, Spodoptera 
litura  

 

Introduction  

Over the next few decades, the world’s population predicted to be reached 

about 10 billion (1). Most of the people in India depend upon agriculture to 

fulfil their every day needs. The main concern of the agricultural industry is 
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to attain highest production in such a way that it is ecolog-

ically sustainable and worthwhile, but the major problem 

with modern agriculture is the losses caused by insect 

pest. About one million or more insect species are recog-

nized and they all are universal and adaptable in nature 

(2). According to FAO removal of natural forest with ad-

vanced agricultural strategies like greenhouses for the 

production of monoculture provides suitable habits and 

habitat for the pest population. Entomopathogenic nema-

todes (EPNs) are microscopic roundworms belonging to 

families Heterorhabditidae and Steinernematidae under 

phylum Nematoda (3). The term entomopathogen has 

originated from greek words ‘entomon’ refers to insect 

and ‘pathogen’ that causing diseases. EPNs are actually 

beneficial nematodes that exhibit holoparasitic mode of 

survival (3, 4). They can survive in almost all kinds of habi-

tats except Antarctica (5). The use of EPNs is considered a 

best integrated pest management (IPM) approach to con-

trol such insect population. They have been reported as 

the efficient bio-control agents against agricultural and 

forest insect pests (6). The EPNs from genus Heterorhabdi-

tis and Steinernema were considered as deadly fatal for a 

number of agricultural insect pests (7, 8). 

 Seventeen species of Heterorhabditis and hundred 

species of Steinernema have been sorted out that are 

found to be lethal for insect pests (3, 9). Parasitism by 

nematode worm in insects may result in sterility, reduced 

fecundity, delayed development, aberrant behaviour or 

death of the host, which prevents the degree of insect 

damage to crops (10). They are considered as the best sub-

stitute of chemical insecticides, due to their high potential 

of infecting the insects hidden even in mysterious places, 

high multiplication ability as well as their eco-friendly na-

ture (4, 11). Nematodes got signal from the insects through 

odour and ordure inside soil (12-14). In EPNs the third 

stage juvenile resides freely in soil with non-foraging be-

haviour, is responsible for causing the pathogenicity in 

their host and is commonly regarded as dauer juvenile. 

The dauer juvenile penetrate into the host body through 

spiracles or through natural body openings and releases 

its symbiotic bacteria inside the haemocoel of insect (4). 

The bacterial cells duplicates and generate severe toxins 

that have the high insecticidal potential and can kill the 

host insect within 1-2 days (15). The infected host dies 

soon after infection due to sepsis (16). Within the insect 

cadaver these bacteria nourish the EPNs and promote the 

growth and reproduction of EPNs (5). Major insect pests of 

agricultural crops are belonging to order lepidoptera in-

cluding Helicoverva armigera (Hubner), Spodoptera litura 

(Fabricus), Agrotis segetum (Denis and Schiffermüller) and 

Mythimna separata (Walker). Most of these insect pests are 

polyphagous and cause considerable damage to the agri-

cultural crops.  

 Cotton bollworm (H. armigera) is reported to infest 

wide range of crops such as tomato, cotton, corn, soybean 

and groundnuts. It is considered as very serious insect pest 

of agricultural crops that cause considerable damage in 

productivity (17). Tobacco cutworm (S. litura) causes 

about 26-100% losses in yield every year as it attack more 

than 150 plants of various botanical origin in India includ-

ing acacia, beetroot, banana, cotton, cabbage, lettuce, 

peanuts, strawberry and tomatoes (18, 19). Common cut-

worm (A. segetum) usually affects the growing seedlings of 

various crops including beans, cabbage, eggplant, lettuce, 

okra, peppers, potatoes, sugar beet and tomatoes (20-23). 

Armyworm or rice ear-cutting caterpillar (M. separata) 

known to cause extensive foliar damage (44%) to the crops 

including wheat, maize, rice, oats, sorghum and sugarcane 

(24).  

 In the present study indigenous EPNs species  H. 

bacteriophora strain S15 from hilly regions of Himachal Pra-

desh were tested for its pathogenic effect against the ma-

jor lepidopteran insect pests (H. armigera, S. litura, A. 

segetum and M. separata under the laboratory conditions.  

 

Materials and Methods  

Collection of soil samples  

Soil samples were collected from the fruit orchards of dis-

trict Solan, Shimla, Kangra, Kullu and Sirmaur, Himachal 

Pradesh. Soil samples were collected randomly from the 

rhizospheric soil of the fruit trees at a depth of about 15-30 

cm. Collected samples were brought in the polythene bags 

marked with proper information such as locality, type of 

fruit orchard and date of sampling. In order to maintain 

their moisture content, the samples were kept at 5 oC in 

the laboratory and were processed within 3-4 days. 

