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Abstract   

Endophytic bacteria are responsible for improved plant growth due to its 

role in nitrogen fixation, indole acetic acid (IAA) production, phosphate sol-

ubilization etc and in plant protection through various mechanisms and 

production of bioactive compounds. The purpose of this study was to deter-

mine the plant growth promoting potential of endophytic bacteria isolated 

from medicinal plants namely, Adulsa, Amla, Bael, Kadamb, Mango, Neem, 

Tulsi. Endophytic bacteria isolated from the medicinal plants, comprised of 

68% Gram positive and 29% Gram negative bacteria. Seventeen distinctly 

unique Gram-negative endophytes were selected for further analysis. The 

selected endophytes were tentatively identified as Pseudomonas sp. The 

multifarious endophytes were capable of nitrogen fixation, phosphate solu-

bilisation, indole acetic acid (IAA) production, production of antimicrobial 

compounds and aromatic compound degradation. Some of the endophytic 

strains were found to harbor plasmids that may play a role in aromatic com-

pound degradation. This study emphasizes the potential of endophytic 

Pseudomonas species in enhancing plant growth and plant protection.   
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Introduction   

Endophytic microorganisms inhabit plant tissues at least a period of its vital 

cycle. Apparently, they do not cause any damage to the host, which distin-

guishes them from the pathogenic microorganisms (1, 2). Plants harboring 

endophytes have an advantage since the endophytes promote growth as 

well as provide protection from phytotoxicity due to soil contaminants (3), 

and from phytopathogens. Endophytic bacteria promote plant growth in 

various ways, which includes secretion of plant growth regulators such as 

indole acetic acid (4-6), phosphate solubilizing activity (7), nitrogen fixation 

(1, 8), production of siderophores (9) and also supply essential vitamins to 

plants (10). The production of auxins and auxin like compounds increases 

seed production, germination, shoot growth and tillering. Moreover, a num-

ber of other beneficial effects on plant growth have been attributed to en-

dophytes, which includes osmotic adjustment, stomatal regulation, modifi-

cation of root morphology, enhanced uptake of minerals, alteration of nitro-

gen accumulation and metabolism (11), thereby contributing to plant stress 

resistance (12, 13). Endophytes are also reported to produce number of en-

zymes such as chitinases, β - glucanases, ACC deaminases etc that are re-
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quired for their establishment in the plant tissue and may 

be beneficial to the host plant (14-17). 

 Endophytes confer profoundly enhanced fitness to 

the host plants by preventing disease development 

through endophyte-mediated de novo synthesis of novel 

compounds. The role of endophytes in plant-pathogen 

and plant-insect interactions is receiving increasing atten-

tion because of their potential use in pest control (2). En-

dophytic microorganisms have the capacity to control the 

pathogens, insects and nematodes (2, 18-22). This capacity 

is due to production of secondary metabolites such as an-

tibiotics. Endophytic bacteria can thus prove to be efficient 

biocontrol agents. A number of endophytes have been 

discovered having the ability of synthesizing products that 

are extremely biologically active and selective against cer-

tain microbes harmful to the host plant (23). Thus, the en-

dophytes are potential candidates that can be implicated 

in plant protection. Diseases of fungal, bacterial, viral 

origin and in some instances even damage caused by in-

sects and nematodes can also be reduced by application 

of endophytic microorganisms (24). It is believed that cer-

tain endophytic bacteria trigger a phenomenon known as 

induced systemic resistance (ISR) leading to immunization 

of the plant towards the phytopathogens (25). Some pro-

tective compounds isolated from endophytes are taxol, 

munumbicins, oocydin A, cryptocin, ambuic acid, jester-

one and volatile antimicrobials such as naphthalene (26-

32). Reports are on an endophyte, Streptomyces NRRL 

30562 having potential comparable to Streptomyces grise-

oviridis, a non-endophyte, included in the formulation for 

'Mycostop', a commercial agricultural product of Butts 

International Inc., Fairfield, Connecticut, USA (33). This 

product is used in the control of plant diseases caused by 

Alternaria, Fusarium and Phomopsis. 

