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Abstract   

Sesbania speciosa Taub. ex Engl. is an introduced plant cultivated in India 
for fibre, green manure and nutraceutical potential. The development and 
histochemistry of the endosperm and embryo of this plant have not been 
yet at all reported and the present study was carried out in an effort to 
bridge that gap in our knowledge. Two-micrometer sections of seeds of        
S. speciosa at various stages of development were cut on a rotary micro-
tome. DNA, ribonucleic acid and insoluble polysaccharides were found to be 
locally localized. It was observed that the ovule of the Sesbania speciosa is 
camplotropous, bitegmic and crassinucellate and the embryo sac is a             
7-celled structure. The synergids possess PAS-positive filiform apparatus. All 
the cells of the mature embryo sac, before fertilization is bereft of polysac-
charide grains. The embryo proper, during early embryogenesis, contains a 
high concentration of proteins and nucleic acids but lacks polysaccharide 
grains. At the dicotyledonous embryo stage, the concentration of proteins 
and nucleic acids declines and is followed by the synthesis of polysaccha-
ride grains. The embryo suspensor is massive. The endosperm development 
is of the nuclear type. At the late globular pre-embryo stage, the micropylar 
1/3 of the endosperm becomes cellular leaving the rest free-nuclear. The 
endosperm cytoplasm and nuclei aggregate in the micropylar region and 
are rich in total proteins and nucleic acids. The concentration of these     
metabolites, however, declines when the endosperm becomes cellular. The 
aleurone layer, in mature seed, is rich in proteins and nucleic acid compared 
to the other persisting endosperm layers.    

 

Keywords   

Embryo, Sesbania speciosa, embryo sac, nuclear endosperm, suspensor, histochem-
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Introduction   

The family Fabaceae possess anatropous, bitegmic and crassinucellate    
ovules (1-2). Occasionally hemianatropous or campylotropous ovules are 
also reported (3). The embryo sac is 7-celled and eight nucleate consisting 
of  2 synergids, an egg cell, a central cell and 3 ephemeral antipodal cells. 
The development of embryo sac in most of the investigated taxa of the   
family follows the Polygonum type (2, 4) but Rembert reported an Allium 
type of development in Robinia pseudo-acacia (5).  

 The zygote is the starting point of a series of subtle and complex in-
fluences in the development of adult organisms. The derivatives of the     
zygote have particular functions to perform. The basal and terminal cells 
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differentiate into the embryo suspensor and embryo prop-
er respectively (6). The suspensor cells are replete with 
wall ingrowths and are involved in the absorption and 
short distance transport of metabolites during the early 
stages of embryogenesis. A correlative developmental and 
histochemical study will throw light in understanding the 
role of angiosperm suspensor during early embryogenesis 
(7). 

 The nuclear endosperm is a characteristic feature of 
the Fabaceae (earlier Leguminosae) (2). During the later 
stages of embryo development, the micropylar half to 2/3 
of the endosperm becomes cellular and the rest remains 
free nuclear. The haustorial activity of endosperm is well 
known (3, 8-13). Endosperm plays an important and 
unique role in the nutrition and differentiation of the     
embryo (14-15). It assists in the mobilization of food re-
serves from the surrounding somatic tissues but the direct 
evidence is lacking. 

 Sesbania speciosa is an introduced plant, cultivated 
in India for fibre, green manure (16) and neutraceutical 
potential (17). Plant growth and development information 
is an essential requirement for improving this economically 
important plant. A study was carried out to bridge the 
knowledge gap regarding endosperm development and 
histochemistry in this plant.   

 

Materials and Methods   

Seeds of Sesbania speciosa at various stages of develop-
ment were collected from the plants grown in the botani-
cal garden, Department of Botany, University of Delhi, Del-
hi. The seeds were fixed in precooled 10% aqueous acrole-
in.    Dehydration, infiltration and embedding in glycol 
methacrylate were done according to Feder and O’ Brien 
(18).      Two-micrometer sections were cut on a rotary mi-
crotome using glass knives fitted to an indigenously de-
vised glass-knife adaptor. Insoluble polysaccharides were 
localised with PAS-reaction; total proteins with Coomassie 
brilliant blue (19); DNA with feulgen reaction (18); and ribo-
nucleic acid with Pyronin Y reaction (20).  