Laboratory culturing of bait insect  

Galleria mellonella (Linnaeus) larvae and adults were col-

lected from the Eternal University apiary. The culture was 

maintained into the rearing boxes containing natural diet 

(wax) and artificial diet. The artificial diet was also pre-

pared by mixing the ingredients such as wheat flour (100 

mg), wheat bran (100 g), milk powder (100 g), maize flour 

(200 g), dried yeast (50 g), honey (175 ml) and glycerine 

(175 ml). The eggs were inoculated into the diet and cul-

ture was maintained. 

Isolation of entomopathogenic nematodes from the soil  

Isolation of EPNs was done through soil baiting technique 

(25). The collected soil samples were processed and debris 

was removed. One hundred and fifty gram of soil was tak-

en in well labelled plastic container. About 4-5 last instars 

larvae were placed into the plastic container and contain-

ers were placed in the dark. The samples were checked 

regularly after each 24h to find out the mortality of insect. 

Dead insect cadavers were collected and extraction of 

EPNs was done through white trap method (25, 26). 

Collection of host insects and their rearing in the labora-

tory  

Agricultural insect pests H. armigera, S. litura, A. segetum 
and M. separata were collected from agricultural fields of 

Eternal University and from farmer’s field at different local-

ities. The culture of all these host insects were maintained 

using the earlier methodology described for the laboratory 

rearing of H. armigera (27), S. litura (28), A. segetum (29, 30) 

and M. separata (31) respectively. 
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Bioefficacy of entomopathogenic nematodes against 

different insect pests  

Biocontrol potential of EPNs was tested against different 

insects under the laboratory conditions. Different concen-

trations of infective juveniles (IJs) of EPNs such as 30, 60, 

90, 120, 150IJs along with control were tested against 3rd 

and 4th larval instars of all polyphagous insects and the 

mortality was checked 24, 48, 72 and 96 h after exposure. 

Each treatment was replicated five times and in control 

two millilitre water was applied. The experiments were 

repeated twice and the pooled data was subjected to sta-

tistical analysis. 

Statistical analysis  

The data obtained on the mortality caused by EPNs in in-

sect larvae was subjected to the statistical analysis. Analy-

sis of variance (ANOVA) was measured using arcsine trans-

formation by applying three factor analyses over percent 

mortality. Probit analysis was performed to assess the me-

dian lethal concentration (LC50) value of EPNs required to 

cause 50% mortality using OP stat software.  

 

Results  

Screening the effectiveness of entomopathogenic nema-

todes Heterorhabditis bacteriophora strain S15 against 

insect pests in the laboratory  

EPNs were isolated from the soil samples using insect bait-

ing technique and white trap method. The emerging EPNs 

from the dead cadaver were recovered. The population of 

these isolated EPNs is quite lower in the recovery, so these 

recovered EPNs were mass multiplied in the laboratory 

using last instars of G. mellonella. The multiplied EPNs 

were recovered and stored in storage bottles for further 

bioassay study in the laboratory. 

 The insecticidal potential of isolated EPNs H. bacte-

riophora strain S15 was evaluated against 3rd and 4th instar 

larvae of insect pests. Different concentrations such as 30, 

60, 90, 120 and 150IJs and at different time interval were 

applied to ensure their insecticidal efficiency. The 3rd and 

4th instar insect larvae of all the four insects (H. armigera, S. 

litura, A. segetum and M. separata) were found highly sus-

ceptible for EPNs (H. bacteriophora) infection (Fig. 1). The 

data obtained on this investigation is summarised under 

following subheads: 

Susceptibility and mortality in Helicoverpa armigera  

The results obtained over the effectiveness of H. bacteri-

ophora strain S15 against 3rd and 4th instar larvae of H. armi-

gera revealed that EPNs are responsible for causing signifi-

cant mortality in both the instars. It is clear from the (Fig. 

2) that in 3rd instar larvae, at highest dose @150IJs, highest 

84% mortality was observed after 96 h of infection fol-

lowed by 76%@120IJs. Similarly, against 4th instars highest 

88% insect mortality was observed in the highest dose 

(150IJs) followed by 82% in dose of 120IJs after 96 h of 

infection. In control, zero mortality was recorded against 

3rd and 4th instar of H. armigera even after 96 h of time ex-

posure. The table (Table 1) represented the LC50 values of 

both the instars at different time intervals and doses. The 

calculated LC50 of 3rd instar was 36.15IJs/larva (95% fiduci-

al limit (FL): 26.87-48.64) and 4th instar was 31.41IJs/larva 

(95%FL: 23.72-41.61). It was cleared from the table that 

after 48 h of infection significant mortality was observed as 

p < 0.01. 

