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Abstract  

In the North-Eastern region of India, rice stands as the predominant staple, 

with diverse cultivars evolving over the past six decades. This study syste-

matically evaluated 20 rice landraces, analyzing eleven variables related to 

yield and its attributing traits. The aim was to identify promising genotypes 

for potential breeding programs and to ascertain the minimum number of 

components essential for explaining the total diversity. Among the eleven 

principal components (PCs) examined, four PCs exhibited eigenvalues sur-

passing 1.0, collectively contributing to 80.45% of the total variability in the 

traits. PC1, which explained 31.19% of the overall variance, was associated 

with plant height, days to 50% flowering, panicle length, grain breadth, and 

grain length-to-breadth ratio. Utilizing cluster analysis, the 20 rice landraces 

were categorized into seven distinct clusters. Maximum inter-cluster diver-

gence was observed between clusters VI and I, as well as clusters VI and V, 

indicating greater genetic distinctiveness among genotypes in these clus-

ters compared to others. Notably, rice landraces such as Borosolpana, 

Phougak, Satyaranjan, Kakcheng Phou, Moniram, Kanaklata, and Bahadur 

were identified as genetically divergent. These genotypes hold promise for 

generating segregating populations, serving as valuable source materials 

for targeted yield improvement through meticulous selection, as indicated 

by inter-cluster distances.  
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Introduction  

Rice (Oryza sativa L.) stands as a crucial linchpin for global food security, 

serving as a dietary staple for over half of the world's population. The culti-

vation of rice has been intricately woven into human history for millennia, 

leading to the emergence of diverse landraces and locally adapted varieties 

shaped by natural and farmer-driven selection processes. These landraces 

serve as invaluable genetic reservoirs, harboring essential traits for sustain-

able and resilient production systems (1). With the global population ex-

pected to reach 8 billion in November 2022 and India poised to surpass Chi-
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na as the most populous country in 2023 (World Popula-

tion Prospects, 2022), there is an urgent imperative to aug-

ment rice production to meet escalating demands. Achiev-

ing a 50% increase in rice production necessitates a fo-

cused effort by breeders to develop cultivars not only char-

acterized by heightened yield potential but also pos-

sessing desirable agronomic traits (3). Effectively address-

ing these challenges requires a profound understanding of 

the genetic diversity within rice landraces. This paper aims 

to elucidate the significance of rice landraces as genetic 

resources and their pivotal role in contemporary agricul-

tural research and development. Additionally, it under-

scores the critical necessity of harnessing this genetic di-

versity through the application of multivariate analysis, 

providing a robust toolkit to dissect the intricate relation-

ships between genotypic and phenotypic variations (4). 

This analytical approach holds great promise for steering 

breeding programs towards the creation of improved rice 

varieties characterized by heightened adaptability, 

productivity, and resilience in the face of current and fu-

ture challenges. 

 A comprehensive investigation, (5) delved into the 

genetic diversity elucidation of thirty-two elite rice varie-

ties. Utilizing Mahalanobis' D2 statistics and Principal 

Component Analysis (PCA), the authors discerned pivotal 

factors influencing genetic variability. Time to maturity, 

single plant yield, and days to 50 percent flowering 

emerged as primary contributors to genetic diversity. The 

varieties were stratified into seven clusters. PCA revealed 

that the initial three components explicated 77.3 percent 

of the variability, with the first component, encapsulating 

single plant yield, panicles per plant, and time to maturity, 

attributing to 40.6 percent. This research yields crucial 

insights into the genetic diversity inherent in elite rice vari-

eties. 

 The principal aim of this study was to delineate the 

inherent diversity among rice varieties. To achieve this 

objective, Mahalanobis D2 statistics have been employed 

as a robust statistical tool to quantify genetic distances 

between landraces. This methodology proves highly effica-

cious in categorizing varieties into discrete groups (6, 7). 

Furthermore, the utilization of PCA complements the in-

sights derived from the D2 analysis by reinforcing the iden-

tification of key contributors to the variability  between 

genotypes (8, 9). Through PCA, essential independent vari-

ables are succinctly represented while preserving the origi-

nal variability (10). The amalgamation of Mahalanobis D2 

statistics and PCA holds paramount significance in the 

selection of genetically divergent parents from a pool of 20 

rice landraces, a critical aspect for the success of breeding 

programs.  

 

Materials and Methods 

Experimental site  

The current investigation was conducted at Uttar Banga 
Krishi Viswavidyalaya situated in Pundibari, Coochbehar, 
West Bengal, within the terai region of Bengal. The geo-
graphical coordinates of the site were 26°19'86" N latitude 

and 89°23'53" E longitude, at an elevation of 43 meters 
above mean sea level. 

Experimental materials  

Twenty (20) distinct rice genotypes were procured from 
the Regional Agricultural Research Station located in Tita-
bar, Jorhat, Assam, for the experimentation (Table 1). A 
comprehensive list of these genotypes is provided in Table 
1. The study was conducted over the course of two sea-
sons in 2017, encompassing both the pre-kharif and kharif 
periods. The soil characteristics at the experimental site 
include a sandy loam texture, optimal drainage conditions, 
and a pH level of 5.74 

Experimental layout  

A Randomized Complete Block Design (RCBD) experiment 
employing three replications was conducted to assess var-

ious genotypes for both yield and yield attributing traits. 

