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Abstract   

Cisplatin (CP) is a commonly used chemotherapeutic drug. The major limit-

ing factor in the use of CP is the side effects in normal tissues, including the 

kidney. Since ancient times, medicinal plants are rich sources of various 

bioactive constituents used to treat multiple ailments, including drug toxici-

ties. The present work is a preliminary study to explore the renoprotective 

actions of methanolic extract of Vitex altissima L.f. bark (Va) against CP-

induced renal damage in Wistar rats. Va was found to have potent radical 

scavenging activity than metal ion reducing power properties, compared 

with ascorbic acid. Further, Va was evaluated for nephroprotective activity 

in rats induced by CP (8 mg/kg; intraperitoneal) on the 7th day. The animals 

were grouped (n = 6) and treated with Va (100 and 200 mg/kg) orally for 14 

days. The outcomes of the study found that CP significantly (P < 0.001) al-

tered the oxidative stress markers (MDA, SOD and CAT), serum urea and cre-

atinine levels. The administration of Va significantly halted the toxic condi-

tion and maintained it towards normal levels. The higher dose of Va signifi-

cantly (P < 0.001) raised the SOD and CAT levels and halted the MDA levels 

than the low dose. Also, a higher dose of Va maintained the normal integrity 

of the histopathological studies of kidneys than a low dose. The present 

study demonstrates that V. altissima can attenuate the oxidative stress in-

duced by CP by enhancing the endogenous antioxidant levels and depleting 

the lipid peroxidation levels.    
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Introduction   

The kidney is the principal organ that plays a vital role in the excretion of 

xenobiotics and their metabolites (1, 2). Nephrotoxicity is one of the major 

leading causes of death worldwide, of which 20% of deaths are accounted 

for drug-induced toxicity with various classes of life-saving drugs (2-4). The 

nephrotoxicity symptoms include the change in urine volume, increased 

kidney weight, and alteration of kidney biochemical parameters (serum 

urea nitrogen and creatinine levels) (5, 6).  

 Cisplatin (CP) is platinum derived first-line anticancer drug that 

shows the efficient suppression of malignancies. CP interacts with DNA via 

the formation of covalent adducts between certain DNA bases and the plati-

num compound (7, 8). The toxic effects of CP include nausea, vomiting, oto-

toxicity, neurotoxicity and bone marrow suppression, but its chief dose-

limiting side effect is nephrotoxicity (8). But prolonged usage of CP exhibits 
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irreversible nephrotoxicity, ototoxicity and neurotoxicity  

(7-10). Even though less toxic anticancer drugs were avail-

able, CP remains the drug of choice due to its potential, 

availability and cost-effectiveness (11).  

 Although the exact mechanism underlying the renal 

toxicity induced by CP is unclear, the in vitro and in vivo 

studies suggested that it was attributed to the combina-

tion of the excess generation of reactive oxygen species 

(ROS), apoptosis and lipid peroxidation (15-17). The chron-

ic usage of CP leads to oxidative stress that culminates in 

the generation of various classes of ROS, such as superox-

ide anion, nitric oxide and hydroxyl free radical (18). The 

platinum substances form complexes with the nitrogen 

bases of DNA and induce apoptosis (19). ROS plays a cru-

cial role in cellular injury and necrosis via several mecha-

nisms, namely increased lipid peroxidation, decreased 

endogenous antioxidants, DNA damage and protein dena-

turation by reacting with thiols (20, 21). CP-induced renal 

injuries increase the serum markers of kidney function 

such as blood urea nitrogen and creatinine (8). Moreover, 

CP administration reduces the renal level and/or activity of 

antioxidant enzymes such as superoxide dismutase, cata-

lase, glutathione peroxidase and glutathione (8, 15). 

 There is a continuous search for agents which pro-

vide nephroprotection against the renal impairment in-

duced by drugs like CP for which allopathy offers no reme-

dial measures. It is thus imperative that we turn toward 

alternative systems of medicine for solutions. The Vitex 

altissima L.f. belongs to the family Verbenaceae. The phy-

tochemical analysis of leaves of V. altissima consists of 

iridoid glucosides, flavonoids and triterpenoids (22, 23). 