 

Results  

Structure and development of the embryo      

The ovule is bitegmic and campylotropous. The embryo 
sac is a 7-celled structure consisting of an egg, 2 synergids, 

a large central cell and 3 ephemeral antipodal cells. The 
synergids at the micropylar region possess a filiform appa-

ratus (Fig. 1A). The egg cell and central cell have a large 
vacuole that occupies most of the cell space surrounded 

by a thin layer of cytoplasm. A prominent nucleolus is   
present in the secondary nucleus of the central cell. The 
pollen tube, after reaching the ovule, travels through the 
micropyle, and enters the previously degenerated synergid 
(Fig. 1B). The unpenetrated synergid remains healthy and 

persists for some time.  

 The zygote divides transversely resulting in a small 
apical cell towards the interior of the embryo sac 

(progenitor of embryo proper) and a large basal cell 
(progenitor of suspensor) toward the micropyle. Anticlinal 
and periclinal divisions in these cells result in the for-
mation of a multicellular proembryo (Fig. 1C, D) with small 
cells containing dense cytoplasm and a well-
differentiated, massive multiseriate suspensor. The sus-
pensor cell walls subjacent to the embryo sac wall reveal 
wall ingrowths (Fig. 1C). The embryo sac wall both at the 
micropylar and the chalazal ends also shows prominent 
wall labyrinths (Fig. 2E). An increase in cytoplasmic        
vacuole formation is observed in the cells of embryo-
proper during further development. 

 The cell divisions accompanied by accelerated cell 
expansions result in the progression of the preglobular 
proembryo to the globular stage (Figs 1E, F; 2A, C, D) and 
then to early heart-shaped embryo with the initiation of 
cotyledons (Figs. 4; 5A, B, D, E). The suspensor attains  
maximum size by the early cotyledonary stage (Fig. 3A, D). 
In the mature seed, the major portion is occupied by an 
embryo with well-differentiated root and shoots apices, 
procambium, protoderm and ground meristem (Fig. 5A).   
A pair of leaf buttress arises below the shoot apex of the 
young embryo which later differentiates into the leaf pri-
mordia (Fig. 5A, C, F). At the late dicotyledonous embryo 
stage the cells of the hypocotyl and cotyledons are replete 
with protein bodies (Fig. 5E). 

Structure and development of the endosperm         

The endosperm development is of the nuclear type. In the 
central cell, free-nuclear divisions of the primary endo-
sperm nucleus give rise to numerous nuclei in the periph-
eral cytoplasm lining the central vacuole (Fig. 1E). An ag-
gregation of the endosperm cytoplasm and nuclei at the 
micropylar end of the embryo sac is observed (Fig. 1D). The 
endosperm nuclei at this end continue to increase in   
number till the formation of the globular proembryo.    
Later, wall formation initiates at the micropylar region and 
about 1/3 of the endosperm becomes cellularized. This 
portion of the cellular endosperm constitutes the endo-
sperm proper (Fig. 2A). 

 The rest of the endosperm remains nuclear and its 
cytoplasm along with nuclei is restricted to the periphery 
of the embryo sac wall. The endosperm in this region of 
the embryo sac shows the presence of hypertrophied    
nuclei, dense cytoplasm and wall-ingrowths (Fig. 2B) and 
resembles a haustorium. The extreme chalazal end of the 
endosperm wall shows undulations (Fig. 2B). The cells of 
the endosperm-proper divide and occupy a large portion 
of the embryo sac. The endosperm becomes completely 
cellular at the early cotyledonary embryo stage (Fig. 4). 
The cells in the central region of the cellular endosperm 
are large, vacuolate and thin walled whereas the endo-
sperm epidermal cells that are adjoining the embryo sac 
wall are small and possess dense cytoplasm (Figs 3C, D, E; 

4). This small, dense layer is the presumptive aleurone 
layer. The rapidly growing embryo, gradually digests, the 
surrounding endosperm tissue (Fig. 5A). Only a few layers 
of endosperm tissue are left. In the mature seed, on the 
raphe side and in the region adjacent to the shoot-tip,  
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Fig. 1.  dsy – degenerated synergid; eg, egg ; emb, embryo; end, endosperm; fa, filiform apparatus; hy, hypostase; ii, inner integument; oi, outer integument; sus, 
suspensor; Z, zygote.  