The experimental design comprised 20 treatments, with 

each plot measuring 2 m by 1.5 m. Plots were spaced at a 

50 cm interval, with plant-to-plant spacing set at  15 cm 

and row-to-row spacing at 20 cm. Standardized amounts 

of nitrogen (N), phosphorus (P), and potassium (K) fertiliz-

ers were applied at rates of 60, 40, and 40 kg per acre, re-

spectively. During land preparation, the entire dose of pot-

ash and phosphorus, along with half of the nitrogen, was 

applied as the basal dose. Subsequently, 22 days post-

transplanting, one-fourth of the nitrogen was adminis-

tered as the first top dressing, followed by the application 

of the remaining one-fourth nitrogen as the second top 

dressing 22 days later. Intercultural operations and crop 

protection measures were implemented as needed 

throughout the experimental duration. 

Name of Landraces Denotation 

Phougak 1 

Disang 2 

Kakcheng Phou 3 

Joymati 4 

Satyaranjan 5 

Chakhao Sempak 6 

Luit 7 

Mahsuri 8 

Borosolpana 9 

Haripowa Sali 10 

Kanaklata 11 

Kushal 12 

Ranjit 13 

Dhansiri 14 

Piolee 15 

Diphalu 16 

Moniram 17 

Bahadur 18 

Teti Sali 19 

Phourin Nakuppi 20 

Table 1. List of 20 landraces of rice.  
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Observations recorded  

Plant height (PH) was quantified in centimeters, measur-

ing from the base to the apex of the primary panicle before 

the plants were harvested. Days to 50% flowering (DF) 

were recorded when half of the population within the ex-

perimental plot exhibited panicle emergence. Panicle 

length (PL) was determined in centimeters, measured from 

the basal node of selected plants to the tip of the upper-

most spikelet. Effective tillers per plant (ETP) were  as-

sessed at maturity by counting from five randomly chosen 

plants, with the total divided by five to yield the effective 

tillers per plant in each replication. Filled grains per tiller 

(FGT) were calculated as the average number of fertile 

grains on 10 randomly selected panicles. Grain dimen-

sions, including length (GL) and breadth (GB), were meas-

ured with digital slide calipers on 10 randomly chosen rice 

grains with husks, and the mean values were computed. 

The grain length-to-breadth ratio (GLBR) was determined 

as the averaged ratio of length to breadth for 10 grains. 

Thousand grain weight (TGW) was assessed by weighing 

selected grains with an electric balance, and the mean was 

calculated. Grain yield per plant (GYP) was determined by 

harvesting five randomly selected plants, and the obtained 

grain amount was divided by five to derive the yield per 

plant. Harvest index (HI) was calcula-ted and expressed as 

a percentage for each plot. 

Statistical analysis  

The statistical analysis in this study involved aggregating 

average data from each replication. To ascertain the signi-

ficance of variance among distinct genotypes (treatments), 

a randomized block design was implemented (11). Genetic 

diversity within a pool of 20 landraces was assessed using 

Mahalanobis D2 statistics, following the methodology out-

lined in reference 12. The resulting clustering pattern was 

proposed and visualized through hierarchical clustering 

(13) utilizing the dendextend package in R software (14) to 

elucidate relationships among genotypes based on their 

similarities and differences. Furthermore, principal com-

ponents with eigenvalues surpassing one were explored 

using the FactoMineR package (15). This transformation 

facilitated the conversion of the original set of variables 

into a new set of uncorrelated variables, denoted as princi-

pal components. Biplots, generated using the Factoextra 

package (16) in R, were employed to visualize relationships 

between quantitative variables and individual observa-

tions, as well as to depict the clustering structure. The re-

sulting dendrogram was integrated into these visualiza-

tions. These methodologies collectively offered a compre-

hensive evaluation of genetic diversity and relationships 

among the investigated genotypes.  

 

Results and discussion  

The genetic diversity within a population significantly in-

fluences genetic advancement. Hence, it is imperative to 

assess the genetic diversity among a collection of breeding 

materials, enabling the categorization of genotypes into 

genetically analogous and dissimilar types. The anticipa-

tion lies in the recognition that genotypes displaying sig-

nificant genetic divergence are conducive to recombina-

tion breeding, thereby offering a broad array of genetic 

variations and increased opportunities for the emergence 

of transgressive segregants (17, 18). Consequently, the 

assessment of the degree of genetic divergence among the 

existing rice genotypes has been undertaken. 

 Utilizing Euclidean genetic distance measurements 
between potential pairs of test landraces, the research 

