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Abstract   

Pond apple (Annona glabra L.) trees were widely distributed in swamp re-

gions of Mekong Delta, Vietnam. Pond apple fruits turned from green to yel-

low when ripening. Ripen pond apple fruits contained numerous phenolic 

constituents with valuable phytochemical benefits. However, ripen pond 

apple fruits were not successfully utilized as other commercial fruits. This 

research examined the possibility of wine production utilized from ripen 

pond apple fruits. Different various technical variables of fermentation 

affecting to the quality of pond apple wine were thoroughly examined. Rip-

en pond apple fruits were naturally collected from Soc Trang province, Vi-

etnam. Ripen pond apple fruits were peeled, blended, deseeded, crushed, 

enzyme-treated (pectinase 25 mg/l), added with sugar (5-13% w/w), pas-

teurized (sulphite 30 mg/l), inoculated with yeast Saccharomyces pastoria-

nus ratio (0.1-0.5%), macerated temperature (14-22 oC) in different time (6-

14 days). Malolactic fermentation was performed in anaerobic condition at 

12 oC in different durations (4-20 weeks). At the end of malolactic fermenta-

tion, wine was racked and clarified with different fining agents (bentonite, 

polyvinylpyrrolidone, wheat gluten, gelatin, kaolin) at 0.03% (v/v). Results 

showed that must should be added with 9% sugar and 0.4% yeast inocula-

tion, fermentation temperature of 16 oC in 10 days. Malolactic fermentation 

could be terminated at 12 weeks. Gelatin revealed the best candidate 

among different clarifying agents to remove turbidity in pond apple wine 

while retaining the most total phenolic content and antioxidant capacity. 

Under above technical variable conditions, fermentation gave the high eth-

anol content (4.26±0.02 % v/v); the total phenolic content (32.79±0.00 mg 

GAE/100 ml), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging 

(11.84±0.01 %), overall acceptance (8.34±0.01 score) meanwhile low turbidi-

ty (24.41±0.00 NTU) was also noticed. High ethanol content and phytochem-

ical retention contributed to the high sensory score of pond apple wine. 

These quality parameters were acceptable for an alcoholic drink. Ripen 

pond apple fruit would be a promising carbohydrate source to convert into 

a new fruit wine with a pleasant alcoholic flavor and attractive appearance.   

 

Keywords   

clarification, maceration, malolactic fermentation, pond apple wine    

 

Introduction   

Pond apple (Annona glabra L.) belonged to a member of the custard apple fam-
ily, (Annonaceae). Other species included Annona cherimola Mill, cherimoya, A. 

muricata L., soursop, A. reticulata L., custard apple and A. squamosa L., sugar 
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apple. Pond apple was a tropical tree distributed widely in 

Vietnam and other Asian countries. It was easily vulnerable 

to low-iron stress but well adapted in high-salinity or dry 

condition of coastal landscapes. Pond apple created ideal 

shelter for numerous wildlife habitat, feed for different 

species, protection from soil erosion, and nutrient bal-

ance in ecosystem. This fruit was edible and similar to a 

custard apple. The ripen fruit could be eaten, boiled, con-

verted into jam and jelly (1). Pond apple fruit contained 

numerous phytochemical constituents such as peptides, 

acetogenins, alkaloids, ent-kauranes (2-5). Different thera-

peutic benefits were reported (6). 

 Pond apple fruit normally dropped down when rip-
ening. Ripen pond apple fruit was highly perishable and 

impossible to be stored long consumption, thus leading 

fruit wastage. Fermentation was one of versatile tech-

niques to convert overripe fruits into biomaterials, like 

wine, vinegars, bioethanol, organic acids and supple-

ments, which minimized fruit wastage and enhanced eco-

nomic values of crops (7, 8). There was no any research 

mentioned to the utilization of ripen pond apple fruit for 

wine production. Purpose of the present research exam-

ined various technical variables such as sugar addition, 

yeast ratio, maceration temperature, maceration time, 

malolactic fermentation time and clarifying agents to the 

physicochemical, phenolic, antioxidant and sensory attrib-

utes of pond apple wine.    

