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Abstract   

The change in global climate is because of expanding convergence of green-

house gases (GHG) in the environment. Climate changes observed on Earth 

in recent years are mostly the result of various human activities. The global 

temperature has risen by around 0.8 °C over the past hundred years and is 

expected to ascend by between 0.9 and 3.5 °C by 2100. Climate change does 

not only affect the holistic crop growth but also influence the spread, multi-

plication, incidence and severity of many phytopathogenic agents. These 

effects will be seen not only on the other elements of the agroecosystem but 

also on plants and other organisms. Climate change involving rise in tem-

perature and CO2 level in the atmosphere, and other weather events such as 

drought and flooding, all affects the host plant resistance to pathogens. 

Climate change has the potential to alter host-pathogen interactions and 

ultimately pose great impact on development of disease epidemics.  How-

ever, determining these effects is difficult, so experts from various fields 

must look beyond their own disciplinary boundaries and put the effects of 

climate change in a larger context. Various plant disease models have been 

created to integrate modern climate forecasts at different levels. According 

to climate change scenario, there is great need to modify the methods of 

disease management in terms of their geographic and temporal distribu-

tion. This review uses appropriate examples to demonstrate the many im-

plications that climate change has on plant diseases and their repercus-

sions.   
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Introduction   

Nowadays, all agricultural industries are significantly impacted by the prob-

lem of climate change. Impacts of climate change are already becoming 

apparent for both natural and human systems, with most crops experienc-

ing more negative than positive effects on yields (Figure 1). The earth's sur-

face is heated by greenhouse gases in the atmosphere, which capture the 

reflected energy (1). Increased atmospheric temperature, CO2 concentra-

tion, change in precipitation patterns, and the frequency of extreme   

weather events all have a negative impact on agricultural productivity (2). In 

addition to anthropogenic factors, climate change would also have an     

impact on plant diseases (3). Diseases like sudden oak death spread more   

easily as a result of these circumstances (4). Plant-parasitic interactions are 

impacted by increased temperature and CO2 concentration (5). Human   
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activities also accelerated global climate change, which 

has great influence on ecosystems (6). Signs of Global 

warming have been observed in the west coast, inner pen-

insula, central region and northeastern regions of India (7).  

 According to the Intergovernmental Panel on      

Climate Change (IPCC), climate change resulted in in-

crease in atmospheric CO2 by 30% and temperature by    

0.3 to 0.6 °C (8). The host, pathogen, and environment 

components of the disease triangle are all impacted by the 

world's changing climate (9) (Figure 2). A model was used 

to study the impact of climate change on Phoma 

(Leptosphaeria maculans) in rapeseed, that foresee tem-

perature and precipitation under CO2 discharge situations 

for the years 2020 and 2050s in UK (10) and spore produc-

tion by teleomorphs on climate change (11). The impact of 

climate change on plant diseases involves a number of 

trade-offs with varying climatic preferences, such as      

optimum temperature and humidity (Figure 3).                      

Fig. 1. Impacts of Climate Change  

Fig. 2. Impacts of Climate Change on components of disease triangle  
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Trade offs  happen when the expansion of one functional 

service causes the supply of another functional service to 

decline. Greater pathogenicity in pathogens frequently 

hinders other biological and ecological processes, includ-

ing  intrinsic metabolic rate, stress tolerance (12), spore 

production (13) transmission (14), and competitive ability 

(15). In plants, disease resistance is negatively correlated 

with photosynthetic rates, germination, cellular growth 

and seed production (16).  

 When simulating the effects of climate change on 

infectious plant diseases, relative evolvability is a crucial 

factor that must be taken into account. The processes by 

which plants and pathogens produce genetic variation for 

environmental adaptation are very different. The relative 

importance of both of these phenomena in explaining how 

species have evolved to cope with climate change can be 

estimated by plasticity and heritability. Different mecha-

nisms for coping with short-term, erratic fluctuations and 

long-term, directional changes in climate events have    

developed within species (Figure 4). 

 In order to obtain sustainable food production in a 
changing climate, disease management procedures 

should be updated. Despite the fact that plant diseases are 

crucial to agriculture (17), limited amount of data on how 

climate change may affect plant diseases is available (18-

19). 

