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Abstract 

Polyamines (PAs) are linear alkali nitrogenous with two, three or more amino 

groups that have a low molecular weight. PAs are created by organisms thru 

metabolism and can be found in nearly wholly cells. They are considered a 

unique type of plant stimulant because they acts significant roles in many 

kinds of plant growth and developmental stages as well as stress responses. 

More evidence suggests that the PA can be produced endogenously or 

exogenously applied to improve plant reproduction, productivity, and bear 

stress. While the mechanism of polyamines influencing plant growth and 

stress responses is still not clear. We are making an attempt to supply an 

inclusive review of the available literature that explained the association 

between PAs and flowering, stress responses and senescence. This review 

aimed at this is focused and abbreviates how PAs enhances and increase 

plant productivity and then serve as a foundation for forthcoming study on 

the mechanisms of  PAs exploit in plant reproduction and growth. 
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Introduction 

Polyamines (PAs) compounds like that spermine (Spm), spermidine (Spd), 

cadaverine (Cad) and putrescine (Put) are positively charged aliphatic 

molecules, play an essential role in the nucleic acid regulation, protein 

synthesis and structures, interactions of nucleic acid, protein, oxidative 

balance, and proliferation of the cell. (1,2). They can be found in prokaryotic 

as well as eukaryotic cells. (3,4).  PAs are mostly found in free form in higher 

plants. Many physiological processes are regulated by them, including flower 

development(5), cell proliferation embryogenesis, morphology, 

organogenesis, senescence, root system formation, fruit maturation, 

architecture, induce a biosynthesis of osmotic alteration substances and 

responses to abiotic and biotic stresses and as an antioxidant (6,7,8,9), 

salinity and fruit maturity and development (10) also recognized as being 

crucial for plant growth (11). They are likewise elaborate in abiotic and biotic 

stress responses (12). Meanwhile, free polyamines contribute form covalent 

bonds with biological substances such as nucleic acids and proteins also 

lignin or phenolic compounds (13). Plants such as potatoes contain 

numerous phytochemicals like PAs, which are highly required in the diet 

because of their useful effects on health (14).  In addition, PAs can maintain 

the stability of the membrane and aid in the scavenging of reactive oxygen 

species (ROS) in chloroplasts (15). it seems that PAs boost the activity of 

antioxidant enzymes and noticeably lessen the oxidative effects of ROS on 

membranes (16). 
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 We review the latest research of PAs effects on plant 

growth, from flowering to salinity, and investigate their 

characteristics in response to various stresses. 

 

Methodology 

The methodology of this article was designed to search 

and diagnose PAs effectiveness, which depended on the 

information and evidence available and published on the 

sciences platforms, Web of Science, Scopus, John 

Thompson Science Direct etc., for the approximately last 

40 years. The article dealt with these compounds from 

several aspects focusing on the papers on plant king dome 

only inclusion while excluding all tissues and organisms of 

humans and animals. 

 PAs compounds were discussed in terms of the 

chemical distribution compositions, biosynthesis, 

degradation and the effects of the products of these vital 

processes on plant cell divisions, and proliferation. The 

criteria of the effect of PAs in this article was discussed by 

searching and collecting information that indicates and 

confirms the effect of these compounds' free or combined 

with other negative compounds or ions on the sensitivity 

of plants towards environmental influences such as 

temperature, physiological pH or internal influences such 

as exposure to oxidative stress and their role as 

antioxidants by combined with membrane phospholipid of 

the cell to protect it. For obtaining all the information of 

this review, using some keywords were adopted, namely 

PAs compounds, types, the relationship of Pas to plant life, 

and the functions of PAs. It was found that they have an 

important role in the development and flowering, in 

addition to their significant role in enhancing plant 

resistance to environmental conditions. 

 

Results 

Distribution of PAs 

Polyamines are abundant in eukaryotic and prokaryotic 

cells (17). PAs are distributed in plants in tissue and organ-

specific forms and participate play in photosynthesis (18). 

The best common PAs in plants are Spm, Spd and Put, with 

high intracellular concentrations, and the least common 

are Cad and Dap (19,20). Many studies indicate the 

presence of polyamine compounds in rice, pistachio, green 

tea, mangoes, and mushrooms (21-23) noticed clear 

differences in the concentration of polyamine compounds 

in a variety of plants, and indicated that some plants 

contain high levels of Put and Spm in corn, citrus, and 

peas. Spd was also found at a higher level in soybeans, 

beans and castor tissues and these levels of plant leaves 

changed during the life of the leaf (24). Immature citrus 

seed species also were found to contain high levels of 

cadaverine (25,26). 

