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Abstract   

As a natural engineer, Plant Growth Promoting Rhizobacteria (PGPR) play an 

important role in increasing plant growth, yield and enhancing plant toler-

ance to stressful conditions. These beneficial bacteria take up their position 

in the rhizosphere, around the plants’ root tissues. They may be in, or on 

their host tissues and help to provide nutrients to their host plants. For sus-

tainable agriculture, PGPR transmit their extensive assistance in ecosystem 

management, soil structure maintenance, stress management and plant 

morphology and physiology modulation in an environmentally friendly 

manner. Plant- PGPR interactions also stimulate nutrient acquisition and 

accumulation, improve plant performance and enhance plants’ tolerance to 

abiotic and biotic stresses. Beside these, PGPR are good biofertilizers and 

safe for our environment. Nanotechnological advances with PGPR applica-

tions are important today to increase the impact of PGPR in agriculture. 

Undoubtedly, PGPR concept is intimately involved with agriculture, horti-

culture, forestry and they are too enough to establish a vibrant environ-

ment. In this review we have focused on the versatility of PGPR-their perfor-

mance and aimed to address some future prospects of PGPR as an eco-

friendly tool for plant growth regulation.   
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Introduction   

Soil is the core house to millions and millions of microbes, specifically rhizo-

sphere become more precious due to rhizospheric effect. Some of these 

bacteria provide benefits to plant community and help plants to cope with 

challenging adversities (1). In the year 1978, Kopper and Schroth applied the 

term ‘Plant growth promoting rhizobacteria’ (PGPR) for beneficial rhizo-

spheric free living bacteria (2).  

 PGPR are involved in improving soil composition through decompo-

sition of crop residues, stabilization of mineral nutrients and mineralization 

of soil organic matter, acquisition of plant growth promoters including nu-

trient (biofertilizer), phosphate solvents, nitrogen fixation, nitrification and 

synthesis of soil organic matters (3). 

 PGPR maintain their host plants’ health through different processes 

such as (i) enhancement of nutrient acquisition by host plants (ii) improve-

ment of plant growth and crop production by producing phytohormones, 

siderophore and also by enriching soil nutrients (iii) promotion of nodule 
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formation in legume and, (iv) enhancement of seedlings’ 

emergence (4-8). Beside these, PGPR facilitate their host 

plants to manage different types of abiotic stresses like 

drought (9, 10), salinity (11, 12) and heavy metal absorp-

tion is also restricted by some metal resistant PGPR strains 

(13). These types of bacteria activate antioxidant signalling 

to reduce temperature stress (14).  

 PGPR tend to protect the plants against some pests 

and phyto-pathogens by triggering Induced Systemic Re-

sistance (ISR) through lipopolysaccharides, flagella, ho-

moserine lactones, acetoin and butanediol (5). From the 

host-PGPR interaction, the plants gain some benefits in-

cluding increase in seed germination rate, yield, root 

growth, leaf area, chlorophyll content, protein content, 

nutrient content, germination percentage, root weight and 

root length, hydraulic activity, abiotic stress tolerance, 

delayed aging and biocontrol (15). 

 Excessive use of artificial fertilizers, herbicides, fun-

gicides and pesticides are the major causes of environ-

mental pollution. The demand for food is increasing rapid-

ly due to the increase in human population. Today civiliza-

tions, industrialization, chemical fertilizers in agriculture, 

excessive use of pesticides are major obstacles to the sur-

vival of agriculture. Excessive use of nitrogen fertilizers 

produces Nitrous oxide (N2O), a greenhouse gas that leads 

to global warming. The main drawback of nitrogen fertiliz-

ers is the reduction of biological nitrogen fixation. Ammo-

nium nitrate is widely used by farmers as nitrogen fertiliz-

er. Excess ammonium flow into the plant body meets the 

nitrogen requirements of the plant which reduces the sym-

biotic association between the plant and the microbe (16). 

 Reducing the use of chemical fertilizers in agricul-

ture and reducing the burden of pollutants in the environ-

ment is possible only through the use of biofertilizer (17). 