 Plant-bacteria combinations can increase contami-
nant degradations in the rhizosphere. These bacteria thus 

protect the plant from phytotoxic effects of the contami-

nants. Remnants of pesticides are phytotoxic to the plants. 

In order to minimize the phytotoxic effects, the plants may 

be selecting these plasmid bearing endophytic bacteria, 

which have the ability to mineralize aromatic compounds. 

Thus these bacteria have a role to play in bioremediation 

of contaminated soils. Endophytic strains with potential to 

enhance the phytoremediation of compounds like toluene, 

xylene as well as herbicides have been studied in poplar 

trees (34, 35). By promoting the establishment of the endo-

phytes in the crop plants, plant growth improves as nutri-

ents are supplied in the form of nitrogen, phosphates, pro-

duction of plant growth promoting hormones, siderophore 

production, changes in root and stomatal behaviour etc.   

 The present work highlights the various characteris-
tics of endophytic bacteria isolated from medicinal plants.   

 

Materials and Methods   

Isolation of the endophytic bacteria     

Young leaves of medicinal plants (Adulsa, Amla, Bael, Ka-

damb, Mango, Neem, Tulsi) were selected for isolation of 

endophytic bacteria using procedure as described earlier 

(36-38). Leaf sample (1 gm) was cut into small pieces. 

These were washed with distilled water and surface steri-

lized with 1% (v/v) Savlon for 10 min followed by treat-

ment with 0.1% (w/v) HgCl2 for 5-10 min. Leaf pieces were 

then rinsed 4-5 times with distilled water. The entire pro-

cedure of sterilization was done aseptically. The sterile 

leaves were crushed using the sterile, pre-cooled mortar 

and pestle. Sterile phosphate buffered saline was added  

(2 ml) and the extract collected in sterile container. The 

extract (0.1 ml) was spread plated on nutrient agar medi-

um and the plates were incubated at 28oC ± 2oC, for 24 to 

48 hr. Surface sterilized, uncrushed leaf pieces were placed 

on nutrient agar plate and also in nutrient broth tubes to 

check sterilization efficiency. After the incubation period, 

bacterial colonies obtained were purified, characterized 

and selected for further studies.  

Identification of endophytic bacterial isolates   

The isolated bacterial endophytes isolated on nutrient 

agar, were grouped based on their Gram character. The 

colonies showing Gram-negative character were selected 

for the present study. These cultures were streaked on 

cetrimide agar media and the plates were incubated for   

24 hr at room temperature. The isolates growing on cetri-

mide agar were characterized morphologically and bio-

chemically for identification as per the Bergey’s Manual of 

Systematic Bacteriology (39).  

Nitrogen fixation and phosphate solubilization  (40, 41) 

Isolated colonies of endophytic bacterial strains were 

streaked on the nitrogen free Ashby’s agar medium 

(Himedia, India) to check their nitrogen fixing ability. To 

check phosphate solubilizing ability of these bacteria, the 

cultures were streaked on Pikovaskaya’s agar medium 

(Himedia, India) which contains calcium phosphate as 

phosphorus source. Plates were incubated at 28oC ± 2oC for 

one week. Diameter of bacterial colony and zone of clear-

ance were noted after the incubation period. Phosphate 

solubilizing efficiency was calculated using the formula: 

Diameter of clearance X 100/ diameter of colony (42). 

Indole acetic acid production  

Cultures were grown in nutrient broth supplemented with 

10 mM tryptophan for 24 hr at 28oC ± 2oC. The concentra-

tion of IAA was quantitated by the standard method (43). 

Culture supernatant was used mixed with Salkowski rea-

gent (2:1) and the developed color was measured at 530 

nm on Shimadzu UV-Vis-Spectrophotometer. Concentra-

tion of IAA in culture supernatant was calculated from 

standard graph of IAA.  