 

Materials and Methods   

Material    

Ripen pond apple fruits were naturally harvested in Soc 

Trang province, Vietnam. After being collected, they were 

stored in dry cool place and transferred to laboratory as 

quickly as possible. Starter culture containing approxi-

mately 9 log cfu/g of Saccharomyces pastorianus was sup-

plied from Vinabeco (Vietnam). Pectinex® Ultra SP-L was 

purchased from Novozymes. Refine sugar was purchased 

from grocery store. Chemical reagents such as ethanol, 

acetonitrile,  Folin-Ciocalteu phenol, trichloro-acetic acid, 

DPPH (2, 2-Diphenyl picrylhydrazyl) reagent, gallic acid, 

Na2CO3,, phenolphthalein were all analytical grade supply-

ing from Sigma Aldrich (Steinheim, Germany) and Fluka 

(USA). Polyvinylpolypyrrolidone (PVPP) was purchased 

from Ludwigshafen (Germany). Bentonite was obtained 

from Perdomini (Verona, Italy). wheat gluten was received 

from Foodchem International Corporation (China). Gelatin 

was supplied from Henan E-King Gelatin Co.Ltd (China). 

Kaolin was purchased from Nong Thanh Viet Co. Ltd 

(Vietnam). 

Researching method   

Ripen pond apple fruits were peeled by stainless spoon to 

remove skin. Peeled pond apple pulp was then pulverized 

by blending. The obtained homogenous must was then 

deseeded, crushed, enzyme-treated (pectinase 25 mg/l), 

added with sugar (5-13% w/w), pasteurized (sulphite 30 

mg/l), inoculated with yeast ratio (0.1-0.5%). The macera-

tion was conducted in different time (6-14 days) and tem-

perature (14-22 oC) with daily aeration by stirring twice to 

promote yeast multiplication. The must was sieved to sep-

arate the crushed fruits. The collected filtrate was trans-

ferred to malolactic fermentation in anaerobic condition 

at 12 oC in different time (4-20 weeks). The malolactic fer-

mentation was terminated and wine was racked. To avoid 

turbidity for wine, clarification was needed. Amount of 10 

g of each fining agent (bentonite, polyvinylpyrrolidone, 

wheat gluten, gelatin, kaolin) was dispensed in 500 ml of 

hot water for 3 min to create slurry. They were then as-

sessed individually by adding 30 ml slurry of each fining 

agent into 1 l of wine. The flocculation in wine was re-

moved by filtration and wine was ready for analysis. 

Determination of physicochemical quality, phenolic con-

tent and antioxidant capacity   

Residual sugar (g/l) was determined using Clinitest® (9). 

Ethanol (% v/v) was examined by capillary gas chromatog-

raphy using megapore polar column (10). Total phenolic 

content (mg GAE/100 g) was examined by Folin-Ciocalteu 

reagent protocol (11). Extract was disolved with 90% etha-

nol (v/v) in a 10 ml tube and centrifuged at 4000 g within 

2.5 min. A 1.4 ml of the extract was combined with 2.0 ml 

Folin-Ciocalteu reagent 10% (w/v). After 10 min of reaction, 

4.0 ml of Na2CO3 (5% w/v) was added. Reaction lasted for 

one hour without light, the absorbance was recorded at 

760 nm by spectrophotometer (model: UV-1800, Shimazu, 

Japan) and compared with a pure linear of gallic acid (0-

300 mg/l). R2 of the calibration curve was noticed at 0.98.  