 To date, various reports on PGPR- agricultural sus-

tainability have been documented. Undoubtedly it is a 

highly promising tool for soil and crop management. The 

purpose of this review is to provide a concise overview of 

the PGPR and to highlight how they modify plant growth 

regulations in various environmental conditions. 

Isolation of Plant growth promoting rhizobac-
teria (PGPR)      

In bacteriological research, bacterial isolation is very im-

portant and the first step in separating different strains 

from natural mixtures. PGPR isolation can be done from 

rhizosphere soil sample or from root nodules. Serial dilu-

tion-spread plate is a very common, simplified and well-

accepted method for isolating PGPR strains from rhizo-

sphere soil sample. In the first step, it is important to col-

lect soil samples that adhere to the roots. This is followed 

by sequential steps like, preparation of the stock solution, 

serial dilution of the stock solution, spread plate and incu-

bation (18) as discussed in Fig. 1.  

 Endophytic bacteria can be isolated from sterilized 

root samples (18-21) as discussed in Fig. 2.  

 Isolation of PGPR strains from crushed root nodules 

has also been reported (22). Different growth media 

namely Pikovskayas agar (PKV) media (18, 23), Luria–

Bertani (LB) agar media (24), King B agar media (25), Tryp-

tic soy agar media (26), Nutrient agar media (21) are 

used for bacterial growth.  

Culture of Plant growth promoting rhizobacteria (PGPR)   

Bacterial culture is basically a method that allows bacteria 
to multiply under controlled lab conditions. Carbohy-

drates, proteins and nucleic acids are important ingredi-

ents of culture media which are dissolved in water. After 

isolation, to maintain the purity of bacterial strains it is 

required to apply pure culture method (27) as presented in 

Fig. 3.  

 Sub culturing is a method where bacteria are trans-

ferred from stock culture to fresh nutritive medium. Beside 

solid medium, bacteria can be cultured in liquid medium 

or broth. Broth is liquid medium without solidifying agent 

(agar) containing all the important ingredients necessary 

for the growth of bacteria. PGPR containing broth general-

Fig. 1. Steps of serial dilution-spread plate method for isolation of PGPR 
from rhizosphere soil. 

Fig. 2. Steps for isolation of endophytic bacteria from root samples.  
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ly use for experimental studies including ammonia produc-

tion, enzymes (Catalase, Oxidase) synthesis, EPS produc-

tion, IAA production (27-29) etc. 

Role of Plant growth promoting rhizobacteria (PGPR) in 
Plant Growth Regulation   

This section is categorized into 3 main parts viz. PGPR and 

its types, Contributions of PGPR in plant growth regula-

tions, Molecular responses and signalling pathways in re-

sponse to Plant-PGPR interactions. 

PGPR and its types     

Plant growth promoting rhizobacteria are important 

groups of beneficial rhizosphere bacteria that contribute a 

mutulistic relationship with plants. These provide an eco-

friendly safeguarding policy for the plants (30). PGPR 

maintain the existence of plants by promoting their 

growth and acting as biocontrol agents (31, 32) and regu-

late agro-ecological natural equilibrium by increasing 

productivity with a low chemical assimilation (33). Some 

common plant growth promoting rhizobacteria and their 

host plants are reported (Table 1).  

 Plant growth promoting rhizobacteria colonize in 

rhizosphere region including root surface, or superficial 

intercellular space of host root, and frequently they form 

root nodules. As endophyte they also remain in apoplastic 

region of host plants (45). Broadly PGPR are categorized 

into two prime groups as presented in Fig. 4. These are 

represented as iPGPR: Intracellular plant growth promot-

ing rhizobacteria and ePGPR: Extracellular plant growth 

promoting rhizobacteria (46).  

 Mechanisms by which PGPR stimulate plant growth 

are categorized into biofertilizers, phytostimulators and 

biopesticides or biocontrol agents (45, 47). 

Biofertilizers   

Mechanisms like biological nitrogen fixation, ammonia 

production, phosphate solubilization are covered in this 

section. PGPR enhance the supply of primary nutrients to 

the plant body through these processes and stimulate 

plant growth. 