A. Micropylar region of the ovule stained for insoluble polysaccharides to show the synergid with deeply stained filiform apparatus. The egg cell is bereft of poly-
saccharide grains. X1750, B. Portion to show the degenerating synergid and a well-developed zygote X1560, C. Portion of longisection of seed at preglobular 
proembryo stage stained for insoluble polysaccharides to show the well-stained embryo sac wall projections. The embryo-suspensor and embryo sac interface, 
towards the micropyle possess well developed wall-labyrinths. X 1560, D. Longisection of developing seed at preglobular proembryo stage, stained for total pro-
teins to show  in embryo-proper and embryo-suspensor, a high concentration of cytoplasmic proteins. The endosperm nuclei (arrows) are large and protein rich 
X1560, E. Photomontage of developing seed at globular proembryo stage stained for insoluble polysaccharides. The Campylotropous ovule has a minute proem-
bryo at the micropylar region. The outer integument is five layered whereas the inner integument is two layered. The cell walls of outer and inner integuments are 
well defined. The hypostase cells show deeply stained and thick cell walls. X200, F. Preglobular proembryo enlarged to show prominent embryo sac wall projec-
tions. Both the suspensor and organogenic parts of the embryo contain PAS positive grains. X1560.  
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some endosperm tissue persists (Fig. 5A). 

 During the later stages of seed maturation, the pre-
sumptive aleurone layer differentiates into the aleurone 

layer whose cells become thick-walled, possesses prominent 

hypertrophied nuclei, dense cytoplasm and protein bodies.  

Histochemistry        

Insoluble polysaccharides          

The embryo sac wall shows PAS-positive wall projections 
that persist up to the heart-shaped embryo stage (Figs. 1C, 
2E). 

Fig. 2.  emb, embryo; end, endosperm, hend, endosperm haustorium, hy, hypostase; sus, suspensor; wi wall ingrowths. 

A. Longisection of a developing seed at globular proembryo stage stained for total proteins. The endosperm haustorium is undulate. At the chalazal end the 
haustorium hypostase interface is noteworthy . Both the embryo-proper and embryo suspensor cells are rich in cytoplasmic and nuclear proteins 
(photomontage) X200, B. Chalazal portion of the endosperm haustorium to show the protein-rich finger-like wall labyrinths and hypertrophied  endosperm nu-
clei X1560, C. Globular proembryo stained for total proteins and showing protein-rich embryo and suspensor proper cells. X1560, D. Globular proembryo stained 
for ribonucleic acid. The embryo proper cells show pyroninophilic cytoplasm and nucleoli, while the suspensor cells are feebly stained. X1560, E. Chalazal portion 
of the developing seed stained for insoluble polysaccharides. The well-stained  embryo sac  wall ingrowths above the hypostase is noteworthy. X1560.  

C 

D 

E 
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Fig. 3.   emb, embryo; end, endosperm; pal, presumptive aleurone layer; sus, suspensor;  

A. Heart-shaped embryo, stained for insoluble polysaccharides, to show the PAS positive grains in the embryo suspensor and the subjacent embryo cells. X1000,  
B. Same as A, stained for total proteins. The endosperm tissue surrounds the embryo. The embryo proper and embryo suspensor cells are rich in total proteins 
X1000, C. A portion of endosperm at heart-shaped embryo stage stained for total proteins to show the presumptive aleurone layer whose cells have a high concen-
tration of total proteins. X1560, D. Longisection of seed at early heart-shaped embryo stage stained for ribonucleic acid. The embryo-proper cells show pyronino-
philic cytoplasm and nucleoli and the suspensor cells are feebly stained. The presumptive aleurone layer cells show higher concentration of cytoplasmic RNA than 
the subjacent endosperm cells. X1000, E. Late globular-shaped embryo stained for deoxyribonucleic acid to show the intensely stained nuclei of the embryo-
proper, suspensor and endosperm with the presumptive aleurone layer cells. X 620, F. Embryo suspensor showing multinucleate cells whose nuclei are well 
stained X1000.   
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 The cytoplasm of the egg cell, synergids and central 

cell lacks polysaccharide grains. The cell walls of synergids 
and egg cells are moderately stained whereas that of the 
central cell is darkly stained. The filiform apparatus is in-
tensely PAS positive (Fig. 1A). Zygote (Fig. 1B) and the early 
proembryo (Fig. 1C) are bereft of polysaccharide grains but 

possess well-developed walls. The suspensor cells towards 

the micropylar end and juxtaposed to the embryo sac wall, 
possess well developed and intensely stained wall laby-
rinths (Fig. 1C). At the preglobular proembryo stage,    
globular proembryo stage, and heart-shaped embryo 
stage both  