DPPH free radical scavenging (%) was estimated using UV-

VIS spectrophotometer (model:  model: UV-1800, Shimazu, 

Japan) with mobile phase methanol and water mixed 

online in the ratio of 80:20 (v/v), injected at a current speed 

of 1.0 ml/min. Aliquots of the samples 0.5 ml were supple-

mented with 3.5 ml of the 0.05 mM DPPH solution in the 

dark place, and the mixture was thoroughly vibrated and 

then incubated for 20 min at 37 °C. DPPH peaks were quan-

tified at wavelength 517 nm (Andriana et al. 2019). R2 of the 

calibration curve was noticed at 0.95. Turbidity (NTU or 

Nephelometric Turbidity Units) was evaluated by nephelo-

metric turbidimeter (model: TB 250 WL, Lovibond, Thomas 

Scientific, USA). Overall acceptance (sensory score) was 

determined by a group of 11 specialists using 9-point He-

donic scale. Fifteen trained specialists were at the age 28-

30 years old. They evaluated samples based on color, fla-

vor and taste which were expressed as overall acceptance 

on scale 1-9. 

Statistical analysis    

The experiments were prepared in triplicate with various 

sets of samples. The data were presented as mean ± stand-

ard deviation. Statistical analysis was performed by the 

Statgraphics Centurion version XVI. The mean value (X) 

and standard deviation (2s) of a set of data were obtained 

by analysis of random samples estimating the population 

statistics. 95% of results would be expected to lie within 

the range . The lower and upper bounds of this range were 

described at the 95% confidence limits of the results. The 

differences between the treated samples were analyzed 

using a one-way analysis of variance (ANOVA). A significant 
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value is set at a 95% confidence interval (p 0.05). If signifi-

cant differences were found, then post hoc analysis was 

performed using Duncan's multiple range tests. . 

 

Results and Discussion   

Effect of sugar supplementation in the maceration   

Sugar addition showed a significant difference on residual 

sugar, ethanol, total phenolic content and DPPH free radi-

cal scavenging during maceration (Table 1). Supplementa-

tion of 9% sugar into pond apple must induced the highest 

ethanol (2.42±0.00 % v/v), total phenolic content 

(48.60±0.15 mg GAE/100 ml) and DPPH free radical scaveng-

ing (20.51±0.03 %) while maintaining a medium amount of 

residual sugar (3.19±0.03 g/l). Hence, sugar addition was 

fixed at 9% for next experiments. The initial sugar content 

played important role in the fermentation process. It affect-

ed not only the fermentation kinetics and ethanol for-

mation but also the overall metabolite-profile (12, 13). The 

proper total soluble solid content in must was very im-

portant to impair the capability of yeast to multiply during 

exponential growth, because there was enough available 

nitrogen in must for yeast proliferation (14). However, con-

densed sugar content in must resulted to negative effect 

with reduction of yeast cell size, cell division, viable cell 

density. The concentrated dry matter in must conjured the 

yeast high-osmolarity glycerol response to hyperosmotic 

condition (14).  

Effect of yeast ratio in maceration   

Yeast ratio played an important role in maceration. When 

increasing yeast ratio (0.1-0.5%), residual sugar, total phe-

nolic content and DPPH free radical scavenging decreased 

gradually; meanwhile ethanol content increased. There was 

no significant difference of residual sugar, ethanol content, 

total phenolic content and DPPH free radical scavenging by 

0.4% and 0.5% yeast in inoculation (Table 2). To save pro-

duction cost, we selected 0.4% yeast for further experi-

ments. Saccharomyces pastorianus was a bottom ferment-

ing yeast, adaptable to low temperatures, flocculated well, 

deposited fast and metabolized glucose, fructose and com-

plex sugars as maltose and maltotriose (15). S. pastorianus 

provided higher amount of rose like aromas in the wine 

(16). The wines fermented with S. pastorianus  produced 

significant lower acetic acid and greater malic acid degra-

dation compared to the wines fermented with S. cerevisiae 

(17). Incorporation of S. pastorianus and S. bayanus provid-

ed wine with a stronger intensity of citrus flavor than the 

wine fermented with the pure S. cerevisiae (17). A higher 

yeast inoculum rate was desirable to obtain the required 

ethanol content in reasonable fermentation duration. In-

creasing yeast inoculation level also troubleshoot the slug-

gish fermentation caused by poor nitrogen source in high-

gravity must during alcoholic fermentation (18). The lower 

yeast inoculation ratio induced an insufficient amount of 

sugar metabolized to release the desirable ethanol content. 