Phytostimulators  

This section covers some PGPR mechanisms, such as the 

production of phytohormones (auxin, cytokinin and gib-

berellin) and the reduction of ethylene concentration. 

Biopesticides or biocontrol agents  

Some of the important PGPR mechanisms like competitive 

exclusion, acquired and induced systemic resistance, pro-

duction of fungal wall degrading enzymes and production 

of antibiotics (siderophores, Hydrogen cyanide and anti-

fungal metabolites) are included within this category. 

Contributions of PGPR in Plant Growth regulations   

The starting letters ‘PGP’ of PGPR directly indicate its 

promising role in plant growth promotion. Plant growth 

means plant’s overall growth including plant biomass, 

yield and key regulators (48). PGPR help plants to perform 

proper physiological functions trough photosynthesis, 

nitrogen metabolism, ammonia production, phytohor-

mone production and regulation, mineral solubilization, 

metal chelating (49-56) as discussed in Fig. 5.  

 From ecological point of view PGPR are good biofer-

tilizer (2) and maintain soil fertility by recycling the soil 

nutrients (57). Agricultural sustainability directly depends 

upon soil texture quality. A sustainable agricultural system 

Fig. 3. Maintenance of PGPR strains (different colours represent different 
PGPR strains).  

PGPR Host plants 
Rhizobium leguminosum Phaseolus vulgaris 

Pseudomonas cepacia 
Phaseolus vulgaris 
Gossypium hirsutum 
Cucumis sativus 

Pseudomonas sp. Dianthus caryophyllus 

Pseudomonas fluorescens 
Phaseolus vulgaris 
Triticum aestivum 
Hordeum vulgare 

Azotobacter chroococcum 
Brassica juncia 
Triticuma aestivum 

Azospirillum brasilence 
Saccharum officinarum 
Zea mays 

Bradyrhizobium japonicum Glycine max 
Achromobacter xylosoxidans Vigna radiata 

Bacillus subtilis 
Hordeum vulgare 
Gossypium hirsutum 
Brassica juncia 

Methylobacterium mesophilicum 
Eucalyptus globulus 
Oryza sativum 

Serratia sp. Zea mays 
Acinetobacter sp. Zea mays 

Table 1. Plant growth promoting rhizobacteria (PGPR) and their host plants 
(4, 15, 31, 34-44) 

Fig. 4. Types of PGPR on the basis of their inhabitants (iPGPR and ePGPR 
indicate intracellular and extracellular Plant Growth Promoting Rhizobacte-
ria respectively).  
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can reimpose our daily lives by raising a large financial 

support (58). At present day it is impossible to imagine a 

sustainable crop production without involvement of bene-

ficial microbes (59). They colonize in plant root area, and 

also improve the productivity (60). PGPR can show their 

performance versatility (45). Some PGPR with their perfor-

mances are documented (Table 2). 

Atmospheric nitrogen fixation    

Nitrogen is one of the major constituents of plant cells 

which present in DNA, RNA, protein, amino acid etc. Eukar-

yotic plants rely entirely on symbiotic microbes for biologi-

cal nitrogen fixation because they do not have the ability 

to break the triple bond between two nitrogen atoms. 

Some plant growth promoting bacteria namely Klebsiella 

sp., Acinetobacter sp., Bacillus pumilus (44), Azotobacter 

spp. (4), Burkholderia (96), Psedomonas (62) have been 

reported to show atmospheric nitrogen fixing ability. PGPR 

with atmospheric nitrogen fixing ability can raise the nitro-

gen uptake throughout whole plant body (44). In addition 

to nitrogen fixation, PGPR conduct a 5-step reaction as 

sketched in Fig. 6 to complete the nitrogen cycle on Earth.  

 Atmospheric nitrogen fixing PGPR show versatility 
in their performance including disease management, crop 

growth promotion in addition with the nitrogen mainte-

nance in agricultural land (58). Bacillus tequilensis also 

shows positive response in atmospheric nitrogen fixation 

in soil though this is a potent phosphate biofertilizer (23).  