Antimicrobial activity   

Endophytic bacterial strains were tested for antimicrobial 

activity against bacteria and fungi, by the modified meth-

od (44). Overnight grown culture broths of the endophytic 

strains were centrifuged at 10000 rpm for 10 min and the 

supernatant thus obtained was used as antimicrobial ex-

tract. In each well of nutrient agar plate, preplated with 

the test organisms, namely, Bacillus sp., Streptococcus sp., 

E. coli, Pseudomonas sp., Fusarium sp. and Aspergillus sp., 

https://plantsciencetoday.online


79 

Plant Science Today, ISSN 2348-1900 (online) 

100 µl of supernatant was added and the plates were incu-

bated at room temperature. The test cultures were ob-

tained from microbial culture collection of Department of 

Microbiology, Gogate Jogalekar College, Ratnagiri, Maha-

rashtra (India). After the incubation period, plates were 

checked for zones of inhibition.  

Aromatic compound utilization ability  (45) 

Aromatic compound degradation ability of the isolates 

was checked for 8 different aromatic compounds. Stock 

solutions were prepared by dissolving the aromatic com-

pounds in distilled water. The bacterial strains were pre-

grown in glucose minimal medium and inoculated in mini-

mal medium supplemented with 0.05 and 0.1% (w/v) of 

aromatic compound. To check the utilization ability, 

growth of the each isolate was observed after 7 days of 

incubation at 28oC ± 2oC. The isolates showing growth in 

the presence of the aromatic compounds were subcul-

tured in the same medium and the cultures showing 

growth after 3 subcultures was taken as positive for aro-

matic compound utilization. Appropriate controls were 

maintained.  

Plasmid isolation and curing   

The bacterial strains were grown in nutrient broth for 24 hr 

followed by centrifugation using Remi C24 cooling centri-

fuge. The pelleted cells were used for plasmid extraction 

by alkaline lysis method (46). The plasmid positive cultures 

were further used for curing (36). Overnight grown cultures 

were pelleted and suspended in nutrient broth supple-

mented with varying concentrations of ethidium bromide 

(10 – 100 µg/ml). After overnight incubation at 28oC ± 2oC, 

the highest concentration of ethidium bromide showing 

turbidity was diluted and plated on nutrient agar plate. 

The colonies obtained were checked for presence of the 

plasmid and also for aromatic degradation ability as de-

scribed above.  

 

Results and Discussion   

Isolation and Identification of endophytic bacteria  

Medicinal plants namely, Adulsa, Amla, Bael, Kadamb, 

Mango, Neem, Tulsi harbored Gram-negative endophytes 

along with other diverse groups of bacteria. Among the 83 

endophytic bacteria isolated from leaves of the medicinal 

plants, 58.43% were Gram positive rods, 10% Gram posi-

tive cocci, 19.10% Gram negative rods, 10% Gram negative 

cocci and 2.25% yeast (Unpublished data). The dominance 

of Gram positive bacterial species has been observed by 

others workers as well (47, 48). Seventeen of the Gram 

negative short rods that grew on cetrimide agar media 

were selected for the present study. Based on their mor-

phological and biochemical characterization, these strains 

were tentatively identified as Pseudomonas species and 

designated as Adulsa 1, Adulsa 3, Amla 1, Amla 2, Amla 5, 

Bael 1, Bael 4, Bael 7, Bael 9, Kadamb 1, Kadamb 4, Mango 

1, Mango 4, Tulsi 3, Tulsi 1, Neem1, Neem 2, according to 

the host plant from which they were isolated. However, 

the identity confirmation using molecular tools needs to 

be carried out. Gram negative bacteria in general and 

Pseudomonas sp. in particular have been reported to have 

favorable characteristics for its applications in agriculture. 