Fig. 3. Effects of climate change on the evolution of plant and pathogen trade-offs and their interactions  

Fig.4. Adaptation strategies for various types of climate change  
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General effects of climate change        

Current CO2 concentration is about 350 ppm, which may 

increase to 550–750 ppm in coming years (20). Doubling of 

CO2 concentration may lead to temperature increase by 

2.3±1.6 oC. It is anticipated that by 2080 AD, there might be 

reduction in the output of Indian agriculture by 30–40% 

under the assumption of 4 °C increase in world’s tempera-

ture. 

Effect of fluctuation in temperature on plant pathogens     

Host and pathogen have co-evolved dynamically in their 

struggle for fitness and endurance. Environmental factors 

have a significant impact on microbial pathogenesis pro-

cess and host immunization. Temperature fluctuation is a 

key factor determining invasion of microbes and host eva-

sion. Plant temperature fluctuates daily in contrast to 

mammals, who maintain a steady body temperature. Inva-

sive diseases may spread more quickly in warmer climates 

(21). Generally fungi engage in a variety of parasitic inter-

actions with their host plants. Current environmental con-

ditions, particularly temperature and moisture, have a 

significant impact on the development of diseases caused 

by fungal pathogens. Plants and pathogens both require a 

certain minimum temperature for their growth. Any fluctu-

ation in temperature will considerably effect the fungal 

reproduction, infection rate, penetration, infection cycle, 

dispersal and off-season survival. Sudden outbreak of dis-

ease might result from a temperature change, reactivating 

dormant pathogen races. Due to sudden rise in tempera-

ture several pathogens migrate to new locations and will 

come in contact with new hosts present in that area.  

 Temperature influences the susceptibility of cereal 
crops to rust infections. Stripe rust (Puccinia striiformis) 

pathogen expressed high aggressiveness at elevated tem-

perature making wheat or oat more vulnerable (22-23). 

Yellow rust of wheat has just started to appear in late De-

cember because of the favourable climate brought on by 

increasing temperatures (24-25). Under conditions of high 

temperatures, powdery mildew is expected to cause signif-

icant losses in winter wheat in China. (26). According to (5), 

increased temperature and CO2 concentration raised con-

cerns about the threat of blast and sheath blight disease in 

rice and late blight disease of potato (27). In Fusarium wilt-

resistant cultivars of chickpea, a greater risk of dry root rot 

has been observed when temperatures surpass 33 °C (28). 

Wider possibilities for sexual stages to overwinter are cre-

ated by temperature changes, which speeds up gene re-

combination and promotes the emergence of virulent 

strains of the pathogen (29). Karnal bunt and common 

bunt diseases of wheat might be significant under chang-

ing climatic conditions in locations with poor production, 

in case of improper seed treatment (30-31).  

 The incidence of bacterial pathogens i.e. Ralstonia 

solanacearum, Acidovorax avenae, and Burkholderia 

glumea is greatly influenced by temperature. Moreover, 

bacteria thrive in places where temperature-dependent 

diseases have not yet been reported (32). High tempera-

ture (34.5 °C), reduced virulence of soft rot bacterium 

(Erwinia carotovora subsp. carotovora) except in strain 

EC153, which generated large amounts of rRNA, N-acyl 

homoserine lactone and extracellular proteins causing 

widespread maceration of Chinese cabbage and celery 

petioles (33). Temperature also influence the prevalence of 

viruses and vector-borne diseases. A mild winter increases 

the survival of aphids and thus increase the incidence of 

viral diseases of sugar beet and potato and spread of     

Barley Yellow Dwarf Virus (34-35).  

 Future forecasts indicate that in the years 2020, 

2050, and 2080, regions that are favourable to the Black 

Sigatoka (Mycosphaerella fijiensis) disease of banana 

would substantially decline, although some areas will still 

favour the occurrence of the disease (36). Low tempera-

ture of 15 to 20 °C resulted in appearance of necrotic     

lesions on melon which in contrast to the high tempera-

ture of 20 to 25 °C exhibited latent infection or "Heat Mask-

ing” (37). Plant disease resistance is also affected by 

change in temperature, consequently influencing the over-

all disease development. For leaf rust (Puccinia recondita) 

in wheat, black shank (Phytophthora nicotianae ) in        

tobacco, broomrape (Orobanche cumana) in sunflower 

and bacterial blight (Xanthomonas oryzae pv. oryzae) in 

rice temperature sensitivity to resistance has been docu-

mented (38). 