Fig. 4. al, aluerone layer; emb, embryo; end endosperm, Longisection of developing seed at early dicotyledonous embryo stage, stained for total proteins. Dicot-
yledonous embryo reveals a low level of cytoplasmic proteins in the ground meristem region. The epicotyl and cotyledonary procambium are rich in total pro-
teins. The endosperm is completely cellular. The aleurone layer shows a high concentration of total proteins when compared to the subjacent endosperm tissue 
(inset) X200. 

https://plantsciencetoday.online
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Fig. 5. (A-G.), CC, central column; lp, leaf primordium; pc, procambium, ra, root apex; rc, root cap; sa, shoot apex. 

A. Longisection of a seed at late dicotyledonous embryo stage. The root and shoot apices and leaf primoidia stain intensely for total proteins. The procambium 
and protoderm show a high concentration of cytoplasmic protein as compared to the ground meristem (photomontage). X200, B. Same stained for insoluble 
polysaccharides. The cells of root apex, root cap and ground meristem show accumulation of polysaccharide grains. X 250, C. Same, showing shoot apex that 
possess modicum of polysaccharide grains. The ground meristem and cotyledonary parenchyma cells show prominent polysaccharide grains. X400, D. Cotyledo-
nary cells showing accumulation of polysaccharide grains. X 1000, E. Cotyledonary cells at late dicotyledonous embryo stage are engorged with  protein bodies 
X1000, F. Shoot tip stained for deoxyribonucleic acid, showing intensely stained nuclei of the shoot apex, leaf primordium, cotyledon, ground meristem and 
procambium cells. X1000, G. Radicular end of the late dicotyledonous embryo to show intensely stained nuclei of the root cap, root apex, ground meristem and 
central column. X1000. 
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the suspensor and organogenic parts of the embryo      
contain polysaccharide grains (Fig. 1F, 3A). The embryo 
proper and suspensor interface region at dicotyledonous 
and later stages are affluent with polysaccharide grains. 
The walls of the cells of the embryo are feebly stained.  
During progressive stages of seed development, the em-
bryo cells reveal a gradual increase in the concentration of 
polysaccharide grains and staining intensity of the walls. 
The root apex lacks polysaccharide grains, but the cells of 
the root cap and the ground meristem are replete with 
such grains (Fig. 5B, C).  

 The epicotyl apex reveals only a few small polysac-
charide grains. As the embryo matures, a dense accumula-
tion of PAS-positive grains occurs in the root-cap, shoot-
apex, hypocotyl and cotyledonary storage parenchyma 
whereas the leaf primordium has a modicum of grains  
(Fig. 5 B, C and D). In mature and dehydrated seeds, the 
cotyledonary cells show intensely stained cell walls.   

 During early stages of development, the endosperm 
is nuclear and the coenocytic endosperm cytoplasm is 
bereft of polysaccharide grains. The endosperm cells        
possess feebly stained walls and cytoplasm without poly-
saccharide grains. At the late dicotyledonous embryo 
stage, polysaccharide grains appear in the endosperm  
epidermis which is the presumptive aleurone layer (Fig. 4).  

Total Proteins        

The nuclei of synergids, the egg cell and the central cell are 
well stained The synergids show a high concentration of 
cytoplasmic and nuclear proteins. The filiform apparatus is 
protein negative. The zygote is rich in both cytoplasmic 
and nuclear proteins. The suspensor cells and the organo-
genic part of the embryo are protein-rich. At the globular 
proembryo stage the concentration of proteins in embryo-
proper is high (Fig. 1D, 2 C). The cells of heart-shaped em-
bryo-proper and embryo-suspensor are rich in cytoplasmic 
and nuclear proteins (Fig. 3B) The concentration of cyto-
plasmic proteins is, however, less as compared to the pre-
vious stage due to the vacuolation in these cells (Fig. 3B). 

 The early dicotyledonous embryo reveals a low pro-
file of cytoplasmic proteins. The cells of embryo-proper 
are vacuolate (Fig. 4). The root and epicotyl apices and the 
procambium are protein-rich (Fig. 5A). At the late dicotyle-
donous embryo stage, the embryo reveals a high concen-
tration of total proteins mainly due to the formation of 
protein bodies in the embryo-axis and the cotyledonary 
parenchyma cells (Fig. 5E). The root and shoot apices and 
the root-cap reveal well-stained cytoplasm and nuclei but 
are bereft of protein bodies. 