Pseudomonas is one of the 5 taxa of microbial community 

showing promising levels of colonization, the others being 

Cellulomonas, Clavibacter, Curthobacterium and Microbac-

terium (49). Pseudomonas stutzeri, endophytic in Echina-

cea plants is an auxin producer (6). Similarly, isolation and 

identification of endophytic Pseudomonas species have 

been reported by number of workers (6, 49-56). 

Nitrogen fixation and phosphate solubilization   

All the 17 leaf endophytic isolates used in the present 
study showed ability to fix atmospheric nitrogen when 

grown on Ashby's nitrogen free medium. Thus, the strains 

can grow in nitrogen free medium by fixing atmospheric 

nitrogen. Thus, they have a role to play in plant nutrition 

by making nitrogen available to the host plant and this 

property is beneficial to the host plant when the bacteria 

are applied as biofertilisers. Endophytic bacteria isolated 

from leaves having nitrogen fixing bacteria have been re-

ported (57, 58). A renewed interest in endophytic diatro-

phism, such as Acetobacter, Azoarcus, and Herbaspirillum 

in gramineous plants has arisen because of their occur-

rence within plant tissues and involvement significant ni-

trogen fixation (8, 59). Colonization of nitrogen fixing en-

dophytes in the stem and root tissues but their absence in 

leaf tissues has been reported (60). Studies are on the ni-

trogen fixing ability of endophytes isolated from stem and 

root tissue only (1, 61). Endophytic distributions and pene-

tration of young leaf tissues in case of Herbaspirillum sp. 

strain B501 in aerial parts of wild rice was via apoplastic 

spaces. Motility and pectinase and cellulase production by 

the endophyte might be involved in its spread throughout 

shoot tissues (61). Once endophytic diazotrophs such as 

Azoarcus sp. infect plants, they spread systemically and 

reach aerial tissues of the plant (59). This explains the 

presence of diazotrophic endophytes in the leaf tissues. 

 The endophytic bacterial isolates demonstrated 

good phosphate solubilizing efficiency seen from the re-

sults depicted in Table 1. Sixty % of the isolates tested in 

the present study could solubilize phosphate. Isolates 

Adulsa 3, Amla 1, Amla 5, Kadamb 4, Tulsi 1, Tulsi 3 showed 

very good phosphate solubilizing activity, with Tulsi 1 

showing highest efficiency. Ten cultures showed very neg-

ligible or no activity. It was reported that phosphate solu-

bilizing activity of endophytic Pseudomonas sp. isolated 

from various plant species (62). The activity was measured 

by the standard method to determine soluble phosphate 

and the solubilization efficiency was correlated to produc-

tion of gluconic acid. In a combination technique, synchro-

tron X-ray spectro-microscopy, inorder to prove the direct 

role of endophytes in phosphorus uptake in poplar plants 

(63). As in the present study, nitrogen fixing ability as well 

as phosphate solubilisation and other plant growth pro-

moting activities were observed and reported in endophyt-

ic bacterial strains of indigenous rice varieties (64) and 

endophytic isolates of Chinese fir seedlings (65). The au-

thors noted and increased concentration of inorganic 

phosphates and potassium in soil as well as growth pro-

moting effects. 
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Indole acetic acid production   

Out of the 17 endophytic Pseudomonas strains tested, 10 

strains showed IAA producing capacity (Fig. 1). Isolate 

Adulsa 1 produced highest amount of IAA i.e. 12.75 µg/ml, 

followed by Adulsa 3, Amla 2, Tulsi 3, Neem 1 and Amla 5. 

Indole production was not detected in Bael and Mango 

isolates. The results indicate that these endophytic Pseu-

domonas strains have an important role to play in plant 

growth. Endophytic microorganisms play an important 

role in the plant growth by producing growth hormones, 

which are produced as secondary metabolites by the mi-

croorganisms. Production of plant hormones by endophyt-

ic bacteria has been reported in number of plants (5, 66). 

