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Abstract  

Mutagenesis is a well-known technique for introducing new variants into 

crop plants. In the present study, M2 populations were generated in the cow-

pea (Vigna unguiculata (L.) Walp.) variety CO7 using gamma irradiation. The 

M2 progeny were used to investigate the effectiveness of the gamma irradia-

tion doses and examined for the agronomic traits. The variation present in 

the mutants and their parent were analysed using five SCoT markers. Mark-

er analysis revealed a total of 87 amplicons and among these, 20 amplicons 

showed polymorphism. The highest numbers of amplicons were observed 

at SCoT10 (39), while the lowest number of amplicons was produced by 

SCoT09 (07). The percentage of polymorphism ranged from 18.18% to 

28.57%, with an average of 21.12%. Polymorphic information content (PIC) 

values ranged from 0.197 to 0.345. Analysis of Molecular Variation (AMOVA) 

showed 12% and 88% between the genotypes and within the genotypes 

respectively. The constructions of 4 clusters were identified through Un-

weighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram 

tree based on the genetic distance deduced from SCoT marker analysis. 

Analysis of the genetic relatedness between parent and mutants through 

Principal Coordinate Analysis (PCoA) revealed two main groups. The present 

study concluded that the genetic variability induced by gamma irradiation 

and inherited in the next generations. This research investigation supports 

that gamma irradiation alters the growth and yield traits, which is helpful 

for generating the cowpea improvement.   
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Introduction  

Cowpea (Vigna unguiculata (L.) Walp.) is one of the important legume crops 

in tropical and sub-tropical ecosystems and also it is a good source of die-

tary protein. The seed contains 25% of protein, 64% of carbohydrates and 

other sources of minerals, vitamins, micronutrients (1-3). It is a need for 

both humans and cattle. The leaves, immature pods and dried seeds were 

edible (4). It has several health advantages for humans, including anti-

diabetic, anti-cancer, anti-hyperlipidaemic, anti-inflammatory and antihy-

pertensive effects (5). Cowpea may thrive in drought-stressed settings and 

improve soil fertility by introducing nitrogen-fixing bacteria into the soil. It 

has low yields in underdeveloped nations due to a lack of better cultivars, 

limited input utilization and inadequate management (6). However, since 
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past years, there was no much attention to improve this 

variety, hence, we taken for consideration to induced mu-

tation for improving the traits and genetic variation. The 

availability of genetic diversity is the basis for crop devel-

opment, but since cowpea are predominantly self-

pollinated, there is a dearth of genetic variability. Induced 

mutations offer a means of generating unique genetic vari-

ations for cowpea breeding programmes (7).  

 The increasing world population and climate 

changes have increased concerns over food security and 

the projected target is to double the food production by 

2050 (8, 9). Current crop science strives towards the devel-

opment of new crop varieties with improved growth, de-

velopment and high yielding potential. Even though many 

technologies are being introduced in the crop sciences to 

improve the crop performance to attain the highest yield 

with limited inputs, there are still mysterious gaps in the 

crop science to achieve the goal. In this context, the crea-

tion of new variations in crop plants to screen the best 

lines with improved yield is the prime objective of crop 

breeding programmes. Mutagenesis is one of the inevita-

ble techniques to generate novel variations in crop plants. 

Since the occurrence of mutations spontaneously is too 

low (10-5 to 10-8) (10), the induced mutation is the best way 

to generate variations in plants. Gamma irradiation is an 

effective method of physical mutagenesis, to create genet-

ic variation in crops to modify the traits or generate new 

traits for selection. Apart from the creation of new varia-

tions, induced mutagenesis may cause genetic changes in 

organisms to break the gene linkage, resulting in the pro-

ducing of new promising traits by removing undesirable 

traits (11). There have been 3364 varieties officially re-

leased by International Atomic Energy Agency/Mutant Vari-

ety Database (IAEA/MVD); 2610 mutant varieties released 

by physical mutagens, among these 1703 varieties are re-

leased only through gamma irradiation (12).  