The parts of V. altissima have been reported for antioxi-

dant, anti-inflammatory and 5-lipoxygenase enzyme inhib-

itory activities (22, 23). Taken together, the present study 

made and attempted to evaluate the nephroprotective 

activity of methanol extract of barks of V. altissima in CP-

induced renal oxidative stress in Wistar rats.   

 

Materials and Methods   

Plant material     

The barks were collected from matured plants of V. altissi-

ma L.f. from Seshachalam hills, Tirupati, Andhra Pradesh, 

India, in February 2019 and a voucher specimen (No. 0732) 

was deposited in the Department of Botany herbarium, Sri 

Venkateswara University, India. 

Extraction   

The shade dried barks of V. altissima were ground into a 

coarse powder using an electrical blender. By hot continu-

ous percolation technique (24), the powdered material 

(250 g) was extracted with methanol for 48 hr using a 

Soxhlet apparatus (25). The obtained solvent mixture was 

concentrated under reduced pressure using rotavapor 

(Buchi R-210 Rotavapor, Marshall Scientific, USA) yielded 

methanolic extract of barks of V. altissima (Va, 20 g, 2.0% 

w/w) as dark black solid and stored in amber-colored bot-

tles at 4 ºC for further use.  

 

Total phenol and flavonoid contents    

The Va total flavonoid and phenolic content were evaluat-

ed using aluminum chloride (26) and Folin- Ciocalteau rea-

gent (27) respectively, in triplicate. The total flavonoid and 

phenolic content of Va were expressed as rutin and gallic 

acid equivalent respectively. 

In vitro antioxidant activity   

Evaluation of DPPH radical scavenging activity  

By employing the 1,1-diphenyl-2-picrylhydrazyl (DPPH, 

Sigma Aldrich Co., USA) assay (28) in triplicate, Va were 

evaluated for antioxidant activity. To the known concen-

trations of Va added 0.004% DPPH, and incubated for 30 

min at 37 ˚C. Later, absorbance was measured at 517 nm 

against the blank. Ascorbic acid was used as a reference 

drug.   

Evaluation of ferric ion reducing power assay  

The ferric ion reducing power assay was determined in 

triplicate by the modified method (29). To 2.5 ml of potas-

sium ferricyanide added various concentrations of Va and 

incubated at 50 ºC for 20 min. To it, 0.5 ml of ferric chloride 

(0.1%) and 2.5 ml trichloroacetic acid (10%) were added, 

and the absorbance was noted at 700 nm. Ascorbic acid 

was used as a reference drug.  

Test animals    

Adult Wistar albino rats (weighing 190 ± 10 g, age 6-8 

weeks) of either sex were used in this study. The animals 

were given food and water ad libitum and were housed in 

the Animal House of the Andhra University of Pharmacy 

under the standard condition with a temperature of           

25 ± 2 °C, the relative humidity (50 ± 10%) and a 12-hr 

light/12-hr dark cycle. This study was approved by the In-

stitutional Animal Ethics Committee of Andhra University, 

India (Code: 516/PO/c/01/IAEC).  

Acute oral toxicity     

The OECD main test 420 was utilized for acute toxicity 

studies. Rats were randomly divided into two groups (five 

males and five females) and dosed with 2000 mg/kg body 

weight (b.w) of Va suspended in 1% gum acacia and 0.1% 

tween-80. The test animals have undergone fasting over-

night before administering the Va using oral gavage. The 

testing was ended until the last three animals survived the 

upper bound dose, and all of the test animals were ob-

served up to 14 days (30). 

Experimental design    

Rats were randomly divided into 4 groups (six rats in each 
group). In group 1 (normal control), rats were adminis-
tered orally with only 1% gum acacia for 14 days. In group 
2 (toxic control), rats were dosed orally with a single dose 
of CP (8 mg/kg; intraperitoneal (i.p)) on the 7th day (31). 
Rats in groups 3 and 4 received 100 mg/kg b.w (as a low 
dose) and 200 mg/kg b.w (as a high dose) of Va orally for 
14 days, respectively, and CP (8 mg/kg; i.p) on 7th day.  

