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Abstract   

Microalgae are a potentially valuable source in the food, pharmaceutical 

and nutraceutical sectors. While biological activities surveys have investi-

gated the pharmaceutical properties of a few microalgae species, there are 

not many reports covering biological activity studies. This study was carried 

out to identify the metabolites by gas chromatography-mass spectrometry 

and evaluate the anti-oxidant, anti-diabetic properties of green algae ex-

tracts, Chlorella sorokiniana (KU.B2) and Scenedesmus falcatus (KU.B1). A 

total of 51 different chemical constituents were detected and tentatively 

identified. The primary compounds in both microalgae extracts included (R)

-2-hexanol (38.67% in C. sorokiniana and 23.53% in S. falcatus), n-

hexadecanoic acid (13.58% in C. sorokiniana and 18.94% in S. falcatus) and 

octadecanoic acid (22.30% in C. sorokiniana and 32.67% in S. falcatus). Ac-

cording to the profiling results, the C. sorokiniana extract exhibited greater 

anti-oxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scaveng-

ing (IC50 = 480.30 ± 14.85 µg ml-1), nitric oxide (NO) radical scavenging 

(562.73 ± 3.52 µg mL-1) and ferric reducing anti-oxidant power (FRAP) of 

58.51 ± 2.42 mgTE g-1. Comparatively, the C. sorokiniana extract had higher 

contents of alpha-glucosidase and alpha-amylase (IC50 = 491.22 ± 78.41 and 

2,817.00 ±143.04 µg mL-1, respectively) than the S. falcatus extract. This first 

report demonstrated anti-diabetic effect of both extracts on diabetic en-

zymes. The results confirm microalgae's anti-oxidant and anti-diabetic 

properties and suggest their potential benefits in cosmeceutical, nutraceuti-

cal and pharmaceutical applications.   
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Introduction   

As primary producers in aquatic systems, microalgae have gained increas-
ing interest from the chemical, food and pharmaceutical industries. Various 

microalgae contain a vast array of biologically active compounds, such as 

carotenoids (1), fatty acids (2), lipids (3), peptides (4), polyphenols (5), poly-

saccharides (6) and vitamins (7). Many studies have reported the effects of 

phytochemicals obtained from microalgae, with specific emphasis on the 

important bioactive metabolites. Because of such metabolites, microalgae 

have a wide variety of biological activities, including anti-bacterial (8), anti-

diabetic (2), anti-fungal (9), anti-inflammatory (10), anti-tumor (11) and anti-

oxidant activities (12), which are promising for drug discovery efforts (13). 
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Reactive oxygen and nitrogen species (RONS) are pro-

duced during physiological processes and are responsible 

for humans' oxidative cellular damage. RONS have a detri-

mental role in aging and in various diseases, such as Alz-

heimer’s disease, cardiovascular diseases, cancer, diabe-

tes, inflammatory problems, Parkinson’s disease and is-

chemia/reperfusion disorders (14-18). Several natural anti-

oxidants have exhibited a strong defense against cellular 

damage caused by free radicals, which may indicate their 

use in reducing such damage (19, 20). 

 Type 2 diabetes (T2D), or non‒insulin-dependent 

diabetes, is the most common type of diabetes, account-

ing for approximately 90% of all cases of diabetes world-

wide. It is currently the most prevalent metabolic disease 

in many modern societies and is becoming a severe disor-

der on a global scale (2, 13). A cure for diabetes has not 

been found. Various strategies are used to control the dis-

ease, such as diet modification and drug therapy (21, 22). 

The reduction of postprandial hyperglycemia is highly im-

portant in treating T2D (23). Inhibiting carbohydrate-

hydrolyzing enzymes, such as alpha-amylase and alpha-

glucosidase, can reduce postprandial hyperglycemia. Pan-

creatic alpha-amylase and intestinal alpha-glucosidase are 

the primary exo-acting glycoside hydrolase enzymes in-

volved in carbohydrate digestion. Specifically, alpha-

amylase is involved in the breakdown of large insoluble 

starches, while alpha-glucosidase plays a role in breaking 

down starches and disaccharides into glucose subunits 

(24). Therefore, enzyme inhibitors can lead to the reduc-

tion of postprandial blood glucose levels and act as a po-

tential target for anti-diabetic drugs (25). 