categorized the 20 rice landraces into seven distinct genet-

ic clusters based on their grain yield and attributing traits, 

as outlined in Table 2. Notably, Cluster IV emerged as the 

largest cluster, encompassing six landraces (Joymati, 

Mahsuri, Haripowasali, Kushal, Piolee, and Teti Sali). Sub-

sequently, Cluster II featured four landraces (Disang, Luit, 

Dhansiri, and Diphalu), and Cluster V comprised three 

landraces (Satyaranjan, ChakhaoSempak, and Phourin 

Nakuppi). Clusters I, III, and VII each accommodated two 

landraces: Phougak and Moniram in Cluster I, Kakcheng 

Phou and Kanaklata in Cluster III, and Ranjit and Bahadur 

in Cluster VII, as detailed in Table 2. The clustering was 

visually represented through a dendrogram, illustrating 

the relationships among the 20 rice landraces concerning 

both yield and yield attributing traits. Fig. 1 illustrates the 

outcomes of clustering analyses, revealing the grouping 

patterns of 20 rice landraces through D2 analysis. Intri-

guingly, the examination disclosed seven distinct clusters, 

challenging the conventional assumption that germplasm 

with a shared origin would inherently belong to the same 

category. Instead, it underscored that genetic divergence 

was predominantly influenced by morphological traits 

rather than geographical provenance alone. Moreover, the 

application of Mahalanobis D2 statistics validated the clear 

categorization of the 20 rice landraces into five groups 

(Fig. 1). Subsequent chi-square testing accentuated highly 

significant differences (p < 0.01) among these clusters, 

aligning with earlier research (19) that utilized D2 analysis 

to classify rice genotypes into seven clusters, thereby 

affirming the robustness of this analytical approach. The 

observed genetic diversity, leading to the formation of 

distinct solitary clusters, is presumed to result from geo-

graphical barriers impeding gene flow or the effects of in-

tense natural and human selection for unique and adap-

tive gene complexes. This finding aligns with similar re-

sults reported in a previous study (20). Another study on 

Cluster 
No. 

Total no. of 
genotypes Name of genotypes 

I 2 Phougak, Moniram 

II 4 Disang, Luit, Dhansiri, Diphalu 

III 2 Kakcheng Phou, Kanaklata 

IV 6 Joymati, Mahsuri, Haripowasali, Kushal, 
Piolee, Teti Sali 

V 3 Satyaranjan, ChakhaoSempak, PhourinNa-
kuppi 

VI 1 Borosolpana 

VII 2 Ranjit, Bahadur 

Table 2. Grouping of 20 landraces of rice on different clusters for yield and 
yield attributing traits.  
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rice diversity analysis (21) allocated twenty-six genotypes 

into six clusters, with the maximum inter-cluster distance 

noted between clusters V and VI. Additionally, a previous 

investigation on rice genotypes (22) identified ten clusters, 

where cluster I comprised a single genotype, while clusters 

II and III each encompassed nine genotypes. 

 In Table 3, it is discernible that Cluster I manifests 
the highest mean intra-cluster distances for both grain 

yield and its associated traits, registering a value of 12.87. 

Closely following are Clusters III and V, exhibiting distances 

of 9.60, succeeded by Cluster II at 8.97, and Cluster IV at 

7.18. Cluster VI, being monogenotypic, records an intra-

cluster distance of 0, while Cluster VII displays a distance 

of 3.81. Notably, Clusters VI and I demonstrate the most 

substantial inter-cluster distance at 32.33, succeeded by 

Clusters VI and V (29.18), III and I (28.79), V and I (27.75), VI 

and III (27.15), and finally, Cluster VII and I with a distance 

of 26.51. Based on the inter-cluster distances, it is antici-

pated that hybridization between genotypes from Cluster 

VI with Cluster V, Cluster III with I, and Cluster V with I 

could yield promising candidates with enhanced grain 

yield and other pivotal traits in rice (Table 3). Moreover, 

incorporating genotypes from more distantly positioned 

clusters in hybridization programs has the potential to 

introduce a broader spectrum of variability, facilitating the 

generation of superior candidates for grain yield and es-

sential agronomic characteristics. It is recommended to 

select parents from two clusters with wider inter-cluster 

distances, as suggested by prior investigators (23, 24), to 

achieve a robust heterotic impact and foster high varia 

bility. 

 The examination of genetically divergent clusters 

and the calculation of distances (D2 values) among select-

ed Oryza sativa L. landraces are presented in Table 4. Upon 

meticulous scrutiny of the distances, it was noted that Bo-

rosolpana in cluster VI and Phougak in cluster I exhi-bited 

a conspicuously high genotypic distance (D2 = 34.12). Anal-

ogous patterns of substantial genetic distances between 

landraces were discerned in other clusters, such as the 

case of Borosolpana in cluster VI and Satyaranjan in clus-

ter V (D2 = 32.31). Kakcheng Phou in cluster III and Maniram 

in cluster I manifested a considerable genotypic distance 

(D2 = 34.70). Furthermore, Satyaranjan in cluster V and 

Phougak in cluster I displayed a substantial genotypic dis-

tance (D2 = 30.42), and Bahadur in cluster VII and Phougak 

in cluster I exhibited a noteworthy distance as well (D2 = 

30.11) (Table 4). The identification of parental lines from 

these distinct clusters holds considerable potential for 

Fig. 1. Dendrogram showing the clustering of 20 landraces of rice for yield and yield attributing trait.  

Cluster Cluster I Cluster II Cluster III Cluster IV Cluster V Cluster VI Cluster VII 

Cluster I 12.87 26.49 28.79 23.84 27.75 32.33 26.51 

Cluster II   8.97 23.61 19.91 23.39 26.44 21.00 

Cluster III     9.60 21.63 24.56 27.15 24.28 

Cluster IV       7.18 21.32 23.08 18.85 

Cluster V         9.60 29.18 21.91 

Cluster VI           0.00 24.82 

Cluster VII             3.81 

Table 3. Average intra (diagonal) and inter-cluster (off-diagonal) D2 values of 20 rice landraces for different yield and yield attributing traits.  
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hybridization programs, as mating genetically divergent 

parents often leads to enhanced variability and the emer-

gence of transgressive segregations with robust heterotic 

effects. The magnitude of inter-cluster distances directly 

corresponds to the level of variability among genotypes 

between clusters and vice versa. Consequently, a deliber-

ate mating strategy involving genotypes from these clus-

ters has the potential to yield robust hybrids or recombi-

nants with heightened vigor. This observation aligns with 

previous findings (25) reported in the literature. 