 Mutation detection in plants may be investigated 

using both phenotypic and genomic methodologies. There 

are various limitations and non-fixed properties in pheno-

typic techniques. Genomic tools offer a more reliable pro-

cedure and are more suited for detecting mutations earlier 

(13). Molecular markers assist breeders in estimating ge-

netic variation among genotypes for various agronomic 

characteristics (14). In recent years, molecular marker-

based approaches in genetic research, such as estimating 

genetic diversity and population structure, have evolved 

dramatically (15). Molecular markers are valuable for as-

sessing genetic diversity based on agronomic, morphologi-

cal and biochemical traits (16). PCR-based markers are 

useful tools for plant breeding and estimating genetic di-

versity at the species or sub-species level (17). Cowpea has 

employed a variety of DNA markers, including restriction 

fragment length polymorphisms (RFLPs), random ampli-

fied polymorphic DNAs (RAPD), amplified fragment length 

polymorphisms (AFLPs), and inter simple sequence re-

peats (ISSRs) (18-20). Recently, a simple, innovative DNA 

marker technology known as start codon-targeted poly-

morphism (SCoT) has been employed for genetic research 

of agricultural plants, particularly cowpea (21, 22). The 

SCoT approach is a kind of targeted marker technique in 

which the ATG context is one of the functional genes and is 

tied to functional genes and their associated features (23). 

The SCoT marker was created by combining a short con-

served area bordering the translation beginning codon, 

ATG in plant gene, with a long primer length, which an-

nealed at higher temperatures and produced repeatability 

than RAPD markers (24-26). Hence, the SCoT markers were 

employed to investigate the genetic variants of gamma 

irradiation-induced cowpea mutants and their parent.   

 

Materials and Methods  

Seed material and Mutagenic treatment   

Cowpea seeds (CO7) were obtained from the National 

Pulse Research Centre (NPRC), Vamban, Pudukkottai, 

Tamil Nadu, India. A total of six batches and each contain-

ing 100 seeds were irradiated in the gamma chamber avail-

able at the Indira Gandhi Centre for Atomic Research 

(IGCAR), Kalpakam, Tamil Nadu, India. The doses used for 

gamma irradiation were 200, 400, 600, 800, 1000 and 1200 

Gy. After irradiation, seeds were sown in the field along 

with control. The experiment was laid out as a randomised 

block design with three replications. Untreated, healthy 

seeds were used as a control. The space between rows and 

plants were adopted 45 and 15 cm respectively. All the 

cultural practices such as, weeding, irrigation, using pesti-

cides and insecticides for crop protection were practiced 

at regular intervals. The M1 seeds were collected from the 

respective doses and control plants. 

Screening of Mutants   

The M2 generation was raised from the M1 seeds of each 

treatment with a randomised block design with three rep-

lications. Screening for the mutants in each treatment was 

carried out by scoring the M2 plants for any change in phe-

notype observed compared with the parent plant (control) 

in the field from germination to maturity. The selection of 

mutants was progressively from the seedling to maturity 

stage in the field based on their phenotype. A wide range 

of mutants were selected in the M2 generation of different 

doses namely, xantha 400 Gy, three primary leaves 400 Gy, 

dwarf 400 Gy, dwarf 600 Gy, first flowering 400 Gy, first 

flowering 600 Gy, sessile 600 Gy, bold seed 400 Gy, small 

seed 200 Gy, constricted pod 200 Gy and high yield 200 Gy 

along with the control plant (Fig. 1). 