Moreover, the lower inoculation level also converted a high-

er percentage of sugar to acetic acid and glycerol compared 

to the higher inoculation ratio. Proper yeast inoculation 

rate directly influenced the number of viable cells during 

fermentation and hence impacted to the time needed for a 

complete fermentation (14). 

Effect of fermentation temperature in maceration   

Maceration temperature caused significant influence for 

yeast growth and biosynthesis of ethanol. There was no 

significant difference of residual sugar, ethanol content, 

total phenolic content, and DPPH free radical scavenging 

by 16 oC and 18 oC maceration. However, we could see that 

16 oC was selected instead of 18 oC to maintain total phe-

nolic content and DPPH free radical scavenging while 

achieving acceptable ethanol content (Table 3). The fer-

mentation temperature strongly influenced the finished 

composition of wine (19, 20). Moreover, it also affected the 

Table 1. Effect of sugar addition (%) to residual sugar (g/l), ethanol (%v/v), total phenolic content (mg GAE/100 ml), DPPH free radical scavenging (%) in 6 days 
of maceration at 14 oC with 0.1% yeast  

Parameters 
Sugar addition (%) 

5 7 9 11 13 
Residual sugar (g/l) 2.47±0.02c 2.83±0.01bc 3.19±0.03b 3.72±0.02ab 4.46±0.00a 
Ethanol (% v/v) 0.70±0.01d 1.25±0.02c 2.42±0.00a 1.59±0.03b 1.43±0.02bc 
Total phenolic content (mg GAE/100 ml) 38.25±0.14c 40.38±0.11bc 48.60±0.15a 45.79±0.17ab 43.27±0.12b 

DPPH free radical scavenging (%) 12.04±0.05c 14.63±0.02bc 20.51±0.03a 18.06±0.01ab 16.42±0.02b 
Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  

Table 2. Effect of yeast ratio (%) to residual sugar (g/l), ethanol (%v/v), total phenolic content (mg GAE/100 ml), DPPH free radical scavenging (%) in 6 days of 
maceration at 14 oC with 9% sugar addition  

Parameters 
Yeast ratio (%) 

0.1 0.2 0.3 0.4 0.5 
Residual sugar (g/l) 3.19±0.03a 2.10±0.04b 1.78±0.01bc 1.25±0.03c 1.16±0.02c 
Ethanol (% v/v) 2.42±0.00c 2.75±0.02bc 3.01±0.03b 3.29±0.00ab 3.60±0.01a 
Total phenolic content (mg GAE/100 ml) 48.60±0.15a 45.62±0.08ab 43.19±0.11b 40.85±0.13bc 37.59±0.10c 
DPPH free radical scavenging (%) 20.51±0.03a 19.07±0.00ab 17.86±0.02b 15.52±0.03bc 13.90±0.01c 

Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  
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amount of biomass (21). Low temperature was commonly 

implemented to avoid the decomposition of aroma compo-

nents (22, 23). The higher the temperature the lower the 

ethanol formed from the same initial degree of sugar (24). 