Cluster means  

Table 5 illustrates the mean values of eleven yield and 
yield-related traits within each identified cluster. In  Clus-

ter I, comprising two distinct landraces, noteworthy attrib-

utes included maximum GB at 2.35 mm, highest GYP at 

20.24 g, moderate FGT at 368.50, and TGW at 21.92 g. Addi-

tionally, Cluster I exhibited the shortest PH at 123.67 cm 

and PL at 22.99 cm. Cluster II, consisting of four landraces, 

exhibited characteristics such as high HI at 52.86, moder-

ate ETP at 10.17, and GL at 7.95 mm, alongside late DF at 

76.46 and the lightest TGW at 21.02 g. Cluster III, compris-

ing two landraces, displayed distinctive features including 

the highest ETP at 11.41, elevated PH at 149.06 cm, in-

creased FGT at 429.67, moderate GYP at 18.97 g, and the 

lowest GLBR at 3.56. Cluster IV, encompassing six landrac-

es, was characterized by early DF at 98.69, high ETP at 

11.41, moderate PH at 134.94 cm, GB at 2.06 mm, GLBR at 

3.88, and HI at 39.62. In Cluster V, composed of three land-

races, notable traits included the highest GL at 9.04 mm, 

elevated GLBR at 4.53, high TGW at 24.50 g, moderate DF 

at 82.39, and PL at 25.78 cm, along with the lowest FGT at 

293.05. Cluster VI, with a single landrace, exhibited the 

tallest PH at 196.68 cm, earliest DF at 106.17, largest PL at 

33.33 cm, maximum FGT at 535.67, heaviest TGW at 27.40 

g, highest HI at 55.83, and GYP at 14.98 g. Lastly, Cluster 

VII, consisting of two landraces, exhibited lengthy PL at 

28.16 mm and GB at 2.24 mm. However, this cluster also 

presented the lowest HI at 33.52 and GYP at 14.98 g. The 

contribution of individual yield and yield-related traits to 

total divergence is depicted in Fig. 2, where PH contribut-

ed the maximum at 35.2%, followed by HI at 16.4%, DF at 

12.2%, FGT at 10.6%, and GYP at 7.9%. This information 

underscores the significance of these traits in genotype 

selection, with plant height emerging as a primary deter-

minant for divergence and potential utility in parent selec-

tion (26, 27). 

Cluster combination Inter cluster distance (D2 
value) Landraces selected from the cluster Distance between the landraces 

selected (D2 value) 

Cluster VI and cluster I 32.33 Borosolpana in cluster VI and Phougak in cluster I 34.12 

Cluster VI and cluster V 29.18 Borosolpana in cluster VI and Satyaranjan in cluster V 32.31 

Cluster III and cluster I 28.79 Kakcheng Phou in cluster III and Maniram in cluster I 34.70 

Cluster V and cluster I 27.75 Satyaranjan in cluster V and in Phougak in cluster I 31.97 

Cluster VI and cluster III 27.15 Borosolpana in cluster VI and Kanaklata in cluster III 30.42 

Cluster VII and cluster I 26.51 Bahadur in cluster VII and Phougak in cluster I 30.11 

Table 4. Genetically divergent clusters and distance (D2 value) between the landraces selected for yield and its attributing traits in 20 landraces of rice.  

Cluster PH (cm) DF PL (cm) ETP FGT GL(mm) GB (mm) GLBR TGW (g) HI (%) GYP (g) 

Cluster I 123.67 81.09 22.99 9.67 368.50 8.17 2.35 3.72 21.92 50.95 20.24 

Cluster II 130.57 76.46 25.74 10.17 327.88 7.95 2.00 4.05 21.02 52.86 16.53 

Cluster III 149.06 78.08 25.06 11.41 429.67 7.59 2.20 3.56 21.73 38.50 18.97 

Cluster IV 134.94 98.69 26.10 11.31 402.47 7.87 2.06 3.88 21.56 39.62 19.60 

Cluster V 144.65 82.39 25.78 9.22 293.05 9.04 2.00 4.53 24.50 34.42 17.11 

Cluster VI 195.68 106.17 33.33 7.50 535.67 8.30 1.92 4.34 27.40 55.83 23.15 

Cluster VII 129.36 89.92 28.16 10.75 336.67 7.88 2.24 3.79 22.93 33.52 14.98 

Contribution% 35.20 12.20 4.00 4.10 10.60 0.90 1.10 3.40 4.20 16.40 7.90 

Table 5. Cluster means of 20 landraces of rice for different yield and yield attributing traits.  

PH= Plant height (cm), DF=Days to 50% flowering, PL=Panicle length (cm), ETP= effective tillers plant-1, FGT= filled grains tiller-1, GL= grain length (mm), GB= grain 
breadth (mm), GLBR=Grain l:b ratio, TGW= 1000 grain weight (g), HI= harvest index (%) and GYP= grain yield plant-1 (g).  