Genomic DNA Extraction and SCoT Amplification   

The 200 mg of leaf tissue (control and mutants) was used 

for extraction of genomic DNA with the HipurATM Super 

Plant DNA purification kit (Himedia, Code: MB571; Mumbai, 

India). Five SCoT primers were custom synthesised by Sig-

ma Aldrich (Bangalore, India), and they consists of GC con-

tent in the middle of 50 and 61% (Table 1). The PCR reac-

tion was performed in a Thermal Cycler (Cyberlab, Smart 

PCR) with GoTaq G2 Green PCR master mix (Promega, Cat: 

M7822; Madison, USA) which consisted of 1x concentration 

of 12 μl reaction mixture. The PCR program was: 3 min at  

94 °C, 40 cycles of 1 min at 94 °C, 1 min at 50 °C, 2 min 72 °C, 

followed by 5 min of final extension at 72 °C. The PCR reac-
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tions mixture (12μl) was checked on 1.5% agarose 

(Himedia, Mumbai) in a 1x TAE buffer gel. The amplified 

profiles were visualised under a UV - transilluminator.  

 

Data Collection and Statistical Analysis    

The amplicons of SCoT were converted to the binary ma-

trix as presence (1) or absence (0) and entered in to the 

Microsoft Excel sheet. The matric was assessed by Free 

Tree software, ver. 9.1 using the Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) construction meth-

od and similarity coefficient (27). Principal Coordinate 

Analysis (PCoA) and Analysis of Molecular Variance 

(AMOVA) were performed in the software-GenAlEx v.6.1 

(28). Polymorphism information content (PIC) is deter-

mined as https://gene-calc.pl/pic. The percentage of poly-

morphic variation was calculated by using the following 

formula.  

 
 

Results   

In this experiment, SCoT markers were used to study the 

genetic variation in mutants induced by gamma irradiation 

including, xantha (400 Gy), three primary leaves (400 Gy), 

dwarf (400 Gy), dwarf (600 Gy), first flowering (400 Gy), first 

flowering (600 Gy), sessile (600 Gy), bold seed (400 Gy), 

small seed (200 Gy), constricted pod (200 Gy) and high 

yield (200 Gy) of cowpea.  

Genetic Variation Analysis by SCoT marker    

SCoT markers amplification and data scoring results were 

analysed to identify the genetic diversity in mutant plants 

(Table 2). The highest number of polymorphic bands was 

observed with SCoT10 (11 polymorphic bands), while the 

lowest number of polymorphic bands was scored by 

SCoT08 (only one polymorphic band). The number of 

bands varied from mutant to mutant samples. A total of 87 

bands were amplified, 20 bands were polymorphic bands 

with an average a 4 bands for each marker. The highest 

number of total bands was observed with SCoT10 (39), 

while the least number of total bands was scored by 

SCoT09 (07). The percentage of polymorphism from 

18.18% to 28.57% with an average of 21.12%. The poly-

morphic information content (PIC) values are ranged from 

0.197 to 0.345, with an average value of 0.281 per primer. 

SCoT10 marker produced the highest number of bands 

and also polymorphic bands. SCoT09 marker produced the 

lowest number of bands. In control samples, SCoT10 

marker was only amplified, among the 5 markers. All mark-

ers produced bands in the three primary leaves mutant; 

there was no amplification in the small seed mutant. In 

comparison to the parent genotype, mutants showed 

different banding pattern during the marker analysis. 

a b 

c d 

e f 

g h 

i j 
Fig. 1. Spectrum of viable mutants induced by γ irradiation in the cowpea 
showed various morphometric changes with agronomic traits. a) Xantha 400 
Gy, b) Three primary leaves, c) Dwarf 400 Gy, d) First flowering 400 Gy, e) 
Sessile 600 Gy, f) Bold seed 400 Gy, g) Small seed 200 Gy, h) Constricted pod 
200 Gy, i) High yield 200 Gy, j) Control.  

Table 1. List of SCoT primers used in the study  

Sl. 
No. Name of primer Primer sequence (5’-3’) 

1. SCoT03 CAACAATGGCTACCACGC 

2. SCoT07 ACGACATGGCGACCATCG 

3. SCoT08 ACCATGGCTACCACCGAC 

4. SCoT09 ACCATGGCTACCACCGAG 

5. SCoT10 ACGACATGGCGACCCACA 
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Thus, it was confirmed that the gamma irradiation induced 

genetic variability in cowpea. 