 In recent years, lipids produced by microalgae have 

acquired increasing interest because of their chemical 

constituents and possible applications. Many microalgae 

have an abundance of valuable products, and interest has 

focused on lipids. Some reports have suggested that lipids 

may have potential in the treatment of oxidative stress 

and T2D (2, 26-28). However, there is little research on mi-

croalgae's biotechnological potential as pharmaceutical 

properties. Few microalgae species have been reported for 

their biological activity, but not many studies (29). Espe-

cially, the study of microalgae extracts against oxidative 

stress and T2D has been almost totally lacking.  

 The most common types of microalgae Chlorella 

and Scenedesmus have been recognized as potentially 

good sources for production, popular microalga commer-

cially cultivation, and rich in bioactive components (30-

32). Many research studies have reported the potential anti

-oxidant and anti-diabetic activities of Chlorella and 

Scenedesmus (2, 30, 33-39). However, there is no report 

anti-oxidant on S. falcatus and anti-diabetic alpla-

glucosidase and alpha-amylase enzymes on C. sorokiniana 

and S. falcatus. Therefore, this study aimed to investigate 

the chemical profiles and biological properties, including 

anti-oxidant and anti-diabetic potentials, of the C. sorokin-

iana and S. falcatus microalgae extracts that may underlie 

the observed biological effects.    

 

Materials and Methods   

General chemicals and materials      

The chemicals were purchased as follows: methanol 

(analytical grade) (Merck, USA), chloroform (analytical 

grade) (RCl Labscan Limited, Thailand), hexane (analytical 

grade) (Baker, USA), 2,2-diphenyl-1-picrylhydrazyl (DPPH; 

Merck, USA), sodium nitroprusside (SNP; Himedia, India), 

sulfanilamide (Carlo Erba Reagents, France), phosphoric 

acid (Macron Fine Chemicals, China), N-(1-Naphthyl)

ethylenediamine hydrochloride (PanReac AppliChem, Ger-

many), 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ; Fluka 

Chemie, Switzerland), ferric chloride (ChemSupply Austral-

ia, Australia), alpha-glucosidase from Saccharomyces cere-

visiae (Sigma-Aldrich, USA), 4-nitrophenyl alpha-

glucopyranoside (Sigma-Aldrich, USA), alpha-amylase 

from porcine pancreas (Sigma-Aldrich, USA), starch (Tokyo 

Chemical Industries, Japan), 3,5-dinitrosalicylic acid 

(Sigma-Aldrich, USA), potassium sodium tartrate tetrahy-

drate (Ajax Finechem, Australia) and acarbose (Sigma-

Aldrich, USA). Analyses were performed with a Büchi Rota-

vapor® R-210 (Mumbai, India) 96-well microplate reader 

(Thermo Scientific, China) and gas chromatography-mass 

spectrometer (GCMS-QP2020; Shimadzu, Japan).  

Strains and culture conditions    

The strains of C. sorokiniana (KU.B2) and S. falcatus 

(KU.B1) were isolated and cultured at the Department of 

Botany, Faculty of Science, Kasetsart University, Bangkok, 

Thailand. Both microalgae were cultured in a liquid tris-

acetate-phosphate (TAP) medium using the followed 

method from previous report (40) under controlled condi-

tions using a cool white light-emitting diode (200 μmol 

photons m-2 s-1) at a temperature of 30 ± 1°C and pH of 7.0. 

During incubation for 9 days, the culture was shaken on a 

shaker at 115 rpm for 12 hrs per day. 

Preparation of crude extract    

C. sorokiniana and S. falcatus were collected and dried, 
then mechanically ground to a coarse powder. The powder 

samples of C. sorokiniana (20 mg) and S. falcatus (20 mg) 

were macerated with chloroform and methanol (2:1 v/v; 50 

ml) at room temperature. After 7 days, the resulting ex-

tracts were filtered through Whatman® grade 1 filter paper. 

The extracts were evaporated to obtain the crude extracts 

of C. sorokiniana (1.16 mg; 5.8% of yield) and S. falcatus 

(1.98 mg; 9.9% of yield), then extracts were kept at -20°C in 

the dark until analysis.  

Gas chromatography-mass spectrometry (GC-MS) analy-
sis    

To prepare the samples, the crude extracts of C. sorokin-

iana (2 mg) and S. falcatus (2 mg) were separately mixed 

with 1 ml of 1 M HCl in methanol under a constant N2 

stream for 1 min. The mixture was incubated at 80 ℃ for 40 

min and then, cooled at room temperature. After adding    

1 ml of 0.9% sodium chloride and 1 ml of hexane to the 

mixtures, they were centrifuged at 3000 rpm for 3 min. 