Fig. 2. Contribution of different yield attributing traits towards divergence in 
20 landraces of rice. 1= PH (cm), 2= DF, 3=PL (cm), 4=ETP, 5=FGT, 6=GL (mm), 
7=GB (mm), 8=GLBR, 9=TGW (g),10= HI (%) and 11=GYP (g).  
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Principal component analysis (PCA)  

PCA serves as a multivariate statistical method aimed at 

selecting a reduced set of components from the PCs, effec-

tively eliminating less critical information. This process 

involves arranging genotypes based on PC scores, prioritiz-

ing and elucidating the major variability within the overall 

variance (28, 29). The determination of the number of re-

tained factors is guided by eigenvalues. Table 6 presents 

the eigenvalues, percentage of variance, and cumulative 

variance for quality-related traits across 20 landraces. Our 

investigation identified eleven PCs, and the significance 

was attributed to the first four PCs with eigenvalues ex-

ceeding one. The remaining seven PCs offered limited ad-

ditional insights and only partially accounted for the ob-

served variation. In this study, PCA highlighted four princi-

pal components, namely PC1, PC2, PC3, and PC4, each 

possessing eigenvalues greater than one (3.43, 2.63, 1.51, 

and 1.27, respectively). Collectively, these four compo-

nents explained approximately 80.45% of the total varia-

tion. To gain a more nuanced understanding, emphasis 

was placed on the variation associated with these four PCs 

(Table 6). Notably, characters in the first principal compo-

nent with absolute values closer to unity exerted a more 

pronounced influence on grouping than those with smaller 

absolute values nearing zero.  

 Following the extraction of PC4, a semi-curve line 

was delineated, exhibiting a trend toward linearity with 

minimal fluctuations in each PC. The scree plot graph viv-

idly illustrates that PC1 encapsulates the highest propor-

tion of variance compared to the other PCs (Fig. 3). Conse-

quently, favoring the lines derived from PC1 for inclusion 

in genetic improvement programs holds considerable ad-

vantages. These findings are consistent with the outcomes 

of prior investigations by (30), elucidating the distribution 

of variance across principal components. In a study involv-

ing forty rice genotypes, (31) reported that PC1 accounted 

for 33% of the variability, while PC2, PC3, and PC4 contrib-

uted 14.3%, 11.4%, and 9%, respectively. Similarly, a sepa-

rate investigation (32) demonstrated that the first two 

principal components explained 23% of the variation in 

sixteen agro-morphological parameters across twenty-

three rice germplasm lines, with eigenvalues exceeding 1. 

In an earlier study analyzing 31 rice germplasm lines, (33) 

found that the first five components with eigenvalues 

greater than 1 collectively explained 82.90% of the overall 

variances. Moreover, research on rice landraces (34) un-

veiled that, among thirteen principal components, five 

were statistically significant, contributing significantly to 

the total variance and amounting to 84.67% in cumulative 

proportion of variance. A prior investigation in Pearl millet, 

involving forty germplasm,  revealed that the first six prin-

cipal components, each with an eigenvalue surpassing 

one, collectively contributed to 78.29% of the observed 

variability (35). 

 Analysis of Eleven Key Yield-Related Components in 

Twenty Rice Landraces: Insights from Multivariate Genetic 

Assessment. The PC1, explaining 31.2% of the total varia-

bility, underscores discriminatory traits such as PH (0.467), 

PL (0.473), GLBR (0.418), and DF (0.339). This suggests their 

  PC1 PC2 PC3 PC4 

Eigen Value 3.43 2.63 1.51 1.27 

Variance (%) 31.19 23.86 13.75 11.63 

Cumulative (%) 31.19 55.06 68.81 80.45 

Table 6. Principal component analysis eigen values, variance and cumulative 
variance of yield and attributing traits in rice landraces.  

Fig. 3. Scree plot showing the clustering of 20 landraces of rice for yield and its attributing traits.  
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pivotal role in delineating the inherent quality potential of 

each landrace, leading to distinct cluster formations. Simi-

larly, the second PC2, contributing 23.8% to the overall 

variation, notably influences ETP (0.481) and FGT (0.343) 

(Table 7). These findings underscore the richness of trait 

variants within rice landraces, implying substantial pro-

spects for genetic advancements in the investigated traits. 

 The PC1 and PC2 were utilized to construct a biplot, 

facilitating an examination of the interrelationships among 

twenty rice landraces based on yield and yield-related 

traits in the present study (Fig. 4). The covariate effects of 

biplot-based correlations among traits elucidated 55.06% 

of the total variation, representing a robust approximation 

for understanding the impact of traits on yield and their 

inter-similarities. Notably, characters such as DF, PL, PH, 

GLBR, GL, GB, and ETP exhibited longer vector lengths, 

indicating a more substantial influence on the variation in 

a particular dimension. Conversely, traits like FGT, GYP, HI, 

and TGW displayed shorter vector lengths, suggesting a 

limited contribution to the observed variation. Piolee, Sat-

yaranjan, and Dhansiri formed a distinctive group in the 

first quadrant of the biplot's right upper corner, exhibiting 

positive values for both PCs. Traits such as GYP, FGT, and 

DF were positioned in the same quadrant, as illustrated in 

Fig. 4. Previous research on South Indian rice landraces 

identified positive correlations between PC1 and PC2 for 

traits such as spikelet fertility, kernel length, and length-to

-breadth ratio. Similarly, correlations were observed for 

eight traits, including days to fifty percent flowering, plant 

height, flag leaf width, panicle length, number of grains, 

spikelet fertility, length-to-breadth ratio, and single plant 

yield. The grouping of traits within distinct principal com-

ponents suggests potential priority selection in breeding 

programs, emphasizing their tendency to co-segregate (36, 

37). 

 In the presented study, a comprehensive examina-

tion of the contribution of various yield attributing traits to 

PCs was conducted, as illustrated in the corrplot (Fig. 5). 