Therefore, winemakers preferred the fermention of white 

wines at lower temperatures to improve the formation and 

sustain of aroma volatiles as it improved the content of 

ethyl esters and acetates, and lowered ethanol content 

(25). Temperature impacted to the resistance of yeasts to 

ethanol content, growth speed, fermentation kinetic, cell 

viability, length of lag phase, enzyme and membrane fea-

ture (26). Temperature should be appropriate to create fa-

vorable condition for yeast viability (27). A fermentation 

temperature of lower than 35 oC facilitated for yeast to re-

lease more ethanol from fermentable sugars (28). Saccharo-

myces pastorianus showed efficient fermentation, high anti-

oxidant activity, excellent flocculation capacity at 15 0C in 

the brewing industry (29). Inoculation with S. pastorianus at 

13 oC induced the specific aromas of wine stronger than 

sample inoculated at 18 °C (17). An extended maceration 

time at high temperature over the last phase of the process 

would be desirable to achieve aromatic wine with the ex-

pected color durability (30).   

Effect of fermentation time in maceration   

Extending maceration time induced to the more ethanol 

content and the less residual sugar, total phenolic content 

and DPPH free radical scavenging. Maceration could be 

appropriately terminated at 10 days to obtain high ethanol 

content (3.98±0.03 % v/v) while retaining a fair content of 

total phenolic content (35.73±0.05 mg GAE/100 ml) and 

DPPH free radical scavenging (13.50±0.00 %) (Table 4).  

Yeast required enough time to adapt to substrate in the lag 

phase. Prolonged fermentation duration induced a higher 

content of ethanol as the starter culture would have 

enough time to biosynthesize alcohol dehydrogenase per-

mitting the biotransformation of sugar to ethanol (31, 32). 

Soursop (Annona muricata) juice was converted into wine 

after 131 hrs of alcoholic fermentation at pH 4.99, and a 

0.42 culture ratio (42:58, P. pulmonarius mycelia: S. cere-

visiae (33). Extended fermentation time induced a reduc-

tion of total phenolic content in fermented rice (34). This 

was originated from the oxidative reactions by polyphenol 

oxidase during maceration (35). Total phenolic content de-

creased greatly in cider vinegar from raw juice (36). DPPH 

free radical scavenging of mulberry wine increased sharply 

in the first 2 days of fermentation, remained stable and de-

creased gradually until day 10th of fermentation (37).  

Effect of malolactic fermentation time   

Malolactic fermentation time contributed a great im-

portance in aging process for wine. By prolonging malolac-

tic fermentation time from 4-20 weeks, there were deceler-

ating trends of residual sugar, total phenolic content and 

DPPH free radical scavenging. Meanwhile, ethanol content 

and overall acceptance went up by aging time. Malolactic 

fermentation time could be stopped at 12 weeks to main-

tain a trace amount of residual sugar (0.30±0.03 g/l), high 

ethanol content (4.28±0.02 % v/v), acceptable total phenol-

ic content (33.54±0.04 mg GAE/100 ml), DPPH free radical 

scavenging (12.70±0.02%) and overall acceptance 

(7.69±0.04) (Table 5). High content of malic acid provided 

tart taste (38). During malolactic fermentation, decarboxy-

lation process converted L-malic acid into L-lactic acid (39). 

Therefore, it caused a reduction of tart taste and increment 

of aroma complexity. Malolactic fermentation contributed 

a great improvement in sensory attributes of wine (40). 

Moreover, wine also had better microbial stability after 

malolactic fermentation (39). Malolactic fermentation in-

duced minor impact on antioxidants (41). Through malolac-

tic fermentation, peptidolytic and proteolytic activity bro-

ken down the proteins causing wine haze, supporting for 

wine clarification (42).  

Table 3. Effect of maceration temperature (oC) to residual sugar (g/l), ethanol (%v/v), total phenolic content (mg GAE/100 ml), DPPH free radical scavenging (%) 
in 6 days with 9% sugar addition and 0.4% yeast  

Parameters 
Maceration temperature (oC) 

14 16 18 20 22 
Residual sugar (g/l) 1.25±0.03b 1.02±0.01bc 0.71±0.02c 1.49±0.01ab 1.70±0.03a 
Ethanol (% v/v) 3.29±0.00b 3.60±0.03ab 3.87±0.00a 3.00±0.02bc 2.64±0.00c 
Total phenolic content (mg GAE/100 ml) 40.85±0.13b 38.26±0.09bc 35.70±0.07c 42.39±0.11ab 45.17±0.13a 