Ammonia production  

Ammonia (NH3) is the first stable product of nitrogen fixa-

tion which can fulfill the nitrogen demand in plant body. 

As an important nutrient source it is frequently used in 

agricultural field to improve the crop productivity though 

Fig. 5. Policies raised by PGPR to regulate plants’ internal activities ( all the 
solid and dotted lines  indicate the management policies by PGPR, where 
dotted lines are exclusive for indicating stress related management).  

TYPE OF FUNCTIONS PGPR 

Nitrogen fixation 
Bacillus tequilensis, Pseudomonas aeruginosa, Klebsiella sp., Azotobacter spp, Azospirillum, Enterobacter cloacae, Bacillus 
drentensis,  Rhizobium,  Bacillus pumilus Sol-1, Alcaligenes sp. Mal-4, Providencia vermicola Ama-2, Brevundimonas Kro13, 
Kluyvera ascorbata SUD165, Pseudomonas putida, Ochrobactrum, Bacillus megaterium, Bacillus mycoides  

Phosphate solubilization  Bradyrhizobium, Bacillus tequilensis, Pseudomons, Azotobacter, Azospirillum brasilense, Azospirillum amazonense, Agrobacte-
rium 

Siderophore production 
Rhizobium ciceri, Bradyrhizobium japonicum, Kluyvera ascorbata, Pseudomonas fluorescens, Pseudomonas putida, Mesorhizo-
bium ciceri, Azotobacter Chroococcum, Serratia marcescens, Proteus vulgaris, Paenibacillus polymyxa, Pseudomonas aerugino-
sa 4EA, Klebsiella sp., Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoeaallii and Rhizobium radiobacter  

P
h

yto
h

o
rm

o
n

e p
ro

d
u

c-
tio

n 

IAA  

Bradyrhizobium, Rhizobium, Azotobacter chroococcum, Bacillus, Pseudomons, Azotobacter, Azospirillum, Bradyrhizobium 
japonicum,  Sphingomonas sp., Mycobacterium sp., Bacillus sp., Rhodococcus sp., Cellulomonas sp., Pseudomonas sp., Pseudo-
monas fluorescence, Brevibacillus sp.,  Klebsiella oxytoca, Burkholderia, Enterobacter sp., Rahnella aquatilis, Bacillus tequilen-
sis, Bacillus subtilis, Phyllobacterium, Agrobacterium  

Cytokinin Rhizobium leguminosarum, Azotobacter chroococcum 

ABA Bacillus subtilis  

GA Achromobacter xylosoxidans, Gluconobacter diazotrophicus, Acinetobacter calcoaceticus, Rhizobia, Azotobacter sp., Bacillus 
sp., Azotobacter  chroococcum, Serratia nematodiphila  

Table 2. Plant growth promoting rhizobacteria (PGPR) and their applications (4, 6, 23, 44, 61-95)  

Fig. 6. PGPR involvements in Nitrogen cycle (where Ammonification, Nitro-
sofication, Nitrification, Denitrification and Nitrogen fixation indicate inter-
mediate steps).  
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it shows detrimental effect above its optimum level (96, 

97). Ammonia producing PGPR are included in the genera 

Bacillus, Psedomonas, Serratia (43). 

Phosphate solubilization  

Plants need phosphate for growth, maturation and func-
tion. Usually inorganic phosphate is soluble in nature. 

Chemical fertilizer contains inorganic phosphate but it 

becomes immobilize and inaccessible to plants (98). Phos-

phate solubilizing bacteria are the key convertor of insolu-

ble form of phosphate in soluble form and make it useable 

for plants (99). Some PGPR can apply this management 

policy have been mentioned (Table 2). Phosphate solubil-

izing PGPR also improve plant growth and yield (100). A 

synergistic efficiency of phosphate solubilisation is found 

in the combine application of bacteria instead of individu-

al (101).  