Subsequently, the hexane phase was transferred into a 

glass tube and dried once (41). 
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 The samples were analyzed using gas chromatog-

raphy-mass spectrometry (GCMS-QP2020; Shimadzu, Ja-

pan) equipped with an SH-RXI-5SIL-MS column (30 m × 

0.25 mm i.d. × 0.25 µl film thickness). Spectroscopic detec-

tion by GC–MS involved an electron ionization at 70 eV. The 

flow rate of the column carrier gas was set at 1 ml min-1, and 

1 µl samples were injected into the columns, which were 

set at 250°C in split mode. The temperature gradient of the 

GC oven was maintained at an initial temperature of 40°C, 

was increased to 300 °C at a rate of 5 °C min-1 for 52 min, 

and was then held at 300 °C for 8 min. Mass data analysis 

was conducted using an enhanced GC-MS post-run analy-

sis programme fitted with the National Institute of Stand-

ards and Technology NIST14 library database. 

Antioxidant activity    

2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scaveng-
ing activity      

DPPH scavenging capacity was demonstrated using a 
DPPH test, according to a previously described procedure 
(42). Separately, 150 µl of each extract of C. sorokiniana 
and S. falcatus was mixed with 150 µl of 0.2 mM DPPH solu-
tion in methanol (150 µl). After an incubation period of 30 
min at 25 °C, the absorbance was measured at 520 nm. 

Nitric oxide (NO) radical scavenging activity    

The capacity to scavenge NO was evaluated based on the 
standard method (18). First, 10 mmol l ‒1 sodium nitroprus-
side in phosphate buffered saline (125 µl) and the sample 
(25 µl) were mixed. After 150 min, the Griess reagent con-
taining 1% sulfanilamide, 2% H3PO4 and 0.1% N-(1-
Naphthyl)ethylenediamine hydrochloride (50 µl) was add-
ed. The absorbance was measured at 546 nm. 

Ferric reducing antioxidant power (FRAP) activity    

The ferric reducing anti-oxidant power (FRAP) activity was 
evaluated according to a procedure described (17). Fresh 
FRAP solution was prepared with 300 mM acetate buffer 
(100 ml), 10 mM TPTZ solution (10 ml) and 20 mM 
FeCl3.6H2O (10 ml). The extracts of C. sorokiniana and         S. 
falcatus (15 µl) and the FRAP solution (285 µl) were mixed 
in the dark and incubated for 30 min. The absorbance was 
measured at 593 nm. The FRAP content in the samples was 
reported as milligrams of the Trolox equivalent (TE) g ex-
tract-1, using the Trolox line equation (concentration at 0 
to 250 mg l‒1): y = 0 = 0.01x + 0.2046,    R² = 0.9917. 

Anti-diabetic activity     

Alpha-glucosidase activity    

The inhibition of alpha-glycosidase was assessed following 
a previously reported procedure (43). Fifty microliters of 
the sample, 130 µl of the buffer, and 20 µl of the alpha-
glucosidase solution (0.28 U ml-1) were mixed and incubat-
ed at 37 °C for 10 min, and then 100 µl of 0.5 mM 4-
nitrophenyl alpha-glucopyranoside was added. The ab-
sorbance was measured at 405 nm. and compared with 
acarbose as the positive control. 

Alpha-amylase activity     

The inhibition of alpha-amylase was assessed according to 

the procedure described (43). First, 1% of the starch solu-

tion (200 µl) and the extract (200 µl) were mixed and incu-

bated for 10 min, at 25 °C, then 200 µl of alpha-amylase 

(15 U ml-1) was added and incubated at 25 °C for 10 min. 

Subsequently, 400 µl of DNS solution, containing 1 g di-

nitrosalicylic acid, 20 ml 2 M NaOH, and 30 g potassium 

sodium tartrate tetrahydrate in 100 ml water, was added. 

The mixtures were incubated at 100 °C for 5 min and 

cooled at room temperature, and then 80 µl water was 

added. The absorbance was measured at 540 nm and com-

pared with acarbose as the positive control. 

Statistical analysis     

The data were expressed as a mean of three analyses. The 
statistical approaches were conducted using GraphPad 

Prism 6.01 software (San Diego, CA, USA). Tukey’s multiple 

comparisons test was used to compare the statistical sig-

nificance, where P-values < 0.05 were considered statisti-

cally significant.  