Susceptibility and mortality in Spodoptera litura  

The efficiency of H. bacteriophora strain S15 was also 

observed against 3rd and 4th instar larvae of S. litura 

showed that in 3rd instar larvae, 92% larval mortality 

was caused at highest dose @150IJs followed by 80%

@120IJs, after 96 h of infection. 4 th instars larvae also 

showed 94% mortality at dose @150IJs followed by 

86% in dose of @120IJs after 96 h. Lowest dose @ 30IJs 

showed lowest mortality 52% in 3rd instars and 54% in 

4th instar larvae after 96 h exposure. The data obtained 

over the mortality was presented in (Fig. 3). In control, 

no mortality was recorded against 3 rd and 4th instar of 

S. litura even after 96 h of time exposure. The lowest 

LC50 values of 3rd instar larvae were 30.05IJs/larva (95%

FL: 22.61-39.95) and 4th instar larvae is 28.64IJs/larva 

(95%FL: 22.05-37.20) after 96 h of exposure. It is evi-

dent from the table (Table 1) that all the treatments 
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Fig. 2. Percent mortality caused by Heterorhabditis bacteriophora strain S15 in 
3rd and 4th instar larvae of Helicoverpa armigera.  
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were effective and showed significant mortality as we 

have a p value less than 0.01. During the present bioas-

say study it was very clear that with the increase of 

time interval and doses in both the instar larvae, insect 

mortality percentage also increased significantly.  

Susceptibility and mortality in Agrotis segetum  

The results achieved over the efficacy of H. bacteriophora 

strain S15 against 3rd and 4th instar larvae of A. segetum indi-

cated that significant mortality was caused by EPNs in 

both the larval instars. It is evident from the (Fig. 4) that 

Fig. 1. Isolation of entomopathogenic nematodes and their applications against lepidopteran insect pests under the laboratory.  
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the larval mortality ranged from 56%, 72%, 80%, 88% and 

94% against 3rd instar larvae while it is ranged from 56%, 

74%, 82%, 90% and 96% in 4th instar larvae after 96 h of 

time exposure at 30, 60, 90, 120 and 150IJs of EPNs con-

centration. In control, zero mortality against 3rd and 4th 

instar larvae in A. segetum was recorded even after 96 h of 

time exposure. The LC50 value was also determined in table 

(Table 1) to check the significance. In 3rd instar of A. 

segetum the calculated LC50=30.97IJs/larva with 95%FL: 

24.47-39.19 whereas, in 4th instar larvae LC50=26.92IJs/larva 

with 95%FL: 21.02-34.47. The treatments were found sig-

nificant as p=<0.01 in all the treatments except 24 h expo-

sure at dose 30IJs against 3rd instars. 

Susceptibility and mortality in Mythimna separata  

 The efficacy of H. bacteriophora strain S15 was also 

evaluated against 3rd and 4th instar larvae of M. separata 

under laboratory conditions. The results revealed that 

EPNs causing high mortality in oriental armyworm larvae. 

The data obtained over the mortality against 3rd and 4th 

instar larvae was discussed (Fig. 5). The highest mortality 

96% was observed in highest dose @150IJs after 96 h of 

infection in 3rd instar larvae. While 98% mortality was ob-

served against 4th instars in the highest dose @150IJs after 

96 h exposure. The calculated LC50 of 3rd instar larvae was 

23.84IJs/larva (95%FL: 18.44-30.82) and 4th instar larvae 

was 20.64IJs/larva (95%FL: 15.79-26.97) (Table 1). The p 

value < 0.01 represents the significant mortality in larvae 

at all treatment doses.  

 

Discussion  

Bio-control is the method of repressing or managing the 
population of various insect pests using their natural ad-

versary. Prolonged applications of chemical pesticides not 

only affect the environment but also show adverse impact 

on human health too. EPNs have been reported as conven-
tional and intensified method in insect pest management. 