Effect of increased CO2 concentration on plant patho-

gens        

Increased CO2 effect on a specific disease depends on how 
it affects the host plant, it is difficult to generalize and sug-

gests that the influence might be either positive or nega-

tive (7). Increased CO2 levels improve plant growth, photo-

synthesis, leaf area, sugar content and crop yield (39). In-

creased CO2 concentrations favour the quick sporulation of 

plant pathogenic fungi (40). Increased fecundity in some 

pathogens due to rising CO2 levels in the atmosphere 

might lead to disease epidemics (41). Alteration in expres-

sion of different soybean diseases i.e. brown spots, downy 

mildew and sudden death syndrome was observed due to 

elevated CO2 concentrations (42). Increased virulence of 

Fusarium graminearum was reported under high CO2 levels 

(40) whereas low diseases severity was reported in Perono-

spora manshurica (39).  

 Bacterial wilt and spot infections in pepper were 

exacerbated by higher ambient CO2 concentrations (43). 

Moreover, increased CO2 has been demonstrated to have a 

significant influence on disease development under con-

trolled settings. Blast and sheath blight infection risk in 

rice rose when CO2 concentration was raised by                  

200–280 μmol mol−1 over ambient values (27). Elevated 

CO2 (650 mol mol−1) concentrations resulted in increased 

incidence of yellow dwarf disease and BYDV-PAV titre (44). 

Symptom expression is not always linked with elevated 

virus titres. Despite having a high viral titre, inoculation of 

Nicotiana benthamiana plants with PVX and CMV under 

higher CO2 conditions had little effect on symptom expres-

sion (45). 

 Increased CO2 inhibited resistance against PVY in 

tobacco plants (46), and tomato YLCV (47) and TMV in to-

mato plants (48). High CO2 levels may also reduce          
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pathogen-induced viral resistance (19). As a result, while 

rising temperatures affect the duration, frequency and 

development, virus epidemics by modifying host re-

sistance, altering virus multiplication rates and physiology 

of host-virus interactions, rising CO2 concentrations may 

lessen the impact of temperature on epidemics by boost-

ing viral resistance. 

Effect of changed moisture regime on plant pathogens        

Most bacterial and fungal diseases thrive in moist condi-

tions. Moisture is often required for bacterial growth and 

penetration, fungal spore germination, and to kick-start an 

infection. In general, moisture is necessary for the germi-

nation of spores, the growth and penetration of bacteria, 

and initiation of infection. Many climate change models 

predict that as temperatures rise, rainfall events will be-

come more frequent and intense, and there will be more 

water vapour in the atmosphere. Crop canopies retain 

moisture in the form of wetness in the leaves and relative 

humidity (RH) for a long time, which encourages the 

growth of pathogens and diseases including late blights 

and vegetable root diseases (49). High moisture favors the 

growth of soil-borne pathogens like Phytophthora,     Pythi-

um, R. solani, and Sclerotium rolfsii. Drought stress has an 

impact on the occurence of viral diseases like Beet yellows 

virus (BYV) and Maize dwarf mosaic virus (MDMV) (50 and 

51). At low soil moisture, Ralstonia solanacearum exhibits 

reduced growth in tomatoes (52). In apple, the incidence 

of various canker diseases caused by fungal pathogens is 

increasing as a result of less rain during the rainy season 

and more severe summers (53). Likewise the incidence of 

apple scab (Venturia inaequalis) has also decreased as a 

result of less rainfall in the winter and in March and April, 

which is required for the maturation of the disease-

spreading sexual spores. 