DPPH free radical scavenging (%) 15.52±0.03b 14.08±0.04bc 12.63±0.05c 15.98±0.02ab 17.15±0.03a 
Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  

Table 4. Effect of maceration time (days) to residual sugar (g/l), ethanol (%v/v), total phenolic content (mg GAE/100 ml), DPPH free radical scavenging (%) in 
maceration temperature 16 oC with 9% sugar addition and 0.4% yeast  

Parameters 
Maceration time (days) 

6 8 10 12 14 
Residual sugar (g/l) 1.02±0.01a 0.73±0.00ab 0.64±0.01ab 0.40±0.03b 0.38±0.02b 
Ethanol (% v/v) 3.60±0.03b 3.85±0.02ab 3.98±0.03ab 4.15±0.00a 4.19±0.01a 
Total phenolic content (mg GAE/100 ml) 38.26±0.09a 36.40±0.04ab 35.73±0.05ab 32.46±0.03b 32.19±0.03b 

DPPH free radical scavenging (%) 14.08±0.04a 13.75±0.02ab 13.50±0.00ab 10.28±0.01b 10.03±0.02b 

Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  
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Effect of clarifying agent   

Effect of different clarifying agents on turbidity, ethanol 

content, total phenolic, DPPH free radical scavenging, and 

overall acceptance of wine was presented in Table 6. There 

was no significant difference of ethanol content during clar-

ification of wine among clarifying agents. It’s obviously no-

ticed that there was no significant difference of turbidity, 

ethanol content, total phenolic, DPPH free radical scaveng-

ing, and overall acceptance of wine by clarification gents of 

either gelatin or polyvinylpyrrolidone. However, gelatin 

revealed better retention of total phenolic, DPPH free radi-

cal scavenging, and overall acceptance of wine. Therefore, 

gelatin was selected for pond apple wine fermentation. 

Turbidity caused a less chance to deposit due to the fine 

particle and soluble pectins, which accelerated the viscosi-

ty of wine (43). Colloidal elements included proteins, lipids, 

neutral polysaccharides, pectins and minerals. Colloidal 

elements amassed charge at their surface known as a sur-

face potential. Surface potential was a key parameter 

affecting the strength of charge-based colloidal attraction 

of an element, most importantly electrostatic repulsion of 

other like charged elements (43). Elements accounted for 

the turbidity in a wine had an electrical charge. Core com-

position in bentonite was montmorillonite. Proteins in wine 

with isoelectric point values above the pH had a positive 

charge and freely absorbed with bentonite. Bentonite 

might indirectly combind phenols interacting with proteins 

and anthocyanins resulting to reduction of color (44). Ben-

tonite was highly preferred by winemakers, as it was con-

venient in manipulation and application. It was very useful 

in removing yeast, tannins and other tough protein-based 

elements causing turbidity in wine (45). Polyvinylpolypyr-

rolidone was a high molecular weight of vinylpyrrolidone 

polymer. It could enhance the elimination of total polyphe-

nols, and protein complexes. Mechanism of adsorption of 

polyvinylpolypyrrolidone interacting with polyphenols 

based on formation of hydrogen bonds between the phe-

nolic groups and oxygen of the amine group of the pyrroli-

done ring (46). Wheat gluten was composed of gliadins and 

glutenins (47). These biochemical attributes were account-

ed for protein-phenolic interactions, inducing to floccula-

tion and clarification. Gluten provided better clarification 

than bentonite (48). Basic of gelatin was colloidal with a 

positive charge. It absorbed tannins with negative charge. 

In combination with the negatively charged elements, the 

incorporated mass acceleration induced deposit. Once this 

neutralization happened, the turbid elements propensity to 

flocculate making them to deposit. The efficacy of gelatin 

fining relied on polyphenols to elements proportion (43). 