 

Results     

The GC-Ms profile of the extracts from C. sorokiniana and S. 

falcatus were evaluated and shown in Fig. 1. Fifty-one 

compounds were identified, while 34 compounds from C. 

sorokiniana, 28 from S. falcatus and 11 were found in both 

species (Table 1).The following major components (>3%) 

were found in both extracts: (R)-2-hexanol (4; 38.67% in    

C. sorokiniana and 23.53% in S. falcatus), n-hexadecanoic 

acid (33; 13.58% in C. sorokiniana and 18.94% in S. falca-

tus), and octadecanoic acid (43; 22.30% in C. sorokiniana 

and 32.67% in S. falcatus). Other identified components 

included 1,3,6-heptatriene, 2,5,5-trimethyl- (13; 4.14%) in 

C. sorokiniana and 1,5-heptadiene, 2,5-dimethyl-3-

methylene- (11; 3.95%), 5-hepten-1-yne, 6-methyl (12; 

3.55%), and epicedrol (20; 10.44%) in S. falcatus. All major 

chemical compositions are shown in Fig. 2. The chemical 

compounds identified by GC-MS were based on the reten-

Fig. 1. GC-MS profiles of (A) Chlorella sorokiniana and (B) Scenedesmus falca-
tus extracts  
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tion time (RT) and molecular weight, while the fragmenta-

tion patterns and data comparisons with the NIST14 li-

brary provide further structural identification The C. soro-

kiniana and S. falcatus extracts also contained some alco-

hols, fatty acids and straight-chain hydrocarbon com-

pounds associated with various biological activities. 

 Microalgae can produce numerous volatile com-

pounds, and they can be used as an alternative source for 

Table 1. Chemical constituents of Chlorella sorokiniana and Scenedesmus falcatus extracts.  

Sl. No. Rt Compounds Molecular 
weight 

Ratio 

C. sorokiniana S. falcatus 

1 3.236 3-hydroxy-3-methyl-2-butanone 102 0.50 0.37 

2 3.706 2-propenoic acid, 2-methyl-, ethenyl ester 112 0.52 0.15 

3 4.422 Propanoic acid, 2-hydroxy-2-methyl-, methyl ester 118 0.89 - 

4 4.472 (R)-2-hexanol 102 38.67 23.53 

5 5.455 3-butynoic acid 84 - 0.21 

6 6.059 1-butene, 2,3-dimethyl 84 - 0.08 

7 6.949 2-butenal, 3-methyl- 84 0.57 0.36 

8 7.719 Diisoamyl ether 158 0.42 0.35 

9 7.767 4-octen-3-one 126 - 0.20 

10 9.723 Methacrolein 70 - 0.13 

11 15.530 1,5-heptadiene, 2,5-dimethyl-3-methylene- 136 - 3.95 

12 15.785 5-hepten-1-yne, 6-methyl 108 - 3.55 

13 15.794 1,3,6-heptatriene, 2,5,5-trimethyl- 136 4.14   

14 15.94 Acetoxyacetic acid, 2-(1-adamantyl) ethyl ester 280 0.74 - 

15 15.98 Ethanol, 2-methoxyphenyl- 152 0.35 - 

16 16.474 Benzene, 1,3-bis(1,1-dimethylethyl)- 190 0.88   

17 16.468 p-Pentylacetophenone 190 - 0.45 

18 17.055 Propanedioic acid, oxo-, bis(1-methylethyl) ester 202 - 0.09 

19 17.229 4-heptanone, 3-methyl- 128 0.77 - 

20 17.530 Epicedrol 222 - 10.44 

21 17.980 Acetic acid, 4-(7-methylydenebicyclo[3.3.1]non-2-en-3-yloxy)butyl ester 264 - 0.32 