Effect due to UV radiation        

Increased UV radiation may have positive as well negative 

impact on pathogen population (54-55). Even at lower  

doses, the most potent radiation, UV-C, kills microorgan-

isms more effectively but frequently damages plants. Indi-

rect effects such as regulation of plant defence mecha-

nisms, ROS accumulation and production of secondary 

metabolites like phenolic compounds can be attributed to 

UV-B-specific pathways (56). UV inactivates microorgan-

isms by framing pyrimidine dimers in RNA and DNA, that 

obstruct gene expression process (57-58). UV rays harms 

structure of pathogens and bio-control agents directly and 

interferes with host resistance. UV radiations are the result 

of depletion of ozone layer because of release of green-

house gases (59).  

Impact of climate change on diseases caused by vectors        

Climate change impacts the growth and dispersion of in-
sect vectors, subsequently which affects occurrence and 

development of plant disease (6, 31). Higher temperatures 

promote insect reproduction and aid in the spread of inva-

sive pathogens (21). The climatic conditions needed by 

disease vectors restrict the risk of vector-borne diseases in 

an area. It also affects the duration of incubation period of 

pathogen in an insect vector. In order to function, plant 

viruses require both host plants and vectors. Climate 

change influences the populations of host plants and in-

sects that serve as plant virus vectors (60). Primary infec-

tion of the host, disease development inside the host, hori-

zontal transfer of the virus to other hosts via the vector are 

all impacted by change in climatic conditions. The host's 

phenology and physiology are also impacted by climate 

change, which has an impact on the host's vulnerability to 

infection and viral susceptibility. Climate change model-

ling is necessary to determine when significant pathogens 

or vectors are likely to invade regions where conditions 

were previously unsuitable for them. 

Climate change and microbial interactions         

The three principle greenhouse gases that microorganisms 

produce and consume are carbon dioxide, methane, and 

nitrous oxide. Climate change can accelerate the diseases 

that certain bacteria can spread to people, animals, and 

plants. Significant effects on the carbon cycle and the 

functioning of many ecosystems are caused by elevated 

CO2 levels in the atmosphere. Key parameters impacting 

soil microbial populations include temperature, CO2 con-

centration, and nitrogen deposition amount (19). Altera-

tion in abiotic environments over the short and long terms 

have an impact on both the populations of microorgan-

isms that live on plant surfaces as well as plant develop-

ment and production. Every modification in the phyllo-

sphere's microbiota has an impact on plant development 

and resistance to aggressive disease attack. 

Impacts of soil pH         

Climate is a primary variable that impacts all other aspects 

of an ecosystem, and it will have an impact on soil charac-

teristics, including pH. The host plant is also impacted by 

soil pH. At high pH, plants come under stress and become 

susceptible to the pathogen's attack. The pH of the soil 

may have an impact on the nature of the root exudates, 

which attracts soil borne pathogens. It also influence the 

nutrients that are available to the plant. In crucifers, club 

root (Plasmodiophora brassicae ) incidence is high in   acid-

ic soil as compare to alkaline soil. A pH of 5.2 favours Strep-

tomyces scabies which shows decreased development and 

occurrence at pH 8.5 (61). At neutral pH of 7.0, Fusarium 

wilt of flax is controlled (17). Accessibility of soil nutrients, 

plant growth and vigour is affected by soil response and 

this indirectly influences disease development and infec-

tion (62). 

Effect of climate change on crop loss         

Climate change has an impact on food supply and quality 

as well. Reduced agricultural productivity may be a result 

of projected temperature rise, modifications in precipita-

tion patterns, extreme weather events and decrease in 

water availability. Plant diseases account for about 10 per 

cent losses of global food production, putting food securi-

ty at risk (63). Apart from direct losses, disease control 

measures, particularly chemical ones, may cause substan-

tial environmental damage, in addition to chemical resi-

dues breaching the food chain and social and economic 

upheavals. It is crucial to analyze the probable conse-

quences of climate change for the endorsement of adap-
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tive tactics, development of resistant varieties, novel man-

agement approaches are urgently required to avert more 

significant losses (64). Fungicide treatment and host-plant 

resistance make a significant contribution to sustainable 

crop production systems and climate change mitigation to 

ensure global food security (65). The potential influence of 

changing atmospheric composition and climate on select-

ed plant disease management strategies is discussed in 

Table 1. 