Traits PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

PH (cm) 0.467 -0.037 -0.223 0.135 -0.211 0.023 -0.138 -0.665 -0.291 -0.343 -0.056 

DF 0.339 0.262 -0.167 0.271 0.443 -0.345 -0.110 0.383 0.152 -0.465 -0.048 

PL (cm) 0.473 0.059 -0.010 0.217 -0.281 -0.183 -0.304 0.037 0.386 0.586 0.165 

ETP -0.172 0.481 0.129 0.300 0.195 0.109 0.377 -0.484 0.451 0.039 -0.004 

FGT 0.010 0.343 -0.441 -0.006 -0.505 0.502 0.094 0.329 0.155 -0.193 -0.053 

GL (mm) 0.041 -0.562 -0.072 0.027 0.198 0.375 -0.082 -0.057 0.474 -0.253 0.445 

GB (mm) -0.423 -0.168 -0.377 0.040 0.005 -0.163 -0.445 -0.168 0.322 0.009 -0.541 

GLBR 0.418 -0.230 0.329 -0.028 0.101 0.338 0.188 0.102 0.146 0.044 -0.686 

TGW (g) 0.072 -0.326 -0.583 0.173 0.102 -0.195 0.621 0.029 -0.083 0.275 -0.040 

HI (%) 0.171 0.062 -0.045 -0.769 -0.131 -0.363 0.219 -0.121 0.370 -0.159 0.005 

GYP (g) 0.156 0.267 -0.337 -0.383 0.557 0.364 -0.229 -0.100 -0.149 0.341 0.033 

Table 7. Eleven principal components along with their factor’s loadings for yield and its attributing traits of 20 rice landraces.  

PH= Plant height (cm), DF=Days to 50% flowering, PL=Panicle length (cm), ETP= effective tillers plant-1, FGT= filled grains tiller-1, GL= grain length (mm), GB= grain 
breadth (mm), GLBR=Grain l:b ratio, TGW= 1000 grain weight (g), HI= harvest index (%) and GYP= grain yield per plant (g).  

Fig. 4. Biplot among landraces for yield and its attributing traits.  Fig. 5. Contribution of yield attributing traits to significant PC.  
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Notably, traits such as PH, DF, PL, GLBR, and GB were 

found to be significantly associated with PC1, explaining 

31.19% of the total variance. PC2, contributing to 23.86% 

of the overall variance, was primarily influenced by traits 

including ETP, FGT, GL, and TGW. Conversely, PC3, explain-

ing 13.75% of the total variation, predominantly correlated 

with GLBR and TGW. PC4, contributing 11.63% to the total 

variation, exhibited a primary association with ETP and HI 

(Fig. 5). A parallel observation in aromatic rice (38) identi-

fied 24 genotypes and specific traits, such as Days to 50% 

Flowering, Plant Height, and Grain Width, displaying posi-

tive values in the biplot between PC1 and PC2. A separate 

investigation on Indonesian local rice germplasm revealed 

that PC1 was predominantly influenced by Productive Till-

er Number, accounting for 32.54% of the total variability. 

Additionally, Culm Length and Plant Height collectively 

contributed 22.1% to the overall variability. Furthermore, 

PC3, driven by Panicle Length, Culm Diameter, and Flag 

Leaf Width, explained 9.93% of the overall variation. Nota-

bly, the top two PCs collectively elucidated 54.65% of the 

total variation. Moreover, in-depth research demonstrated 

that PCA of traits such as Panicle Exertion, Flag Leaf Blade 

Width, and Panicle Length generated five PCs, collectively 

contributing 80.00% towards the  observed diversity (39).  

 

Conclusion  

The analysis of genetic diversity among rice landraces pro-

vides comprehensive insights into improving grain yield 

and morphological traits. Clustering, based on genetic 

distance, reveals seven distinct clusters that challenge 

assumptions about shared landraces, highlighting the in-

fluence of morphological traits on geographical origin. 

Statistical tests and Mahalanobis D2 analysis confirm sig-

nificant differences among clusters, emphasizing opportu-

nities for hybridization between genetically divergent 

landraces like Borosolpana, Phougak, Satyaranjan, 

Kakcheng Phou, Maniram, Satyaranjan, Kanaklata, and 

Bahadur to create superior segregating populations. Traits 

such as PH, HI, and DF markedly contribute to divergence 

among clusters. PCA of twenty rice landraces identifies 

four pivotal components (PC1 to PC4) explaining about 

80.45% of the total variability. PC1, comprising 31.2% vari-

ability, highlights crucial traits like PH, PL, GLBR, and DF. 

Biplot analysis showcases distinct groups among landrac-

es based on yield traits, emphasizing trait correlations 

with specific PCs. This insight directs targeted genetic im-

provement efforts, particularly focusing on PC1 to select 

lines with superior genetic potential for quality traits and 

yield.  

 

Acknowledgements  

Financial assistance and technical assistance by the De-

partment of Genetics and Plant Breeding, UBKV and Direc-

torate of Research, UBKV is duly acknowledged.  

 

Authors contributions  

The research was conceptualized and designed LH. AR 
conducted the field experiments. SS, PS and SS evaluated 
the data. AR, SR and AG drafted the manuscript. LH, MC, 
NS, and SD edited the manuscript. The findings of the final 
manuscript were discussed, read and approved by all the 
authors.  

 

Compliance with ethical standards  

Conflict of interest: The authors claim they are not aware 
of any conflicts of interest that would have seemed to have 
an impact on the work they described in this manuscript.  

Ethical issues: None. 