 The endosperm nuclei and cytoplasm that agglom-
erate below the proembryo are rich in proteins (Fig. 1D). 
The endosperm cells which form at the micropylar region 
during the globular proembryo stage are vacuolated and 

stain weakly for proteins (Fig. 2A). The remaining free-
nuclear endosperm, has wall undulations and continues to 

act as haustorium; the cytoplasm and hypertrophied     
nuclei that are engulfed in these labyrinths are protein-rich 
(Fig. 2B). At the heart-shaped stage too, the proteins in the 
endosperm are at low ebb mainly due to vacuolation    

followed by cellularization. The peripheral endosperm 
layer that forms the aleurone layer, however, is protein-
rich (Fig. 3C). At the dicotyledonous embryo stage the   
endosperm cells adjacent to the aleurone layer remain 
highly vacuolated and show a low profile for proteins (Fig. 
4). At the late dicotyledonous embryo stage, the aleurone 
cells are gorged with protein bodies. 

Deoxyribonucleic acid         

The egg, zygote, synergids and central cell nuclei are in-
tensely stained with the Feugel reaction At the early pro-
embryo stage, the nuclei of both the proembryo proper 
and suspensor cells are identical in size but the nuclei of 
the former show denser staining. The embryo proper and 
suspensor cell nuclei at the preglobular, globular and 
heart-shaped embryo stage are well stained, but the latter 
are comparatively more intensely stained (Fig. 3E). The 
suspensor cells are multinucleate and each cell has five to 
seven nuclei (Fig. 3F). At the young dicotyledonous embryo 
stage the nuclei of embryo-proper cells are weakly stained. 
The epicotyl-apex cell nuclei are prominent and show 
more staining intensity than the nuclei of the ground meri-
stem  At the late dicotyledonous embryo stage, the nuclei 
of root and shoot apices, root-cap, leaf primordium, 
ground meristem, procambium and cotyledonary paren-
chyma cells are well-stained (Fig. 5F, G).  

 The nuclei of endosperm at the free-nuclear as well 
as late cellular stages are hypertrophied and well-stained. 

Ribonucleic acid        

The synergids are rich in cytoplasmic and nucleolar RNA 
but the egg cell shows a low profile for this metabolite. The 
suspensor and embryo-proper cells of preglobular proem-
bryo are rich in both cytoplasmic and nucleolar RNA. The 
cells of embryo-proper show a higher profile for both cyto-
plasmic and nucleolar RNA than the embryo suspensor 
cells at globular, heart-shaped and dicotyledonous        
embryo stages (Fig. 2D). The presumptive aleurone layer is 
rich in cytoplasmic RNA. At the early dicotyledonous em-
bryo stage, the ground meristem, cotyledonary                
parenchyma cells and root- and shoot-apices have weakly 
stained cytoplasm but intensely-stained nucleoli.  

 At late dicotyledonous embryo stage, the ground 
meristem and cotyledon parenchyma cells show negligible 
cytoplasmic RNA but pyroninophilic nucleoli. The root and 
shoot apices, leaf-primordia and procambium cells reveal 
feebly-stained cytoplasm but well-stained nucleoli (Fig. 
3D).  

 The presumptive aleurone layer during the early 
dicotyledonous embryo and the aleurone layer during the 
late dicotyledonous embryo stages reveal a high concen-
tration of cytoplasmic and nucleolar RNA (Fig. 3D).   

 

Discussion  

In Sesbania speciosa, numerous, PAS positive wall-
ingrowths are present at the micropylar and the chalazal 
ends of the embryo sac and also around the embryo. The 
micropylar wall ingrowths proliferate, increase in size and 
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number, persist for a long time, and act as conduit for the 
nucellar lysate to nourish the egg, zygote and the develop-
ing proembryo and endosperm. These embryo sac wall 
ingrowths also enhance metabolite flow from the integu-
ments and the nucellus to the developing endosperm and 
embryo. Such wall ingrowths are known in Zea mays (21), 
Capsella bursa-postoris (22-24), Pisum sativum (25)         
Helianthus annuus (26); Stellaria media (27); Jasione   mon-
tana (28); Euphorbia helioscopia (29); Iberis amara and 
Alyssum maritimum (30); Glycine max (31) and Nigella 
demascena (32). In Capsella bursa-postoris wall ingrowths 
develop only after fertilization, continue to increase in size 
and persist up to the heart shaped embryo stage (22-24), 
the embryo sac wall ingrowths in Sesbania speciosa play a 
dual role. They not only help in absorbing the metabolites 
but also play an active role in dividing the coenocytic    
endosperm into compartments. The involvement of cen-
tral cell wall projections in compartmentalization of the 
endosperm has been suggested in Helianthus annuus (33), 
Stellaria media (27) and Iberis amara and Alysum mariti-
mum (30). 