Phytohormone production  

Phytohormones are organic compounds which are key 

players in plant growth, development and maintenance of 

plants’ cellular activities even under environmental stress 

conditions (6, 102). Phytohormones such as Auxin, Cyto-

kinin, Gibberellin are involved in the growth and develop-

ment of the plants (48), are reported to be produced by 

many PGPR (103-105). Among the various types of natural 

Auxin produced by plant growth promoting rhizobacteria, 

IAA is important one (6). Auxin producing PGPR can acti-

vate Auxin responsive genes that promote plant growth 

(106) and induce root length (107) and biomass also (108). 

It has been documented in previous studies that PGPR 

which are able to produce Auxin, also involve in hormonal 

changes, and also regulate some defense genes, wall relat-

ed genes at transcriptional level (109). Some strains of 

PGPR have been shown to promote plant shoot growth by 

eliciting Gibberellins production (110). Achromobacter xy-

losoxidans, Gluconobacter diazotrophicus, Acinetobacter 

calcoaceticus, Rhizobia, Azotobacter spp., Bacillus sp., Her-

baspirillum seropedicae and Azospirillum spp. are some 

Gibberellic acid producing PGPR (94). Increment in Cyto-

kinin concentration with plant growth has been found 

after Bacillus subtilis inoculation in lettuce plant (111). On 

the other hand, PGPR showed a down regulating effect on 

ethylene concentration (16) as shown in Fig. 7.  

Hydrogen cyanide (HCN) production    

Hydrolysis of cyanogenic compound and Ethylene biosyn-

thesis are some common pathways of cyanide production 

for plants. Plants detoxify most of it by a special enzyme β 

cyanoalanine (99). Depending upon its concentration hy-

drogen cyanide exerts positive impact on plants. At a low 

concentration it regulates plant metabolic processes as a 

signaling molecule whereas it shows its anti herbivore ac-

tivity at high concentration (112). In the agriculture system 

HCN is commonly used as a biocontrol agent, and it is a 

good metal chelator also (113). In a Pea - Pythium pa-

thosystem HCN has been reported as biocontrol trait for 

pseudomonads (114). As potent biofertilizer HCN produc-

ing PGPR promote plant vegetative growth, and yield also 

(113). PGPR which are characterised with of HCN and am-

monia production can exert synergistic effect on plant 

growth and plant metabolite modulation (43). The concen-

tration of HCN produced by PGPR under in vitro condition 

is unable to relate to the geochemical processes instead of 

biocontrol hypothesis (112). 

Siderophore production    

These are small, iron chelating low molecular weight sec-

ondary metabolites secreted by nearly all bacterial species 

(115-117). These are categorised on the basis of chemical 

nature of their iron-chelating group which may be α-

hydroxyl-carboxylate, catechol, hydroxamate, or mixed 

types (116). As a scavenger they scavenge iron from envi-

ronment and make mineral (115). Siderophores transport 

Fe3 + ions and transport them across cell membranes (118). 

Siderophore producing microbes are considered as an 

efficient PGPR which show multifunctional potentiality in 

plant growth promotion (119), and also put down diseases 

(120). Pseudomonas putida enhances the level of iron con-

tent in the natural habitat utilizing heterologous sidero-

phores produced by other microorganisms (34). 

Rhizoremediation    

At present era it is very urgent to reduce the pollution level 

to keep away all of the organisms from its cope. Contami-

nated soil and water is a big problem for agricultural sus-

tainability. Combine effect of phytoremediation and bio-

augmentation regulate rhizoremediation (58). Phytoreme-

diation is a promising approach by which plants can ex-

tract metals from contaminated soil (121). Biological 

waste treatment by adding cultured microorganisms is 

known as bio-augmentation (122). Genetically engineered 

Pseudomonas fluorescens, Pseudomonas aeruginosa and 

certain Bacillus sp. are some examples of PGPR having 

rhizoremediation property (123). PGPR participate in this 

remediation process by removing organic contaminants, 

or by applying certain processes such as phytoextraction, 

rhizofitration, phytostabilization and phytovolatilization 

(57) to treat heavy metals (121) and lower the contamina-

tion levels. 