Distance Matrix and Analysis of Molecular Variation 

(AMOVA)    

The genetic distance matrix or similarity analysis based on 

the SCoT revealed the distance ranges of 0.133 to 0.941 

(Table 3). The highest distance was observed in between 

the dwarf 600 Gy and bold seed 400 Gy (0.941) mutants, 

while the lowest distance was observed between three 

primary leaves and the high yield 200 Gy (0.133) mutants. 

Here, some of the mutants showed no genetic distance 

between the mutant genotypes. These variations were 

caused by changes in DNA banding patterns due to muta-

tions induced by gamma irradiation. The AMOVA analysis 

revealed significant variations among the groups and with-

in the groups (Table 4). In that, the genetic variation 

among genotypes was 12%, whereas within the genotypes 

was 88%.  

Dendrogram   

A dendrogram was obtained from UPGMA analysis of ge-

netic similarity based on the SCoT marker presented in Fig. 

2. The dendrogram was constructed based on the genetic 

distance between the mutants and parent, which was 

ranged from 0.1 to 0.500. The dendrogram tree showed 4 

main distinct clusters of mutants. The first cluster com-

prised two mutants such as, small seed 200 Gy and high 

yield 200 Gy. These are the mutant to operational taxo-

nomic units (OTU) for other mutants. The second and third 

clusters share a common branch. The second cluster in-

volved sessile 600 Gy. The first flowering 600 Gy shared a 

common node because characters are almost identical. 

The third cluster contains xantha 400 Gy and control, while 

the constricted pod is a common ancestor for control and 

xantha 400 Gy. The fourth cluster divided into two inter-

Table 2. SCoT primers used in mutant samples of cowpea under the effects of gamma irradiation  

No. of 
primers 

Mutant Samples 
Total no. 
of bands 

No. of 
polymor-

phic bands 

% of poly-
morphism 

Polymor-
phic Infor-

mation 
Content 

(PIC) 1 2 3 4 5 6 7 8 9 10 11 12 

SCOT03 0 1 2 1 0 3 0 4 0 0 0 0 11 2 18.18 0.2604 

SCOT07 0 1 3 2 3 3 2 2 2 0 3 1 22 4 18.18 0.2604 

SCOT08 0 0 2 1 0 1 0 3 0 0 1 0 8 1 12.50 0.197 

SCOT09 0 0 2 0 1 0 0 1 1 0 2 0 7 2 28.57 0.3457 

SCOT10 5 5 5 5 5 5 0 0 6 0 3 0 39 11 28.20 0.3432 

Total 5 7 14 9 9 12 2 10 9 0 9 1 87 20 105.63 1.406 

Average                         17.4 4.00 21.12 0.281 

Table 3. Distance matrix revealed by SCoT marker  

Mutant 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 0.833 0.526 0.769 0.714 0.588 0 0 0.7692 0 0.461 0 

2   1 0.571 0.666 0.75 0.631 0.222 0 0.8 0 0.4 0 

3     1 0.727 0.782 0.846 0.25 0.521 0.727 0 0.545 0.133 

4       1 0.705 0.7 0.2 0.352 0.75 0 0.5 0 

5         1 0.761 0.363 0.222 0.941 0 0.588 0.2 

6           1 0.285 0.476 0.7 0 0.5 0.153 

7             1 0.181 0.4 0 0.2 0 

8               1 0.235 0 0.470 0 

9                 1 0 0.625 0 

10                   1 0 0 

11                     1 0 

12                       1 

1- Control, 2- Xantha 400Gy, 3- Three primary leaves 400 Gy, 4- Dwarf 400 Gy, 5- Dwarf 600 Gy, 6- First flowering 400 Gy, 7-First Flowering 600 Gy, 8-Sessile 600 Gy, 
9- Bold seed 400 Gy, 10-Small seed 200 Gy, 11-Constricted pod 200 Gy, 12-High yield 200 Gy.  