22 18.165 Crotyl methacrylate 140 0.36 - 

23 18.385 4-hexen-2-one, 3-methyl- 112 0.45 - 

24 18.497 Heptane, 3,3-dimethyl- 128 0.39 - 

25 18.500 3-hexanone, 2,2-dimethyl- 128 - 0.18 

26 22.804 Nonane, 5-methyl-5-propyl- 184 - 0.53 

27 23.236 Pentanoic acid, 5-hydroxy-, 2,4-di-t-butylphenyl esters 306 0.72 0.39 

28 23.916 3-hexanone, 2,5-dimethyl- 128 0.35 - 

29 27.745 3,5-dimethyl-4-octanone 156 - 0.56 

30 30.267 Oxalic acid, butyl propyl ester 228 1.20 0.19 

31 32.156 4-heptanone, 2-methyl- 128 0.52 - 

32 32.999 Phthalic acid, 4-cyanophenyl nonyl ester 393 0.68 0.32 

33 33.113 n-hexadecanoic acid 256 13.58 18.94 

34 33.255 Valeric anhydride 186 0.82 - 

35 33.280 2-methylbutanoic anhydride 186 1.02 - 

36 33.395 1,2,4-benzenetricarboxylic acid, 1,2-dimethyl ester 238 0.43 - 

37 33.910 Propane, 2-methoxy-2-methyl- 88 0.53 - 

38 34.312 14-heptadecenal 252 1.31 0.83 

39 35.493 1-undecene, 9-methyl- 168 - 0.53 

40 35.499 1-tridecyn-4-ol 196 0.60 - 

41 35.856 3-hepten-2-one 112 - 0.24 

42 35.868 Oxalic acid, allyl heptyl ester 228 0.46 - 

43 36.863 Octadecanoic acid 284 22.30 32.67 

44 37.005 1-piperidin-1-ylpropan-2-yl acetate 185 1.88 - 

45 37.080 4-pentadecanol 228 1.24 - 

https://plantsciencetoday.online
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some specific advantages. For instance, hexanol, which 

has received commercial interest, was found in S. obliquus 

and C. vulgaris microalgae (44-47). Other studies have also 

identified fatty acid components in various microalgae 

(48), such as n-hexadecanoic acid and octadecanoic acid in 

a C. sorokiniana extract (49). Results of other studies also 

revealed that the profile of the fatty acid composition in 

Chlorella and Scenedesmus extracts is mostly composed of 

C16-C18 (>92%) (31, 47). Moreover, hydrocarbon compounds 

have been found in green microalgae, such as        S. 

obliquus, S. dimorphus and C. vulgaris (50-53). Therefore, 

the chemical constituents obtained from C. sorokiniana 

and S. falcatus may play important role in the biological 

activities and pharmacological properties.  

 Fig. 3. shows the anti-oxidant activities of C. sorokin-

iana and S. falcatus, including the DPPH, NO and FRAP. 

The results show that the C. sorokiniana extract (IC50 = 

480.30 ± 14.85 µg ml-1 in DPPH and IC50 = 562.73 ± 3.52 µg 

ml-1in NO) exhibited better radical scavenging activity than 

the S. falcatus extract (IC50 = 693.53 ± 30.32 µg ml-1 in DPPH 

and IC50 = 728.67 ± 38.54 µg ml-1 in NO). A significant differ-

ence was observed between the DPPH and NO scavenging 

activities in both microalgae extracts, except at 125 µg ml-1 

in NO activity. Similarly, the FRAP was significantly higher 

in the C. sorokiniana extract (58.51 ± 2.42 mgTE g-1) than 

the S. falcatus extract (32.67 ± 1.75 mgTE g-1) (Fig. 3. C). 

These findings indicated that C. sorokiniana has greater 

anti-oxidant activity than S. falcatus, a finding that is at-

tributed to the presence of major constituents. For in-

stance, some studies reported that hexanol and other ma-

jor derivatives found in various extracts, such as pome-

granates, mung bean, ripe coffee beans and soybeans, are 

responsible for anti-oxidant properties (54-56). In the case 

of saturated fatty acids, extracts of Annona muricata L. 

Labisia pumila Benth, sea buckthorn, and Trifolium species 

also exhibited anti-oxidant activity owing to large percent-

ages of n-hexadecanoic acid and octadecanoic acid (57-

60). In addition, fatty acids such as n-hexadecanoic acid 

and octadecanoic acid were reported to exert effects 

against oxidative stress (61, 62). Our results were con-

sistent with those of previous findings that demonstrated 

anti-oxidant activities of hexanol, n-hexadecanoic acid and 

octadecanoic acid. 

 The inhibitory effects of C. sorokiniana and S. falcatus 
extracts on diabetic enzymes compared with acarbose as 

the positive control are shown in Fig. 4. The C. sorokiniana 
extract inhibited alpha-glucosidase (IC50 = 491.22 ± 78.41 

µg ml-1) and alpha-amylase (IC50 = 2,817.00 ±143.04 µg ml-1) 

more effectively than the S. falcatus extract (IC50 = 689.71 ± 

38.99 µg ml-1 in alpha-glucosidase and IC50 = 3,307.6 ± 85.98 

µg ml-1 in alpha-amylase). Nevertheless, the inhibitory 

effect of acarbose was greater than that of both extracts 

(Fig. 4. A3 and B3). Both microalgae extracts in different 

concentrations also significantly impeded the diabetic 

enzymes compared with the control, except for 1000 µg ml
-1 of C. sorokiniana extract on alpha-amylase, which had no 

effect. According to a previous study, hexanol was report-

ed to have hypoglycemic potential via insulin secretion 

(63) but no activity against alpha-glucosidase and alpha-

amylase. On the other hand, n-hexadecanoic acid and oc-

46 37.147 2,2'-oxybis(ethane-2,1-diyl) dipentanoate 274 0.74 - 

47 37.160 5-isoxazolecarboxylic acid, 4,5-dihydro-3,5-dimethyl-, methyl ester, (S)- 157 - 0.15 