Stress tolerance    

The devastating impact of environmental stress on crop 
yield is a serious problem at present scenario.  Now it is 

very urgent to adopt some eco-friendly management poli-

Fig 7. Regulation of Auxin-Ethylene biosynthesis by PGPR in response to 
stress (where ACC and SAM indicate 1-Aminocyclopropane-1-Carboxylic acid 
and S-Adenosyl-L-methionine respectively).  

https://en.wikipedia.org/wiki/Cell_membrane
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cies to secure our agricultural system. Environmental 

stress may be caused by abiotic factors, or some biotic 

agents like, fungi, bacteria, nematodes, herbivores, oomy-

cetes etc (124). Worldwide major losses in crop field can be 

accomplished by abiotic mediators including salinity, 

floods, drought, radiation, high temperature, extreme 

cold, heavy metals etc (16, 124). Any kind of stress ulti-

mately converts to oxidative stress and increases the pro-

duction of some free radicals such as H2O2, O2−, .N=O, ClO-, 

and OH−  which are considered as Reactive Oxygen Species 

(ROS) having the capacity to damage plants membrane 

lipids, proteins and nucleic acids (125). PGPR are some key 

agents which protect plants from multiple stresses (60) 

through some management policies (Table 3).  

 As anti-phytopathogenic agents (130) PGPR pro-

duce some cell wall degrading enzyme such as β-1, 3-

glucanase, ACC deaminase and chitinase and neutralize 

pathogens (126). Burkholderia, is an ACC deaminase se-

creting genus has been reported to increase the growth of 

tomato seedlings by limiting ethylene levels (131). ACC 

deaminase also reduces the ethylene induced negative 

changes in the roots (132) as presented in Fig. 7. Various 

types of plant-microbe interactions are essential for regu-

lating the local and systemic types of plant defence mech-

anism which help to increase the chances of survivability 

of the plants living in stress affected area (131). PGPR de-

feat plants in dehydration by improving plants water use 

efficiency (WUE) and water absorption through roots (133). 

Induced systemic resistance (ISR) is a modern approach in 

agricultural research, inspired by non pathogenic mi-

crobes and involved in control of numerous diseases (58). 

VOCs producing PGPR show their potentiality in plant 

growth, in plant pathogen control and also in ISR induc-

tion (134). Involvement of VOCs produced by Bacillus sub-

tilis in hormonal regulation, plant growth development, 

photosynthesis and phytohormone induction with allevia-

tion of ethylene level have been reported (134). Hormonal 

regulation plays central role in stress management (135). 

PGPR change the levels of endogenous phytohormone 

within wheat seedlings and enhance the ability to over-

come the stress like salt and drought (136). B. subtilis re-

sists drought stress elevating the levels of Abscisic acid 

(137). IAA producing bacteria help plants to defend against 

water deficit condition (138) by increasing root growth 

and/or enhancing the formation of lateral roots and roots 

hairs in various plant species (60). In this context EPS se-

cretion is one of the prime characterizations of PGPR 

which are high molecular weight, biodegradable polymers 

and sustain host plants growth, and yield acting as protec-

tive barrier against biotic and abiotic type of stress condi-

tions (58). EPS producing PGPR strains enhance plant 

growth by avoiding water stress (55) and also stimulate the 

production of enzymatic antioxidant such as Superoxide 

dismutase (SOD), Catalase (CAT) and Peroxidase (POD) to 

detoxify ROS (129, 136). Some PGPR showing stress-

tolerance capabilities have been listed (Table 4). 

Molecular responses and signalling pathways in response 

to Plant-PGPR interactions    

Plant microbe signalling exerts phyto-beneficial roles in-
cluding crop biomass, nutrient uptake and metabolite up-