Indole acetic acid (IAA) is the main auxin in plants, control-

ling many important physiological processes including cell 

enlargement and division, tissue differentiation, and re-

sponses to light and gravity (67). Bacterial IAA producers 

contribute to the input of IAA into the plant auxin pool. 

Excessive production of IAA and cytokinins by Pseudomo-

nas savastanoi results in knot or tumor development in the 

olive tree (6).  

Antimicrobial activity of endophytic bacterial strains   

The antagonistic activity of the endophytic Pseudomonas 

strains was checked and except for antifungal activity 

shown by Bael 4 and Kadamb 1 against Fusarium sp., no 

antagonism was seen against the other test cultures used. 

Fungi causes majority of infectious plant diseases. The 

plant diseases caused by fungi include all white and true 

rusts, smuts, needle casts, leaf curls, mildew, sooty molds, 

wood rots, wilts, galls etc. Fusarium species are responsi-

ble for the wilts, crown rot, stem rot etc in number of 

crops. Biological control of the fungal pathogens can be 

successfully done using endophytic bacteria. It was report-

ed that the use of endophytic bacteria against Fusarium sp 

(19, 68). Antifungal and antibacterial activities of endo-

phytic microorganisms has also been reported by number 

of workers from the identification of taxol producing endo-

phytic fungi till date (69-74). Treatment of crops with en-

dophytes prior to plantation reduces the incidence of in-

fection by pathogens.  

Aromatic compound utilization ability   

The response of endophytic Pseudomonas strains to aro-

matic compounds is given in Table 2. All the strains, except 

Kadamb 4, Neem 1, Neem 4, Mango 1, Tulsi 1, grew in the 

presence of phenol. Similarly, in the case of resorcinol, the 

above cultures could not grow and utilize it along with 

Amla 2. Growth was observed after 4 days in phenol and 

resorcinol, showing that the cultures took time to get 

adapted to the aromatic compounds. Kadamb 4, Neem 1, 

Neem 4, Mango 1, Tulsi 1 and Mango 4 did not grow in the 

presence of tannic acid, while all other cultures showed 

good growth. Tryptophan, 1-naphthol and 2-nitrophenol 

supported growth of most of the strains. While                        

4-nitrophenol and sodium benzoate were toxic to most of 

the cultures at 0.1% concentration. Four cultures, namely, 

Adulsa 3, Amla 2, Kadamb 1, Tulsi 2 grew in the presence of 

4-nitrophenol and only Amla 2, Mango 4 and Bael 9 could 

grow in benzoate medium. Six days of incubation at      

28oC ± 2oC was required for growth in 4-nitrophenol and 

tannic acid. Whereas, growth was observed after 2 days of 

incubation in sodium benzoate and tryptophan. Among 

the endophytic strains used in the present study, Kadamb 

4, Neem 1, Neem 4, Mango 1, Tulsi 1, could not utilize any 

of the aromatic compounds. The plants readily take up 

organic xenobiotic water-soluble volatile compounds pre-

sent in the soil. These compounds enter the xylem and 

some of them are metabolized and transformed into more 

toxic volatile pollutants (75). Plants release these volatile 

pollutants and their metabolites into the environment by 

evaporation via the leaves, resulting in air pollution. Using 

engineered endophytic bacteria, studies on water-soluble 

volatile organic pollutants such as toluene demonstrated 

that endophytic bacterium possessing the aromatic degra-

dation pathway protects its host plant against the phyto-

Table 1. Phosphate solubilizing efficiency of Gram negative endophytic bac-
terial isolates  

Culture name Phosphate solubilizing efficiency (E) 

Adulsa 1 112 

Adulsa 3 230 

Amla 1 180 

Amla 2 127 

Amla 5 225 

Bael 1 98 

Bael 4 83 

Bael 7 155 

Bael 9 118 

Kadamb 1 85 

Kadamb 4 198 

Mango 1 167 

Mango 4 95 

Tulsi 1 245 

Tulsi 4 214 

Neem 1 148 

Neem 4 100 

Fig. 1. Production of Indole Acetic Acid by endophytic Pseudomonas strains. 
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toxic effects of an environmental contaminant (76). These 

endophytes protect the plant from toxicity caused by xe-

nobiotic compounds by degrading these compounds. 