Larval in-

star 
Host insects 

Susceptibility

(h) 
LC50 

95% fiducial limit 
Slope ± SE 

Pear-
son's  

χ2 
p-value 

Lower limit Upper limit 

 3rd instar  

 H. armigera 

24 3236.70 1648.82 6353.77 1.07±0.48 0.25 0.080 

48 243.58 193.30 306.93 2.23±0.37 0.84 0.004 

72 77.06 64.00 92.77 2.34±0.26 0.52 0.001 

96 36.15 26.87 48.64 1.48±0.24 0.91 0.004 

 S. litura 

24 982.41 625.85 1,542.11 1.46±0.46 0.46 0.030 

48 208.81 172.20 253.19 2.73±0.42 0.17 0.003 

72 70.66 58.20 85.78 2.24±0.25 0.74 0.001 

96 30.05 22.61 39.95 1.60±0.25 0.25 0.003 

 A. segetum 

24 546.30 387.44 770.30 1.83±0.47 0.16 0.02 

48 166.65 135.80 204.50 2.29±0.32 0.64 0.002 

72 73.49 59.61 90.60 2.05±0.25 0.89 0.001 

96 30.97 24.47 39.19 2.04±0.26 0.75 0.001 

 M. separata 

24 388.57 292.00 517.06 2.09±0.46 0.23 0.010 

48 170.76 139.13 209.59 2.30±0.32 0.97 0.002 

72 63.19 50.73 78.73 1.96±0.24 0.94 0.001 

96 23.84 18.44 30.82 1.98±0.27 0.73 0.002 

 4th instar 

 H. armigera 

24 1340.89 806.91 2228.24 1.34±0.47 0.44 0.004 

48 239.11 186.26 306.97 1.97±0,33 0.90 0.004 

72 71.57 59.07 86.71 2.26±0.25 0.88 0.001 

96 31.41 23.72 41.61 1.61±0.25 0.92 0.003 

 S. litura 

24 593.02 412.69 852.15 1.69±0.04 0.76 0.020 

48 178.58 147.71 215.89 2.59±0.36 0.08 0.002 

72 59.47 47.91 73.83 2.00±0.24 0.76 0.001 

96 28.64 22.05 37.20 1.81±0.26 0.40 0.002 

 A. segetum 

24 431.35 318.78 583.66 2.01±0.46 0.18 0.010 

48 154.64 127.23 187.96 2.39±0.31 0.87 0.002 

72 68.90 55.82 85.04 2.05±0.25 0.91 0.001 

96 26.92 21.02 34.47 1.99±0.27 0.48 0.002 

 M. separata 

24 390.55 289.51 526.84 1.87±0.39 0.84 0.010 

48 159.17 128.94 196.50 2.18±0.30 0.89 0.002 

72 56.34 45.34 70.01 2.00±0.24 0.73 0.001 

96 20.64 15.79 26.97 1.99±0.28 0.34 0.002 

Table 1. Log probit analysis to evaluate the larval mortality by H. bacteriophora strain S15 against lepidopteran insect pests  
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The results obtained from this study provide insights on the 
insect pest management strategy using indigenous EPNs. 
The H. bacteriophora strain S15 were found highly virulent 
against all four insect pests viz. H. armigera, S. litura,  A. 
segetum and M. separata under the laboratory conditions 

after 96 h of time exposure. Earlier it was reported that both 
genera of EPNs (Steinernema and Heterorhabditis) were 

highly lethal against the lepidopteran insect pests (32, 33).  

 In this study, 84% mortality was observed in 3rd in-
star larvae and 88% mortality was observed against 4th 
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Fig. 3. Percent mortality caused by Heterorhabditis bacteriophora strain S15 in 3rd and 4th instar larvae of Spodoptera litura.  
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Fig. 5. Percent mortality caused by Heterorhabditis bacteriophora strain S15 in 3rd and 4th instar larvae of Mythimna separata.  
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instar larvae of after 96 h of infection with H. bacteriophora 

strain S15. Earlier, similar study on EPNs susceptibility by H. 

armigera was carried out against three EPNs species viz. 

Steinernema carpocapsae, Steinernema feltiae and H. bac-

teriophora. They observed that among all 3 EPNs species 

H. bacteriophora is highly pathogenic and caused 83% 

mortality in H. armigera. They also reported 71.63% mor-

tality by S. feltiae and 30% mortality by S. carpocapsae 

(34). Similar observations were also recorded by the native 

strain of EPNs (H. bacteriophora) that showed 73.3% mor-

tality after 96 h of exposure time against H. armigera (35). 

Our results are in conformity with the previous work (36) in 

which they applied Heterorhabditis amazonensis MC01 

against H. armigera pupae under laboratory and field con-

ditions that resulted in 80% mortality in laboratory as well 

as in the field. In the present investigation, the calculated 

LC50 of 3rd instar larvae was 36.15IJs/larva (95%FL: 26.87-

48.64) and 4th instar larvae was 31.41IJs/larva (95%FL: 

23.72-41.61). Similar experiment was conducted by Glazer 

and Navon and reported LD50 49IJs/larvae (37). 