 The most prominent feature of synergies in Ses-
bania speciosa is the presence of well-developed filiform 
apparatus at the micropylar end. The filiform apparatus is 
reported in many investigated taxa except Coronopus didy-
mus, Brassica rapa, Farsetia hamiltonii, Lepidium    sativum, 
Malochima africana (34) and Nicotiana rustica (35). The 
filiform apparatus consists of a network of finger-like pro-
jections which stain intensely for PAS reaction as reported 
in Gossypium hirsutum (36); Capsella                   bursa-
pastoris (22); Aquilegia formosa (37); Zephyranthes rosea, 
Lagenaria vulgaris (38); Ranunculus sceleratus (39); Linaria 
bipartite (40); Argemone mexicana (41);                 Ornitho-
galum caudatum (42), Scilla sibirica (43); In Sasbania speci-
osa, the synergid cytoplasm is bereft of polysaccharide 
grains as also observed in Zea mays (44); Argemone mexi-
cana (41); Linaria bipartita (40); Ornithogalum caudatum 
(42); and Glycine max (31); Synergids are also rich in total 
proteins and RNA is Sesbania speciose (39, 41). Synergids 
help in absorption, storage and transportation of nutrients 
from the surrounding tissues through FA which have trans-
fer cell  (44-48). 

 In Sesbania speciosa, the cells of embryo-proper at 
the pre-globular prombryo stage contain a few polysac-
charide grains but at the globular proembryo and heart-
shaped embryo stages, the embryo-proper and embryo 
suspensor interface is replete with such grains. Therefore 
it supports the contention that the suspensor cells act as 
transfer cells; absorb nutrition from the adjacent ovular 
tissues and pass it to the developing embryo. At the late 
dicotyledonous embryo stage, numerous polysaccharide 
grains accumulate as reserve metabolite in the cotyledo-
nary, hypocotyledonary and ground meristem cells. The 
stored polysaccharide grains are utilized during the pro-

gressive stages of seed maturation. Accumulation of starch 
as a reserve metabolite in the embryos has been reported 
in Glycine max (49) and Lupinus angustifolius (50). 

 In S. speciosa, the globular and heart-shaped      em-
bryos are rich in proteins and nucleic acids. Such a         

condition is reported in Stellaria media (51), Vanda         
cultivars (52); Panicum miliaceum (53) and Crotalaria    re-
tusa and C. spectabilis (54). During later stages of develop-
ment, only the organogenic part of the embryo shows cy-
toplasmic proteins and nucleic acids. An increase in RNA 
level at the time of cotyledon development is reported in 
Vicia faba (55-57) and Phaseolus vulgaris (58). Concomitant 
with the RNA increase, there is an increase in protein syn-
thesis as well. 

 In S. speciosa, the massive suspensor differentiates 
during the proembryo stage and persists up to the dicoty-
ledonous embryo stage. Many PAS-positive wall ingrowths 
are present in the basal suspensor cells which are in con-
tact with the adjacent ovular tissue. The wall ingrowths are 
believed to increase the surface area of the plasma mem-
brane and facilitate the absorption of metabolites from the 
adjacent ovular tissue. As in the present investigation, wall 
ingrowths in the suspensor cells are reported in Capsella 
bursa-pastoris (24), Phaseolus coccineus (59-61), Phaseolus 
vulgaris (62); Stellaria media (63); Alyssum   maritinum (30); 
Medicago sativa and M. scutellata (64) and Crotalaria re-
tusa (48). In C. retusa, numerous mitochondria are associ-
ated with wall ingrowths and this feature is  characteristic 
of transfer cells. The mitochondria supply the needed en-
ergy for the active transfer of metabolites. In S. speciosa, 
the close association between the nucellus and the wall 
ingrowths of suspensor cells suggests that the latter are 
involved in the translocation of nutrients from the nucellus 
into the basal region of the suspensor. 