regulation. Some important traits sustain plants under 

biotic and abiotic types of stress (140). Advanced bioinfor-

matic studies indicate reciprocal gene regulation between 

bacteria and their host plants during colonization and post 

colonization also (141). Phyto-beneficial proteins have 

been reported to induce in sorghum roots after PGPR inoc-

ulation (141). Some phyto-beneficial proteins deal with 

DNA regulation including Phosphodiesterase, sulfatase, 

Carbohydrate kinases (FGGY_C) whereas some of these are 

stress relieving in nature such as HSP70 (141). The im-

portant protein family Carbohydrate kinases (FGGY _C) are 

involved in the production of carbohydrates and control 

plant biomass (141). PGPR enhance photo pigment con-

tents in Basil leaves under water stressed condition (142), 

and maintain photosynthesis to manage plant biomass 

Management strategies PGPR 

Protective enzymes production 
Pseudomonas fluorescens LPK2, Sinorhizobium fredii KCC5, Trichoderma sp., Bacillus subtilis, Variovorax 
paradoxus 5C-2 , Pseudomonas fluorescens biotype G, Enterobacter sp., Stenotrophomonas maltophilia, 
Bacillus cepacia, Bacillus licheniformis, Bacillus cereus, Bacillus circulans and Bacillus thuringiensis  

Disease resistance antibiosis Pseudomonas sp., Bacillus sp., Pseudomonas fluorescens and Pseudomonas aeruginosa  

Volatile organic compounds secretion Pseudomonas, Bacillus, Arthrobacter, Stenotrophomonas and Serratia, Bacillus megaterium BOFC15  

Exopolysaccharides secretion 
Rhizobium leguminosarum, Azotobacter vinelandii, Bacillus drentensis, Enterobacter cloacae, Agrobacterium 
sp., Xanthomonas sp., Rhizobium sp., Bradyrhizobium sp.,  Pseudomonas putida, Bacillus subtilis  and 
Azospirillum brasilense 

Table 3. Plant growth promoting rhizobacteria (PGPR) management policies to protect plant from stress effects (2, 31, 58, 126-129)  

Type of PGPR 

A
B

IO
T

IC
 S

T
R

E
S

S 

S
a

lin
ity 

Azospirillum brasilense, Pseudomonas syringae, Pseudo-
monas  fluorescens  

D
ro

u
g

h
t 

Achromobacter pechaudii, Azospirillum brasilense, Acineto-
bacter sp., Pseudomonas sp., Pseudomonas fluorescens 
biotype G, Bacillus subtilis  and Azospirillum brasilense 

T
em

p
era

tu
re 

Burkholderia phytofirman, Aeromonas hydrophila, Serratia 
liquefaciens, Pseudomonas sp. (strain AKM-P6 ) and Pseu-
domonas putida (strain AKM-P7) 

H
ea

vy 

Pseudomonas putida (Pb and Cd resistence),  Brevibacillus 
sp. (Zn resistance) 

BIOTIC 
STRESS 

Paenibacillus Polymyxa (strains B2, B3, B4), Paenibacillus 
favisporus (strain BKB30), Bacillus amyloliquefaciens 
(strain HYD-B17), Bacillus licheniformis (strain HYTAPB18), 

Table 4. Stress responsive Plant growth promoting rhizobacteria (PGPR) 
(127, 129, 139)  

https://plantsciencetoday.online


530 

Plant Science Today, ISSN 2348-1900 (online) 

and survivability. Induction of photosynthetic rate, plant 

biomass, and photosynthetic pigments such as chlorophyll 

content, carotenoids under salt stress after inoculation of 

PGPR have been reported (143). Carotenoids are belonging 

to C40 tetraterpene family, this report also supports the 

fact that the biosynthesis of terpene is somehow regulated 

by PGPR. Phosphodiesterase is one of the key players in-

volved in DNA–protein crosslink repair mechanism in 

plants (141) and cellular homeostasis maintains by HSP70 

(141). PGPR regulate phenylalanine concentration in toma-

to (144). Phenylalanine is an important product of shikimic 

acid pathway, regulates biosynthesis of phenolic com-

pounds. One of the important phenolic compounds is fla-

vonoids which are non enzymatic antioxidant, synthesized 

from an extended part of shikimic acid pathway, more spe-

cifically from phenyl propanoid acetate pathway. PGPR 

enhance flavonoid biosynthesis genes (145) and also trig-

ger the core pathway of phenolics biosynthesis by up-

regulating the key enzyme PAL in Chickpea (146) as shown 

in Fig. 8.  