48 39.150 Propane, 2-methoxy-2-methyl- 88 0.38 - 

49 39.314 Propanoic acid, ethenyl ester 100 0.51 - 

50 39.805 Butanal, 4-[(tetrahydro-2H-pyran-2-yl)oxy]- 172 0.53 - 

51 39.805 Pentanoic acid, 1,1-dimethylpropyl ester 172 - 0.30 

Fig. 2. Structure of major compounds of microalgae extracts: (R)-2-hexanol (4), 1,5-heptadiene, 2,5-dimethyl-3-methylene- (11), 5-hepten-1-yne, 6-methyl (12), 
1,3,6-heptatriene, 2,5,5-trimethyl- (13), epicedrol (20), n-hexadecanoic acid (33) and octadecanoic acid (43).  
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tadecanoic acid had a potential capacity for glucose re-

duction (64). Moreover, the n-hexadecanoic and octadeca-

noic fatty acids also demonstrated potent inhibition of 

alpha-glucosidase and alpha-amylase (65-68). Accordingly, 

our findings were similar to those of previous reports. 

 Microalgae extracts are increasingly considered 

an excellent natural anti-oxidant and anti-diabetic 

sources concerning the effects of phytochemicals. Pre-

vious studies on C. sorokiniana extracts reported the 

presence of anti-oxidant inhibitors, radical scavenging 

inhibition (69) and the construction of cell-based mod-

els and a Caenorhabditis elegans survival assay under 

oxidative stress (70), reduced ROS release in the mito-

chondria of a hyperthyroid rat liver (71) and reversible 

physiological oxidative perturbation (72). Green micro-

algae, Chlorella and Scenedesmus, also contain various 

anti-oxidant enzymes, including ascorbate peroxidase 

(APX), glutathione reductase (GR), glutathione S trans-

ferase (GST), peroxidase (POX) and superoxide dis-

mutase (SOD) (30, 71-72). These anti-oxidant enzymes 

increase the anti-oxidant activity and reduce oxidative 

stress in Chlorella (26). Until now, no work has report-

ed the anti-oxidant activity of S. falcatus extract. More-

Fig. 3. The anti-oxidant activity of Chlorella sorokin-
iana and Scenedesmus falcatus extracts; The dose-
dependent DPPH scavenging activity of (A1) C. 
sorokiniana and (A2) S. falcatus extracts. The dose-
dependent NO scavenging activity of (B1) C. sorokin-
iana and (B2) S. falcatus extracts. (C) Ferric reducing 
antioxidant power (FRAP) activity of C. sorokiniana 
and S. falcatus extracts. All results are presented as 

the mean ± standard deviation (n = 3).  
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over, this paper presents novel findings of C. sorokin-

iana and S. falcatus on diabetic enzymes, alpha-

glucosidase and alpha-amylase.  

 

Conclusion   

This investigation revealed that microalgae possess 

promising pharmaceutical and nutraceutical properties 

for a range of applications and are primarily attributable 

to lipid extracts. According to the results, the extracts of 

C. sorokiniana and S. falcatus contained 34 and 28 differ-

ent compounds respectively; (R)-2-hexanol, n-

hexadecanoic acid, and octadecanoic acid had the high-

est percentages. Significant differences were observed 

between individual biological activities in the extracts; 

specifically, C. sorokiniana extract showed higher anti-

oxidant and anti-diabetic activities. This study’s impact 

is worth mentioning that     C. sorokiniana and S. falcatus 

are potentially interesting natural sources in the alterna-

tive food health market.   

Fig. 4. The anti-diabetic activity of Chlorella sorokiniana and Scenedesmus falcatus extracts; Alpha-glucosidase activity of (A1) C. sorokiniana and (A2) S. falca-
tus extracts. Alpha-amylase activity of (B1) C. sorokiniana and (B2) S. falcatus extracts. (A3, B3) Acarbose was used as the standard for the positive control. All 
results are presented as the mean ± standard deviation (n = 3).  
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