Serum sampling     

Blood samples were obtained from the portal vein 0.5 ml 
of blood samples on the 14th day from retro-orbital plexus 
under mild anesthesia. They were transferred into labora-
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tory tubes containing pre-autoclaved nutrient broth medi-
um (Sigma-Aldrich, Germany) and put in an incubator at  
37 °C. The remaining blood samples decanted gently into 
collection plastic tubes, centrifuged at 4000 rpm for 5 min. 
Then serum was obtained, aliquoted into microtubes and 
stored for 24 hr at -80 °C for biochemical analysis.  

Tissue preparation and homogenization   

At the end of the study, by cervical dislocation, all the rats 
were sacrificed. The kidneys were removed, weigh up, and 
washed thoroughly. Some portion of tissue was stored 
immediately in buffered formalin (10%) for histopathologi-
cal studies, and the remaining tissue was processed. In 
0.05 M of ice-cold phosphate buffer saline (pH 7) the tissue 
was minced into small pieces and homogenized with a 
Homogenizer (Remi Homogenizer, Mumbai, India) to ob-
tain 10% whole homogenate. To the homogenate, an 
equal volume of trichloroacetic acid (10%) was mixed and 
centrifuged (Sigma-3-30 KS, USA) for 10 min. at 5000 rpm.  

Assessment of oxidative stress parameters   

The above-obtained supernatant was subjected to esti-
mate the oxidative stress parameters, namely malondial-
dehyde (MDA) levels, superoxide dismutase (SOD) levels 
and catalase (CAT) activity using the established proce-
dure (31, 32). 

Assessment of the renal function    

Measurement of blood urea nitrogen: Blood urea nitrogen 
was determined in serum using colorimetric assay kit ac-
cording to manufacturer instructions (EXCEL kits, India) 
using semiautomatic biochemistry analyzer (Carex- EA112, 
India). The amount of urea nitrogen was determined by 
recording the absorbance per minute at 340 nm against 
the urea nitrogen standard. 

 Measurement of serum creatinine: Serum creatinine 
was determined by the method described in the kit leaflet 
(EXCEL kits, India) using a semiautomatic biochemistry 
analyzer (Carex- EA112, India). The concentration of creati-
nine was determined by recording the absorbance at 510 
nm against the blank. 

Histopathological studies    

The thin sections of formalin-fixed kidney tissues were 
made using paraffin blocks and stained by 0.5% hematoxy-
lin and eosin stain. These stained sections were inspected 
under a light microscope. 

Statistical analysis     

All the values were expressed as mean ± SD (n = 3), where 
aP < 0.05; bP < 0.001; cP < 0.0001 was considered as statisti-
cally significant when compared with the normal control 
and xP < 0.05, yP < 0.001, zP < 0.0001 as compared with toxic 
control using one-way ANOVA followed by Dunnett's multi-
ple comparison test.  

 

Results     

Total flavonoid and phenol contents    

The total flavonoid and total phenolic value of Va were 
equivalent to 10.11 ± 1.11 mg/g rutin and 112.2 ± 5.12 mg/g 
of gallic acid respectively. 

In vitro antioxidant activity    

The antioxidant activity of Va was evaluated by DPPH radi-

cal scavenging activity and ferric ion reducing power as-

say. The results showed that the Va exhibited a dose-

dependent antioxidant activity (Fig. 1). Va was most active 

in DPPH radical scavenging activity with an IC50 value of 

29.37 ± 2.11 µg/ml than ascorbic acid (32.53 ± 3.90 µg/ml). 

In reducing power assay, Va (IC50 value = 93.33 ± 3.14 µg/

ml) was threefold less potent than the ascorbic acid (IC50 

value = 35.47 ± 2.12 µg/ml) (Fig. 1). For antioxidant activity, 

it was proposed that Va showed antioxidant activity by its 

radical scavenging mechanism. 