 

References  

1. Azeez MA, Adubi AO, Durodola FA. Landraces and crop genetic 
improvement. In Rediscovery of Landraces as a Resource for the 
Future. IntechOpen. 2018 Sep 12. http://dx.doi.org/10.5772/
Intechopen.75944 

2. United Nations, Department of economic and social welfares. 
World Population Prospectus; 2022.  

3. Akinwale MG, Gregorio G, Nwilene F, Akinyele BO, Ogunbayo SA, 
Odiyi AC. Heritability and correlation coefficient analysis for 
yield and its components in rice (Oryza sativa L.). Afr J Plant sci. 
2011 Mar 31;5(3):207-12. https://doi.org/10.3923/
ijpbg.2011.224.234 

4. Chang TT, Bardenas EA. The morphology and varietal character-
istics of the rice plant. Int Rice Res Inst. 1965. 

5. Francis N, Packiaraj D. Genetic uniformity of varieties and an 
assessment on the diversity among the elite varieties of rice 
(Oryza sativa L.). Electron J Plant Breed. 2020;11(3):896-900. 
https://doi.org/10.37992/2020.1103.146 

6. Hoque A, Begum SN, Robin AH, Hassan L. Partitioning of rice 
(Oryza sativa L.) genotypes based on morphometric diversity. 
Am J Exp Agric. 2015;7:242-50. https://doi.org/10.9734/
AJEA/2015/15687 

7. Fowler C, Mooney PR. Shattering: Food, politics and the loss of 
genetic diversity. University of Arizona Press; 1990. 

8. Mahajan RK, Mehan DK. Principal component analysis in rice. 
Crop Improvement. 1980;7(2):83-87. 

9. Sheela KS, Robin S, Manonmani S. Principal component analysis 
for grain quality characters in rice germplasm. Elect J Plant 
Breed. 2020 Apr 6;11(1):127-31. https://
doi.org/10.37992/2020.1101.023 

10. Jolliffe IT. Principal component analysis for special types of 
data. Springer New York. 2002;p. 338-73. https://
doi.org/10.1007/0-387-22440-8_13 

11. Panse VG, Sukhatme PV. Statistical methods for Agricultural 
worker. Indian Council of Agricultural Research. New Delhi; 
1969.  

12. Rao CR. Advance statistical methods in biometrical research 
edition I. John Willey and Sons, New York. Rapeseed cultivars. J 
Appl Biol Sci. 1952;2(3):35-39. 

13. Ward. Hierarchical grouping to optimize an objective function. J 
Am Stat Asso. 1963;48:236-44. https://
dx.doi.org/10.1080/01621459.1963.105008 

14. Galili T. Dendextend: An R package for visualizing, adjusting and 
comparing trees of hierarchical clustering. Bioinformatics; 2015. 
https://doi.org/10.1093/bioinformatics/btv428 

15. Le S, Josse J, Husson F. FactoMine R: An R package for multivari-

ate analysis. Journal of Statistical Software. 2008;25(1):1-18. 
https://doi.org/10.18637/jss.v025.i01 

https://plantsciencetoday.online
http://dx.doi.org/10.5772/Intechopen.75944
http://dx.doi.org/10.5772/Intechopen.75944
https://doi.org/10.3923/ijpbg.2011.224.234
https://doi.org/10.3923/ijpbg.2011.224.234
https://doi.org/10.37992/2020.1103.146
https://doi.org/10.9734/AJEA/2015/15687
https://doi.org/10.9734/AJEA/2015/15687
https://doi.org/10.37992/2020.1101.023
https://doi.org/10.37992/2020.1101.023
https://dx.doi.org/10.1080/01621459.1963.105008
https://dx.doi.org/10.1080/01621459.1963.105008
https://doi.org/10.1093/bioinformatics/btv428
https://doi.org/10.18637/jss.v025.i01


37 

Plant Science Today, ISSN 2348-1900 (online) 

16. Kassambara A, Mundt F. Factoextra: Extract and visualize the 

results of multivariate data analyses. R Package Version 1.0.7.; 
2020. https://CRAN.R-project.org/package=factoextra 

17. Zaman MR, Paul DNR, Kabir MS, Mahbub MAA, Bhuiya MAA. As-
sessment of character contribution to the divergence for some 

rice varieties. Asian J of Plant Sci. 2005;4:388-91. https://

doi.org/10.3923/ajps.2005.388.391 

18. Saxesena RR, Lal GM, Yadav PS, Vishwakarma MK. Diversity 
analysis and identification of promising lines for hybridization in 

field pea (Pisum sativum L.). The Bioscan. 2013 Nov 21;8(4):1437-
40. 

19. Tripathi A, Kumar S, Singh MK, Kumar A, Karnwal MK. Phenotyp-
ic assessment of rice (Oryza sativa L.) genotypes for genetic 

variability and varietal diversity under direct seeded condition. 

J Appl Nat Sci. 2017;9(1):6-8. https://doi.org/10.31018/
jans.v9i1.1138 

20. Beevi AH, Venkatesan M. Genetic divergence studies in rice gen-

otypes under saline condition. Int J Current Adv Res. 2015;4:6-8.  

21. Lakshmi M, Shanmuganathan M, Jeyaprakash P, Ramesh T. 
Genetic variability and diversity analysis in selected rice (Oryza 
sativa L.) varieties. Electron J of Plant Breed. 2022;13(3):959-66. 

https://doi.org/10.37992/2022.1303.124  

22. Lavanya1 K, Suman K, Fiyaz AR, Chiranjeevi M, Surender R, 
Krishna Satya A, Sudhakar P, Subba Rao LV. Phenotypic assess-

ment of rice landraces for genetic variability and diversity stud-

ies under heat stress. Oryza. 2022;59(1):31-38. DOI https://
doi.org/10.35709/ory.2022.59.1.4 

23. Mishra LK, Sarawgi AK, Mishra RK. Genetic diversity for morpho-
logical and quality traits in rice (Oryza sativa L.). Adv Plant Sci. 