 In Sesbania speciosa, the suspensor cells are multi-
nucleate at globular and heart-shaped embryo stages as 
reported in Pisum sativum (65) and four species of      Lathy-
rus (66). Endopolyploidy and polyteny have been reported 
in suspensor cells of Phaseolus vulgaris (67),        P. coc-
cineus (68-69); Brassica nigra (70); Tropaeolum    majus (71) 
and in many other taxa (see also 72-73). The nuclei in the 
suspensor cells of Crotalariaretusa and            C. spectabilis 
are hypertrophied and lobed (48). The lobing of the nuclei 
results in an increased area and consequently, increased 
nucleo-cytoplasmic interactions. The presence of nuclear 
materials in the cytoplasm further supports this view (68, 
74-75) and reiterates that the suspensor cells are metaboli-
cally very active. Studies are on the suspensors of 120 an-
giosperms and compared them to the trophoblast of 
mammals (76). He correlated similarities in development, 
chromosome behaviour (endomitoses, DNA amplification, 
formation of polytene chromosomes) and ultrastructur-
al details (wall ingrowths and microvilli) and rightly con-
cluded that both the organs are concerned with the syn-
thesis and transport of specific nutritive substances to the 
respective sites. 

 In S. speciosa, the endosperm development is of the 
Nuclear type. During early embryogenesis, the endosperm 

cytoplasm and the nuclei aggregate at the micropylar part 
of the embryo sac. Wall formation occurs in the vicinity of 
the embryo between the aggregated nuclei. The lower 2/3 
in the endosperm remains free-nuclear, assumes vesicular 
contour, contains hypertrophied nuclei and functions as 
haustorium. This feature appears ubiquitous for all the 
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legumes (3). The development of endosperm at the micro-
pylar and the chalazal region appears to be induced by the 
surrounding tissue. The development at the micropylar 
portion is perhaps controlled by the proximity towards the 
embryo, the suspensor and the adjoining starch-filled in-
tegumentary cells and at the chalazal region is regulated 
by the adjacent chalazal proliferating tissue. 

 In S. speciosa during the initial free nuclear divi-
sions, the concentration of polysaccharide grains decreas-
es in the endosperm. This decline may be due to the utili-
zation of this metabolite for the early growth and the de-
velopment of endosperm. Such accumulation of polysac-
charide grains in the young endosperm is known in        
Stellaria media, Capsella bursa-pastoris, Gossypium      hir-
sutum, Ranunculus sceleratus and Alyssum maritimum. 
During early embryogenesis when the endosperm nuclei 
show active mitosis and aggregate at the micropylar end, 
the endosperm cytoplasm is rich in proteins, DNA and RNA 
as reported in Stellaria media (51) and Ranunculus        scel-
eratus (77). These observations indicate that the endo-
sperm is metabolically very active but lacks detectable 
storage metabolites during early ontogeny (78). The onset 
of cellularization is met with a strong decline in the levels 
of macromolecules. It is, thus, postulated that the actively 
dividing endosperm, during early ontogeny, needs nutri-
ents for its own growth. At this stage the endosperm may 
not contribute significantly to the nutrition of the proem-
bryo. After cellularization the endosperm acts as a sink and 
a storehouse of various metabolites. The polysaccharide 
grains are present in the few peripheral layers of the endo-
sperm but are absent in cells close to the embryo. It is   
believed that embryo acts as a strong sink for various me-
tabolites and withdraws nutrients and prevents accumula-
tion of reserves in tissues around it (79). In S. speciosa, the 
endosperm around the embryo is gradually lysed. In     
Alyssum maritimum many organelles around the embryo 
are observed at different stages of degradation (77). A few 
autophagic vacuoles do occur in the endosperm tissue 
adjoining the embryo. A clear area around the embryo  
devoid of any endosperm suggests lysis and utilization of 
endosperm lysate by the developing embryo. The initia-
tion of endosperm breakdown at the embryo-endosperm 
interface suggests that the embryo releases factors that 
promote the lysis. 

 The endosperm haustorium is metabolically active 
and may be involved in the nutrition of the developing 
endosperm. The absorptive role of the haustorium is     
suggested by studies on Vaccinium macrocarpum (80);       
Crotalaria retusa and C. spectabilis (54, 81). A similar role of 
endosperm haustorium in S. speciosa is also envisaged 
since the haustorium, at the chalazal end of embryo sac, 
becomes undulated to various extents and thus, increases 
the absorptive surface.   
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