Table 4. Analysis of molecular variation (AMOVA) in mutant samples of cow-
pea by SCoT marker  

Source df SS MS Est.Va
r. 

% of 
variation 

Among population 11 13.677 1.243 0.083 12% 

Within population 84 48.750 0.580 0.580 88% 

Total 95 62.427   0.663 100% 

df- Degree of freedom, SS-Sum of squares deviation, MS- Mean of squared 
deviation, Est. Var.- Estimates of variance, %-Percentage of variation.  

1- Control, 2- Xantha 400Gy, 3- Three primary leaves 400 Gy, 4- Dwarf 400 Gy, 5- Dwarf 600 Gy, 6- First flowering 400 Gy, 7-First Flowering 600 Gy, 8-Sessile 600 Gy, 
9- Bold seed 400 Gy, 10-Small seed 200 Gy, 11-Constricted pod 200 Gy, 12-High yield 200 Gy.  
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node groups. Group I comprise three primary leaves 400 

Gy and the first flowering 400 Gy share a common node. 

Group II contains dwarf 600 Gy and bold seed 400 Gy, 

which sharing common node. The dwarf 400 Gy is the com-

mon ancestor of the dwarf 600 Gy and bold seed 400 Gy. 

According to the dendrogram, the generated mutants are 

more distinct from control genotypes. 

The Principal Coordinate Analysis (PCoA)    

PCoA analysis was carried out to elucidate the genetic rela-

tionship between the mutants and parent genotypes 

based on the SCoT data. PCoA analysis revealed two main 

groups (Fig. 3). Group I consists of 10 genotypes, and 

Group II consist of six genotypes. The remaining genotypes 

are separately or closely positioned. The first, second and 

third axes represented 45.41%, 69.03% and 84.69% of the 

cumulative variation.  

 

Discussion 

Gamma irradiation increases genetic diversity and yields 

novel varieties with favourable traits, which aids in ad-

vancing agronomic and agricultural improvement (29). 

Except for days to first flowering, gamma irradiation sup-

pressed changes in morphological and quantitative fea-

tures in the M1 generation of cowpea. In our previous stud-

ies, the quantitative traits such as plant height, number of 

branches per plant, number of leaves per plant, number of 

fruit clusters per plant, number of pods per plant, pod 

length, number of seeds per pod, hundred seed weight 

and seed yield per plant were gradually decreased in all 

concentrations compared to the control (7). In M2 genera-

tion, gamma radiation induced phenotypic alteration of 

traits leads to obtained new mutants. Screened mutants 

were categorized based on the phenotypic appearance 

such as xantha (400 Gy), three primary leaves (400 Gy), 

dwarf (400 Gy), dwarf (600 Gy), first flowering (400 Gy), first 

Fig. 2. Dendrogram representing the morphological variation mutants based on genetic relationships between the mutant and control sample. The neighbor-
joining method (Free Tree ware) was applied for the dendrogram tree. 
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flowering (600 Gy), sessile (600 Gy), bold seed (400 Gy), 

small seed (200 Gy), constricted pod (200 Gy) and high 

yield (200 Gy) was noted in M2 generation. All these mu-

tants varied when compared to control. Both viable and 

pod mutants were reported in black gram induced by gam-

ma rays (30). Gamma irradiation induced mutants could 

help breeders to create new variations in the selection of 

new varieties (31, 32).  

 DNA markers are used to identify the diversity in 

germplasm resources, to determine the genetic diversity 

and percentage, genetic distance, gene map and marker-

assisted selection (33-36) in crop improvement pro-

grammes. In the current investigation, the five SCoT mark-

ers were used to assess the genetic variability of the mu-

tants and control plant. The five primers, showed amplifi-

cation of 87 bands, in which 20 were polymorphic, with an 

average of 4 bands for each marker. Compared to control 

samples, the present study shows the appearance and 

disappearance of DNA bands in mutant samples. SCoT 

maker analysis showed polymorphism variation in gamma

-irradiated mutant plants. Earlier findings (37) claimed 

that mutagens caused polymorphisms in mutants detect-

ed by the RAPD marker in black gram. The emergence or 

disappearance of DNA bands were identified in soybean 

after gamma irradiation using an ISSR marker (38). Com-

pared to the parent and other mutants indicated by RAPD 

and ISSR, our results coincided with black gram caused 

diverse DNA polymorphism in young chlorina and smooth 

pod mutants. Plant breeders and molecular scientists may 

further use these mutants to investigate the functional 

impact of mutations (39).  