Renal function tests    

The prior administration of Va (100 and 200 mg/kg) 

showed a significant (P < 0.05-0.0001) dose-dependent 

renoprotective activity when compared with the toxic con-

trol. The toxic control (P < 0.05-0.0001) significantly elevat-

ed the serum creatinine and urea levels to 4.42 ± 0.45 and 

337.33 ± 30.42 mg/dl, respectively, compared with normal 

control (Fig. 2A-B). Besides, the higher dose of Va (P < 

0.001-0.0001) exhibited higher renoprotection by reducing 

the elevated serum creatinine and urea levels to 1.75 ± 

Fig. 1. In vitro antioxidant activity of Va against DPPH free radical and ferric 
ions. All the values were expressed as mean ± SD (n = 3). The cP < 0.0001 was 
considered as statistically significant when compared with the ascorbic acid 
using one-way ANOVA followed by Dunnett's multiple comparison test.  
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0.96 and 124.5 ± 17.96 mg/dl, respectively, compared to its 

low dose (3.68 ± 0.77 and 171.33 ± 19. 66 mg/dl, respective-

ly) (Fig. 2A-B). 

Tissue oxidative stress markers    

The oxidative stress induced by CP depleted the endoge-

nous antioxidants (SOD and CAT) by increasing the MDA 

compared to the control. The pre-administration of Va            

(P < 0.05-0.0001) significantly ameliorated the CP's oxida-

tive stress. At 200 mg/kg dose, Va (P < 0.001) showed a sig-

nificant rise in SOD and CAT with 50.67 ± 3.24 and 28.50 ± 

1.41 units/mg protein, respectively, and also significantly          
(P < 0.01) depleted the MDA levels with 71.00 ± 8.01 nmol/mg  
tissue, compared to toxic control (Fig. 2C-E).  

Histopathological studies    

The histopathological slides of the kidneys of the CP treat-

ed group altered the Bowman's capsules' structural integ-

rity, signs of tubular necrosis, vacuolization and accumula-

tion of inflammatory tissue (Fig. 3B). The pre-

administration of Va (100 and 200 mg/kg) attenuated the 

histological alterations induced by CP (Fig. 3C-D).  

 

Discussion 

Since ancient times, medicinal plants are rich sources of 

various bioactive constituents used to treat multiple ail-

ments. Instead, the major drawback of the currently avail-

able pharmaceutical aids is their toxic side effects, limiting 

their usage (33, 34). Nephrotoxicity is one such common 

side effect caused by numerous anticancer drugs. CP is the 

first-line anti-neoplastic drug used in the treatment of vari-

ous cancers. CP produces platinum complexes that inter-

act with DNA and leads to denaturation (35, 36). The exact 

Fig. 2. Effect of Va on biochemical parameters such as (A) Creatinine; (B) 
Urea; (C) Superoxide dismutase; (D) Catalase; and (E) Malondialdehyde. All 
the values were expressed as mean ± SEM (n = 6). The aP < 0.05; bP < 0.001; cP < 
0.0001 was considered as statistically significant when compared with the 
normal control, and xP < 0.05, yP < 0.001, zP < 0.0001 as compared with toxic 
control using one-way ANOVA followed by Dunnett's multiple comparison 
test. Where Va-100 is 100 mg/kg dose and Va-200 is 200 mg/kg dose.  

https://plantsciencetoday.online
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mechanism involved in CP-induced nephrotoxicity is un-

clear. Still, numerous research reports indicate that ROS, 

increased lipid peroxidation levels, apoptosis induced by 

the formation of DNA adducts, increased levels of TGF-1β, 

TNF and down-regulation of proliferative markers play a 

crucial role in the pathophysiology of nephrotoxicity (1, 7, 

37-39). The ROS and lipid peroxidation together induces 

oxidative stress, leading to cellular damage of renal tu-

bules (36, 39). Hence, investigation involving antioxidant 

strategies that lead to the diminution of oxidative injury 

was more concentrated. 