Plasmid isolation and curing   

Presence of plasmid has been detected in nine of the 13 

strains that showed utilization of aromatic compounds 

(Table 1). It was observed that Neem 1, Mango 4 did not 

show the presence of plasmid, which explains its inability 

to utilize most of the aromatic compounds. However, Bael 

7 and Bael 9 also did not show presence of plasmid but 

could utilize some aromatic compounds. The plasmid 

bearing cultures were cured using ethidium bromide 

(concentration range between 10 - 100 µg/ml) and upon 

curing, the aromatic degradation capacity was lost. En-

zymes for aromatic degradation are plasmid encoded (77). 

Strains growing in the presence of aromatic compounds 

indicate the presence of plasmids and thus presence of 

enzymes of degradation pathway for the aromatic com-

pounds. Plasmid curing results confirm that the enzymes 

for aromatic degradation are plasmid encoded. Reports 

are on the studies on selection of aromatic compound de-

grading endophytic bacteria by plants (3). Their studies 

showed that plants recruit bacteria that contain genes for 

toxic compound degradation. These help in protecting the 

plant from phytotoxic effects of the contaminants such as 

petroleum hydrocarbons and nitro aromatics by its miner-

alization.  

 Natural transfer of degradative plasmids to number 
of endophytes inplanta increase further increase the effi-

ciency aromatic compound degradation in plants harbor-

ing these endophytes (78). Horizontal gene transfer (HGT) 

among the endophytes of the medicinal plants taken up in 

the present study need to be researched. The endophytic 

bacteria having degradation capacity can be used in the 

bioremediation of soil and water pollutants.  

Conclusion   

This study focused on the Gram negative isolates of medic-

inal plants and highlighted the multifunctional agricultural 

potential of endophytic isolates as assessed by their ability 

to produce plant growth hormone indole 3-acetic acid, to 

fix atmospheric nitrogen, to solubilize phosphates, to pro-

duce antagonistic compounds and to degrade aromatic 

compounds. All endophytic strains used in the study were 

diazotrophic with 80% of the strains showing phosphate 

solubilizing activity and 58% were IAA producers. More 

than 70% of the tested endophytic strains could degrade 

various aromatic compounds and 50% of these degraders 

were plasmid bearers. The potential prospects of finding 

multiple applications make the endophytic microbiome 

effective candidates not only for agriculture but also for 

industry and medicine.   
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Culture 

Aromatic compound used for growth (0.1 %) 
 Presence of  
plasmid Phenol 1-Naphthol 

4-Nitro 
phenol 

2-Nitro 
phenol 

Resorcinol 
Sodium ben-
zoate 

Tryptophan Tannic acid 

Adulsa 1 + + + - + - - ++ + 

Adulsa 3 + - - + + - - + + 

Amla 1 + - - + + D +++ ++ + 

Amla 2 + - - - - +++ + + + 

Amla 5 + + + + ++ - D +++ + 

Bael  1 + + D + + - D +++ + 

Bael 4 + + D + + - D +++ + 

Bael 7 ++ + - + + - D ++ - 

Bael 8 + + - - + + +++ +++ - 

Kadamb 1 + + ++ + + - ++ ++ + 

Mango 4 + - D - ++ + ++ - - 

Tulsi 3 + - ++ + + - - + + 

Table 2. Screening of endophytic Pseudomonas strain for degradation of aromatic compounds (0.1%) and presence of plasmid  

Key: +++, Very good growth; ++, good growth; +, satisfactory growth; -, no growth; D, doubtful  
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