 On the other hand, SCoT maker exposed the poly-

morphic variation in mutant plants induced by gamma 

irradiation. The previous report of Jatropha curcas sam-

ples showed appearance of new bands might be changes 

in the oligonucleotide priming site due to mutation, dele-

tion, and homolog recombination (40). In other case, dis-

appearance of a fragment in the mutant plants due to DNA 

damages such as single or double strand breaks, bulky 

adducts, oxidized bases and modifications of base site, 

point mutations, DNA protein, cross links and complex 

chromosomal arrangement and also disassociation of the 

enzyme complex during the Taq DNA polymerase reaction 

by the effect of gamma irradiation (41, 42). It may be oc-

curred due to the addition, deletion and transition of a 

DNA banding influenced by gamma irradiation. 

 Polymorphism information content (PIC) was con-

sidered to estimate the discriminatory power of the mark-

er and determined by the ability of the marker to generate 

polymorphism on their distribution of frequency (43). The 

dendrogram and Principal Coordinate analysis (PCoA) is 

very useful to know about the similarities and dissimilari-

ties between the mutants and control genotypes. Genetic 

similarity and clustering analysis were helpful to create 

different genotypes with different genetic backgrounds 

and can use the development of variety with high produc-

Fig. 3. PCoA analysis genetic variation in the mutant and control plant of cowpea. 1- Control, 2- Xantha 400Gy, 3- Three primary leaves 400 Gy, 4- Dwarf 400 Gy, 5- 
Dwarf 600 Gy, 6- First flowering 400 Gy, 7-First Flowering 600 Gy, 8-Sessile 600 Gy, 9- Bold seed 400 Gy, 10-Small seed 200 Gy, 11-Constricted pod 200 Gy,  12-High 
yield 200 Gy.  
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tivity (44). The previous report of genetic distance ob-

tained was 0.78-0.97 and the dendrogram showed four 

main clusters in Typhonium flagelliforme mutants (45). The 

genetic distance ranged from 0.05 to 0.30 based on AFLP 

marker and 0.13 to 0.44 ranges from RAPD marker ob-

served in 10 mutant lines of cowpea (46). The genetic ma-

trix was calculated to analyse the mutant and control gen-

otype. In this study, gamma irradiation caused the for-

mation of new bands in mutant plants compared to con-

trols. SCoT marker technology is vital in identifying genetic 

variation between control and mutant plants. It was 

shown that gamma irradiation causes phenotypic and ge-

netic level alterations in cowpea, which will be helpful for 

crop development.  

 

Conclusion  

The present study concluded that gamma irradiation 

caused genomic sequence variations in the cowpea plant. 

In the cowpea mutant genotypes, the mutations resulted 

in substantial phenotypic diversity. The development and 

disappearance of amplicons in mutant genotypes com-

pared to their control type demonstrated that gamma irra-

diation influenced genetic variability. The difference in the 

banding pattern of the SCoT markers, clustering pattern, 

and genetic distance findings in the mutant genotypes 

further corroborate the usefulness of gamma irradiation 

and its mutagenesis efficiency in the cowpea crop. Since 

the primary goals of crop improvement programmes are to 

create variations and identify variations at both the pheno-

typic and genotypic levels in crop plants. The combination 

of gamma mutagenesis and SCoT marker analysis will aid 

in the development of new cowpea varieties with im-

proved performance in terms of biotic and abiotic stress 

tolerance, yield and yield contributing traits.  
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