2003;16(1):287-93. 

24. Chaturvedi HP, Maurya DM. Genetic divergence analysis in rice 
(Oryza sativa L.). Adv Plant Sci. 2005;18(1):349-53. 

25. Zewdu Z, Abebe T, Mitiku T, Worede F, Dessie A, Berie A, Atnaf M. 
Performance evaluation and yield stability of upland rice (Oryza 
sativa L.) varieties in Ethiopia. Cogent Food & Agriculture. 

2020;6(1):1842679. 
https://doi.org/10.1080/23311932.2020.1842679 

26. Nayak AR, Chaudhury D, Reddy JN. Genetic divergence in scent-
ed rice. Oryza. 2004;41(384):79-82.  

27. Ovung CY, Lal GM, Rai PK. Studies on genetic diversity in Rice 
(Oryza sativa L.) Journal of Agricultural Technology. 2012;8

(3):1059-65. 

28. Anderson TW. An introduction to multivariate analysis. Wiley 
Eastem Pvt. Ltd. New Delhi. 1972; p. 512. 

29. Morrison DE. Multivariate statistical methods. 2nd ed. 4th Print, 

McGraw Hill Kogakusta Ltd; 1978.  

30. Sathya Sheela KRV, Robin S, Manonmani S. Principal compo-
nent analysis for grain quality characters in rice germplasm. 
Electron J Plant Breed. 2019;11(1):127-31. https://

doi.org/10.37992/2020.1101.023  

31. Ashfaq M, Khan AS, Khan SHU, Ahmad R. Association of various 
morphological traits with yield and genetic divergence in rice 

(Oryza Sativa L.). Int J Agri and Biol. 2012;14:55-62. 

32. Maji AT, Shaibu AA. Application of principal component analysis 
for rice germplasm characterization and evaluation. J Plant 

Breed Crop Sci. 2012;4(6):87-93. https://doi.org/10.5897/
JPBCS11.093 

33. Ahmed MSU, Khalequzzaman MMD, Bashar K, Shamsuddin AKM. 
Agro-morphological, physico-chemical and molecular charac-
terization of rice germplasm with similar names of Bangladesh. 

Rice Sci. 2016;23(4):211-18. https://doi.org/10.1016/

j.rsci.2016.06.004 

34. Dhakal A, Pokhrel A, Sharma S, Poudel A. Multivariate analysis 
of phenotypic diversity of rice (Oryza sativa L.) landraces from 
Lamjung and Tanahun districts of Nepal. Int J of Agron. 2020;1-

8. https://doi.org/10.1155/2020/8867961 

35. Singh OV, Gowthami R, Singh K, Shekhawat N. Genetic diver-
gence studies in pearl millet germplasm based on principal 

component analysis. Int J Curr Microbiol App Sci. 2018;7(06):522

-27. doi: https://doi.org/10.20546/ijcmas.2018.706.059 

36. Shanmugam A, Suresh R, Ramanathan A, Anandhi P, Sassiku-
mar S. Unravelling genetic diversity of South Indian rice land-
races based on yield and its components. Elect J Plant Breed. 

2023;14(1):160-69. https://doi.org/10.37992/2023.1401.007  

37. Chakravorty A, Ghosh PD, Sahu PK. Multivariate analysis of phe-
notypic diversity of landraces of rice of West Bengal. Ame J Exp 

Agri. 2013;3(1):110. https://doi.org/10.9734/AJEA/2013/2303 

38. Shoba D, Vijayan R, Robin S, Manivannan N, Iyanar K, Arunacha-
lam P, Nadarajan N,Pillai MA, Geetha S. Assessment of genetic 

diversity in aromatic rice (Oryza sativa L.) germplasm using PCA 
and cluster analysis. Electron J Plant Breed. 2019 Oct 1;10

(3):1095-104. https://doi.org/10.5958/0975-928X.2019.00140.6 

39. Mulsanti IW, Risliawati A, Yunan N. Agro-morphological charac-
terization based genetic diversity of Indonesian local rice 

germplasm. Earth Env Sci. 2021;948. https://

doi.org/10.1088/1755-1315/948/1/012004  

https://CRAN.R-project.org/package=factoextra
https://doi.org/10.3923/ajps.2005.388.391
https://doi.org/10.3923/ajps.2005.388.391
https://doi.org/10.31018/jans.v9i1.1138
https://doi.org/10.31018/jans.v9i1.1138
https://doi.org/10.37992/2022.1303.124
https://doi.org/10.35709/ory.2022.59.1.4
https://doi.org/10.35709/ory.2022.59.1.4
https://doi.org/10.1080/23311932.2020.1842679
https://doi.org/10.37992/2020.1101.023
https://doi.org/10.37992/2020.1101.023
https://doi.org/10.5897/JPBCS11.093
https://doi.org/10.5897/JPBCS11.093
https://doi.org/10.1016/j.rsci.2016.06.004
https://doi.org/10.1016/j.rsci.2016.06.004
https://doi.org/10.1155/2020/8867961
https://doi.org/10.20546/ijcmas.2018.706.059
https://doi.org/10.37992/2023.1401.007
https://doi.org/10.9734/AJEA/2013/2303
https://doi.org/10.5958/0975-928X.2019.00140.6
https://doi.org/10.1088/1755-1315/948/1/012004
https://doi.org/10.1088/1755-1315/948/1/012004