Impacts of climate change on interdisciplinarity           sci-
ences         

It has been reported that a warmer environment along 

with improper food handling practises may increase the 

occurrence of food-borne diseases (66). The main issue 

with the interaction between fungal growth and mycotoxin 

generation caused by climate change is that mycotoxins 

have the potential to contaminate common cereals like 

wheat or maize, which are crucial for food security (67). 

Aflatoxin levels rise in cool, temperate climates due to an 

increase in Aspergillus occurrence, while they may decline 

in tropical climates due to unfavourable high tempera-

tures for Aspergillus (68). 

 Global economic conditions are also affected by 

climate change. Severe weather conditions could hinder 

economic growth by harming the labour force and capital 

stock. Additionally, as the global economy adapts to the 

higher temperatures, labour productivity will decline. The 

rise in the price of food, energy, and insurance will cause 

inflation to increase. In order to fight the inflationary pres-

sures brought on by climate change, monetary policy will 

be constrained. Extreme weather events and rising tem-

peratures worsen economic conditions and social stress, 

which in turn influence political behaviour to some extent.    

 

Conclusion   

Climate change is a significant phenomenon that has an 

influence on agricultural productivity. Due to the fact that 

only a few factors are taken into consideration, it is diffi-

cult to predict how climate change will affect plant diseas-

es. The majority of these studies mentioned above have 

been done on a small scale for brief periods of time and 

under restricted conditions that may be very different from 

those in the field. The presence of different climatic zones 

in our country allows us to cultivate diversified crops in 

same seasons in tarai, hills and Himalayas which may 

change in the changing climatic conditions. It has become 

crucial to locate areas where crop production have been 

affected by the temporal and spatial changes brought on 

by climate change. We couldn't find any data on how ele-

vated levels of the greenhouse gases nitrous oxide or me-

thane might affect any of the biological factors related to 

infectious plant diseases. We could find no information on 

the likely impacts of climate change on a number of bio-

logical parameters, such as pollen transmission, the ca-

pacity of vectors to reproduce, biological control, and cul-

tural control measures against the pathogens. The impact 

of drought and flooding on plant diseases needs to be bet-

ter understood.  

 Additionally, there has been little research on how 
CO2 affects plant infections caused by mollicutes. Further-

more, while there was little information available about its 

effects on some insect vectors, no information was availa-

ble for mite, nematode, or fungal vectors. There is enough 

data on effect of climate change on the plant pathogens 

but only few have been able to accurately predict potential 

future scenarios. The initiation of disease forecasting must 

be prioritized to protect the farmers from bearing loss. We 

can also contribute in reducing crop yield losses by adopt-

ing different climate resilient technologies and practices of 

climate resilient farming.   
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Control Measure Strategy Impact of Climate Change Potential for an adaptation strategy 

Avoidance Quarentine Changes in pathogen dispersal due to climate, including 
changes in frequency, abundance, distance, and speed 

Modified effectiveness of quarantine proce-
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Preventive Crop rotation Despite having no direct impact, diversity in cropping systems 
will continue to be crucial for lowering disease risks. 

Use of crop species that are better suited to 
the local climate. 

Preventive Sowing date 
Adjustments are likely to be required, and there are cheap, 
simple ways to deal with biotic and abiotic stress, but there 
may also be drawbacks 

Evidently a potent tool, but possibly con-
strained in excessively warm winters (for 
example, late sowing in autumn under tem-
perate conditions) 

Preventive Host plant Re-
sistance 

Pathogens may be able to overcome temperature-dependent 
resistance, and changes in plant morphology and physiology 
may have an impact on resistance. Accelerated pathogen 
evolution may also prematurely erode disease resistance. 

Altered host-plant resistance effectiveness 
(higher, same, or lower effectiveness depend-
ing on the resistance (R) gene, pathogen 
population, etc.) 

Preventive and ⁄ or 
curative Use of Antagonists High vulnerability of antagonist Altered efficacy (high, low, depends upon 

product and environment) 

Preventive and ⁄ or 
curative 
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Table. 1. Potential influence of changing climatic conditions on selected plant disease management strategies  
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