Kaolin was clay effective in flocculation of yeast cells and 

abundant tannin inducing the wine more stable in warm 

preservation. Moreover, it was utilized to lighten colour and 

minimize harshness in the wine. Effectiveness of gluten 

wine clarification was similar to tannin-gelatin and more 

efficient than bentonite (48). Gelatin and kaolin were com-

pared in clarifying fruit wines. Gelatin showed a better clari-

fier than kaolin (45). Bentonite and polyvinylpyrrolidone 

revealed significant impact on the elimination of turbidity 

in Merlot wine (46).  

 

Conclusion   

We successfully utilized the ripen pond apple fruit to con-
vert into wine as one value-added product. Technical varia-

Table 5. Effect of aging time (weeks) to residual sugar (g/l), ethanol (%v/v), total phenolic content (mg GAE/100 ml), DPPH free radical scavenging (%) and 
overall acceptance of wine in malolactic fermentation at 12 oC  

Parameters 
Malolactic fermentation time (weeks) 

4 8 12 16 20 
Residual sugar (g/l) 0.43±0.03a 0.39±0.01ab 0.30±0.03ab 0.22±0.00b 0.19±0.02b 
Ethanol (% v/v) 4.09±0.00b 4.17±0.03ab 4.28±0.02ab 4.40±0.01a 4.45±0.03a 
Total phenolic content (mg GAE/100 ml) 34.90±0.07a 34.18±0.06ab 33.54±0.04ab 32.98±0.02b 32.67±0.05b 
DPPH free radical scavenging (%) 13.07±0.03a 12.85±0.04ab 12.70±0.02ab 12.25±0.03b 12.18±0.01b 
Overall acceptance (sensory score) 5.89±0.02c 7.25±0.01b 7.69±0.04ab 8.01±0.00a 8.07±0.03a 
Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  

Table 6. Effect of clarifying agents (bentonite, polyvinylpyrrolidone, wheat gluten, gelatin, kaolin) at 0.03% (v/v) to turbidity (NTU), total phenolic content (mg 
GAE/100 ml), DPPH free radical scavenging (%) of wine  

Parameters 
Clarifying agent 

Bentonite Polyvinylpyrrolidone Wheat gluten Gelatin Kaolin 

Turbidity (NTU) 29.74±0.00ab 22.06±0.01c 31.15±0.02a 24.41±0.00bc 26.57±0.02b 

Ethanol (% v/v) 4.21±0.03a 4.23±0.00a 4.20±0.03a 4.26±0.02a 4.19±0.00a 

Total phenolic content (mg GAE/100 ml) 33.20±0.05a 32.50±0.03b 33.41±0.01a 32.79±0.00ab 33.01±0.01ab 

DPPH free radical scavenging (%) 12.27±0.01a 11.31±0.00b 12.38±0.03a 11.84±0.01ab 11.96±0.03ab 

Overall acceptance (sensory score) 8.64±0.01a 7.92±0.00b 8.75±0.03a 8.34±0.01ab 8.19±0.02ab 
Values are the mean of three replications; values in row followed by the same superscript lowercase letter/s are not differed significantly (α = P=0.05) by Dun-
can’s multiple range test  
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bles such as sugar addition, yeast ratio, time and tempera-

ture in maceration, time in malolactic fermentation and 

fining agents in clarification were very important directly 

affecting to physicochemical attributes, phenolic content 

and antioxidant capacity of pond apple wine. Clarification 

was beneficial in separation of soluble dry matters like tan-

nins, phenols and proteins. From clarification, fermentation 

process could be speeded up effectively to save production 

cost. High ethanol content and phytochemical retention 

contributed to the high sensory score of pond apple wine. 

These quality parameters were acceptable for an alcoholic 

drink. Success of this research also opened a new window 

for an improvement of income for people in rural area 

through exploitation of this underutilized fruit for pro-

cessing factory as well as resolution of environmental polu-

tion.   
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