 In the present study, V. altissima is selected to in-

vestigate the renoprotective activity in the CP-induced rat 

model. Earlier, phytochemical screening of this plant has 

been acknowledged for iridoid-glucosides, flavonoids, and 

triterpenoids with good antioxidant properties (22, 23). In 

the present study, the Va also exhibited significant antioxi-

dant activity (DPPH radical and ferric ion) attributed to the 

substantial quantity of phenol and flavonoid compounds 

(40) (Fig. 1). The current study results are concordant with 

the previous reports (22, 23). It was interesting to note that 

the Va was more active against DPPH free radicals than 

ferric ions (Fig. 1). For this observation, we proposed that 

Va showed antioxidant activity by its radical scavenging 

mechanism. Based on this in vitro preliminary analysis, 

further in vivo investigation of renoprotective activity of Va 

was performed in CP-induced rat model. The outcomes of 

these findings support the usage of V. altissima in protect-

ing renal tissues. 

 The kidney is a vital organ that is involved in detoxi-

fication, concentration and excretion. The oxidative stress 

induced by CP damages the glomerulus' integrity, leading 

to tubular necrosis and accumulation of toxic substances 

resulting in increased serum urea and creatinine levels (40-

42). The pretreatment of Va (P < 0.05-0.0001) markedly 

attenuated the levels of urea and creatinine (Fig. 2A-B). 

Both the doses (100 and 200 mg/kg) of Va (P < 0.05-0.0001) 

significantly depleted the urea and creatinine levels to the 

normal level (Fig. 2A-B). The oxidative stress induced by 

acute administration of CP damages the renal tubules due 

to the fivefold increased accumulation of CP in the S-

segment of proximal tubule (43). The induced oxidative 

stress depletes the endogenous antioxidants and raises 

the lipid peroxidation levels (36, 44).  

 The endogenous antioxidant enzymes (SOD and 

CAT) play a vital role in catalyzing the H2O2 into the water 

that is the primary precursor of ROS. The depletion of SOD 

and CAT results in oxidative stress in surrounding tissues 

and leads to tissue and organ necrosis (45, 46). In the pre-

sent study, the CP decreased the SOD and CAT and in-

Fig. 3. Histopathological sections of the kidney at 40x magnification. (A) Normal control; (B) Toxic control; (C) Va (100 mg/kg, orally) for 14 days + cisplatin (8 mg/
kg, i.p) on 7th day; (D) Va (200 mg/kg orally) for 14 days + cisplatin (8 mg/kg, i.p) on 7th day.  
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creased elevated levels of MDA. The pretreatment of Va 

haltered the oxidative stress conditions by enhancing the 

SOD and CAT levels and depleting the MDA levels (Fig. 2C-

E). The decreased levels of lipid peroxidation were at-

tributed to the hypolipidemic activity of V. altissima (43-

47). 

 The histopathological studies further support the 
CP-induced oxidative stress in renal tissue. The CP altered 

the renal architecture, increased tubular space, accumu-

lated inflammatory cells, and decreased the urinary space 

(48-50). The Va recovered the histological alterations in-

duced by CP. The high dose of Va showed marked histo-

logical changes compared with its low dose and toxic con-

trol (Fig. 3). The histological and biochemical studies sug-

gest that Va possesses a potent renoprotective activity.  

 

Conclusion   

As per our knowledge, this is the first report of the nephro-

protective activity of V. altissima. To conclude, the present 

study showed that V. altissima has a good amount of total 

flavonoid and phenolic contents with potent DPPH radical 

inhibitory activity. Also, V. altissima unexpectedly im-

proved oxidative stress markers in rats induced by CP. Tak-

en together, it could be proposed that V. altissima showed 

potent renoprotective activity by its antioxidant mecha-

nisms. Hence, the present study can be used as a basic 

study to explore the other possible mechanisms that may 

betide in a renoprotective activity of V. altissima and also 

assist to screen other species from this genus for renopro-

tective properties.   
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