 The H. bacteriophora strain S15 susceptibility by S. 

litura was evaluated and it is evident from the results that 

in 3rd instar larvae 92% larval mortality was caused, where-

as 94% mortality was observed in 4th instars. Similar obser-

vations were recorded in the earlier investigation in which 

EPNs were responsible for causing 90-100% mortality in 

2nd, 3rd and 4th instar larvae of S. litura (38). Previously, 

EPNs susceptibility was also tested against different larval 

instars of S. frugiperda and it was reported that all the in-

stars were highly susceptible for EPNs infection (39, 40). 

Earlier,0-100% mortality was recorded in S. litura even 

after 24 h of EPNs exposure (41).  

 In this study, the LC50 values of 3rd instar larvae of S. 

litura were 30.05IJs/larva (95%FL: 22.61-39.95) and 4thin-

starwas 28.64IJs/larva (95%FL: 22.05-37.20) after 96 h of 

EPNs exposure. The present investigation is also in agree-

ment with the earlier studies carried out to find out the 

median lethal concentrations (LC50). LC50=6.81/larva and 

8.45IJ/larva was recorded when EPNs (Heterorhabditis in-

dica and Steinernema glaseri) were applied against S. litura 

under laboratory conditions (42). Similar observations 

were recorded in the previous work in which LC50=7.13 

were recorded to kill 50% population of S. litura (41). 

 In this investigation, efficacy of H. bacteriophora 

strain S15 against 3rd and 4th instar larvae of A. segetum was 

evaluated that resulted in causing 94% and 96% mortality 

in both the instars. Earlier, similar observations were made 

in which about 100% pathogenicity was observed in 3rd 

instar larvae of A. segetum when treated with H. bacteri-

ophora (43). Pathogenicity of S. carpocapsae and H. indica 

was also evaluated against the different larval instars of A. 

segetum. The results are in close proximity with our find-

ings, it was reported that about 73-100% pathogenicity 

was caused by H. indica while 60-100% mortality was 

caused by S. carpocapsae (44). EPNs were considered to 

have very high insecticidal potential and were considera-

bly manage the population of cutworm (45).  

 In the current investigation, the calculated LC50 of 

3rd instar larvae of A. segetum was 30.97IJs/larva with 95%

FL: 24.47-39.19 whereas, in 4th instar larvae LC50=26.92IJs/

larva with 95%FL: 21.02-34.47. In Agrotis ipsilon, LC50 of 

6.81 IJs/larva was reported, which was quite lower than 

our observations (46). The nematodes S. carpocapsae were 

applied against last instar larvae of A. segetum and the 

calculated  LC10= 9.9IJs, LC50= 54.13IJs and LC90= 246.2IJs 

per larva were recorded (47) which is in close proximity 

with our findings.  

 The insecticidal potential of H. bacteriophora strain 

S15 was also evaluated against M. separata under laborato-

ry conditions. It is evident from the results that highest 

mortality 96% and 98% was observed in highest dose 

@150IJs after 96 h of infection in 3rdand 4thinstar larvae. In 

our findings, the calculated LC50 of 3rd instar larvae was 

23.84IJs/larva (95%FL: 18.44-30.82) and 4th instar larvae 

was 20.64IJs/larva (95%FL: 15.79-26.97). The insecticidal 

potential of H. indica, S. carpocapsae, Steinernema abbasi 

and Steinernema siamkayai was also evaluated against M. 

separata under laboratory conditions and 100% larval 

mortality was recorded (31). They further reported signifi-

cant differences in LC50 and LC90 value after exposure of M. 

separata towards different species of EPNs.  

 

Conclusion  

The main emphasis of this research was focused on devel-

oping and using entomopathogenic nematodes as a bio-

insecticide. The success in controlling insect pests in the 

soil environments increased the production and use of the 

adapted species (indigenous) for insect management in 

the fields. EPNs (Rhabditida: Heterorhabditidae) in this 

study have arisen as admirable biological control agents 

against soil-inhabiting lepidopteran insect pests. This bio-

control agent is capable for high virulence, easiness for 

application, safe for non-target animals and also exempt-

ed from registration in various countries. Actually, there is 

an urgent need in this research to attain more basic infor-

mation on examination of these new reported nematode 

isolates. These nematodes showed ubiquitous nature and 

occur in low population in their natural habitat. More re-

search is required for understanding the various factors 

that can regulate and manipulate their population to 

pledge epizootic against insect pests. Overall statistically 

significant differences in the mortality were observed in all 

treatments during this study. EPNs are the best weapon to 

overcome insect resistance problems and must be em-

ployed to manage insect population. Further future stud-

ies required more nematode based formulations for the 

management of wide range of insect pest to check their 

potential in field conditions.  
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