 In Solanum, enhancement of photochemical effi-

ciency after Bacillus inoculation has been reported, and 

this makes plant to cope with abiotic stresses such as salt, 

drought and heavy metal (146). Flavonoids are 15 C plant 

phenolics involve in pigmentation, pollination, antimicro-

biosis and UV protection. Side by side this flavonoid en-

hancement positively correlates with non pathogenic de-

fence management or ISR: Induced Systematic Response. 

PGPR regulate some biochemical signalling involved in 

nitrogen fixation. Nitrogenase is the multi-subunit oxygen 

liable key enzyme for Nitrogen fixation, present in prokary-

otes. Nitrogenase activity has been presented in Fig. 9.  

 Nitrogenase reductase, the small component of 
Nitrogenase enzyme is anchored by nifH. It has been con-

firmed that Bacillus promotes nifH gene expression in sug-

arcane varieties (65). Signalling system of some defence 

responsive enzymatic antioxidants such as CAT, GPx and 

SOD are regulated by plant growth promoting rhizobacte-

ria under environmental adverse situations (147). Phyto-

hormonal regulation is triggered by activation of ACC de-

aminase, the main enzyme of stress regulation that is 

shown in Fig. 7.    

 

Conclusion   

Agriculture is the only way to fulfill food demand world-

wide. But unfortunately it is closely involved in the produc-

tion of chemical pollutants. The use of chemical fertilizers, 

pesticides and insecticides by farmers has been increased 

to meet the growing food demand to feed booming popu-

lation worldwide. They increase crop yields but reduce soil 

quality, which ultimately disturbs the ecosystem. 

 Environmentally PGPR are very good. They provide 

promising assistance in crop management and mainte-

nance of soil ecosystems in terms of biofertilization, biore-

mediation, pest management, disease management, bio-

control and stress tolerance. They have also been shown 

to maintain plant cellular homeostasis in adverse environ-

mental conditions. 

 In the current situation, it is very important to in-

crease crop production by keeping the ecosystem sustain-

able. There is no doubt that PGPR are sufficient to increase 

global agricultural production in an environmentally 

sound way. Nanotechnology is a potent tool in this regard. 

Although it is difficult to incorporate nanotechnology into 

agriculture, it is efficient enough to promote global envi-

ronmental and agricultural sustainability.   

 

Future Prospects 

PGPR are capable to manage plants’ internal activities, 
plant growth and productivity even under adverse envi-

ronmental conditions and also participate in contaminat-

ed soil management. But the effects of PGPR are gradually 

diminishing due to some abiotic and biotic factors. PGPR 

are lost in a large percentage in the conventional method 

of their application as biofertilizer (16).  

 Therefore, advanced technology needs to be im-

proved to increase the use of PGPR in the agricultural sys-

tem. Nanotechnology is a potential tool for improving 

PGPR services in agriculture (16). Nowadays, in agricultural 

revolution, nanoagriculture is a potential tool. In nanoagri-

culture, nanofertizers improve crop production efficiently 

by assisting plants in efficient nutrients uptake, monitor-

Fig. 8. Phenolic compounds-PGPR-ISR interrelationship (where, ISR repre-
sents Induced Systematic Resistance. Black arrows are indicators of sequen-
tial biochemical steps and green lines indicate the routs for induction of 
plant defence triggered by PGPR).  

Fig. 9. Schematic presentation of Nitrogenase activity (where S and L repre-
sent Small and Large subunit respectively. Fd (R) indicates Reduced Ferre-
doxin and Fd (OX) indicates Oxidized Ferredoxin).  
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ing plant growth, enhancing food quality, protecting 

plants, detecting plant diseases, increasing food produc-

tion and reducing waste (16, 148). Nanoencapsulation 

technology is a potential method to extend PGPR service 

life (16). The application of nanotechnology in agriculture 

and environmental sustainability is not easy, so more re-

search is needed to make it more convenient. In addition, 

much effort is required to obtain information on particular 

steps regulated by PGPR in plant biochemical pathways.  

 Overall, there has been a lot of work in PGPR over 

the decades, but the application of nanotechnology in 

PGPR-agricultural systems requires a lot of work that will 

play an important role in sustainable agriculture without 

harming the ecosystems.  
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