 On the other hand, an inverse relationship was 

observed between ascorbic acid with of Put and Spm 

levels in green peppers and tomatoes respectively (27). 

High levels of endogenous Put were found to be 

unfavourable for the accumulation of GA, and endogenous 

Put was discovered to be strictly interrelated to gibberellin 

contents (28). The patterns of PA distribution may be 

linked to their unique functions. Generally, greater PA 

contents are associated with more robust plant growth 

and metabolism (29). 

Chemical nature of polyamines  

The majority of PAs have a minimum of two positively 

charged amino or guanidinium groups, distinct by a 

carbon backbone with a range of lengths (Figure 1) (46).  

Different from other cations like Mg2+ or Ca2+, PAs have no 

less than two charged groups linked by a flexible carbon 

chain. By doing this, electrostatic forces of amino or 

guanidine groups are enhanced by hydrophobic effects. 

Agmatine (AGM), which is a chemical compound, is a 

member of the PA family (47). 

Biosynthesis of Polyamines 

In all the kingdoms of living things, the PA biosynthetic 

pathway has been thoroughly investigated (48,49). The 

common PA biosynthetic pathway's main output is 

putrescine, in general. Through three distinct arginine-

dependent pathways, plants can produce PAs from the 

proteinogenic amino acid l-Arginine. (Figure 2)(12). The 

first pathway is comparable to that of animals and fungi 

and involves the conversion of l-arginine by the 

mitochondrial arginase into ornithine, that is next 

decarboxylated via ornithine decarboxylase (ODC) to yield 

putrescine. Additionally, plants can produce agmatine by 

using the arginine decarboxylase (ADC) enzyme, which 

then catalyzes the conversion of agmatine to N-carbamoyl 

putrescine and putrescine using the enzymes agmatine 

iminohydrolase and N-carbamoyl putrescine 

amidohydrolase, respectively. ADC and agmatine 

ureohydrolase, respectively, can catalyze the reactions 

that result in L-arginine and agmatine contributing to the 

generation of Put (50-53).  

 The third pathway starts with the conversion of Arg 

to citrulline, that is before decarboxylated via citrulline 

decarboxylase to produce Put (54,55). The first two 

pathways are more prevalent in plants because the Cit 

pathway has only been discovered so far in sesame. 

Spermidine synthase (SPDS) generates spermidine from 

Put and amino-propyl, that is progressively supplied by l-

methionine (56). Additionally, putrescine could be 

transformed into spermidine via the carboxy 

norspermidine decarboxylase and carboxynors permidine 

dehydrogenase, respectively, using amide group provided 

Fig 1. Chemical structure of polyamines (46) 
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through the l-aspartate -4- semialdehyde from the glycine 

catabolism pathway. In the presence of homospermidine 

synthase, Put and Spd both promote a synthesis of the 

homospermidine. Finally, by means of the enzymes 

spermine synthase and thermospermine synthase, 

respectively, spermidine is transformed into Spm or 

thermosspermine through a combination of an additional 

amino-propyl group (57,58).  Additionally, some other PAs 

may be derived from other amino acids that are 

proteinogenic. For example, lysine decarboxylase (LDC) 

catalyzes the synthesis of the diamine cadaverine from l-

lysine(59). The amino acids L- glycine, L-proline, L-

glutamate, and L-methionine are effective sources in the 

biosynthesis of polyamines (60,61). 

Catabolism of Polyamines 

The action of amine oxidases is crucial in the degradation 

of PAs in plants. Polyamine oxidase (PAO) provokes the 

formation of PA as metabolic end products. Wheat PAO, 

oxidizes Spm and Spd to produce 3-aminopropyl-4-amino 

butanal, 1,3-diamino propane, 4-amino butanal and 

hydrogen peroxide. The flavin adenine dinucleotide-

dependent enzymes known as polyamine oxidases, which 

work in PA degradation, are essential in the pathway. 

(62,63). Tassoni (64) discovered that exo-Spd smeared to 

kinds of sunflower tuberous resulted in Put 

transformation. The generated H2O2 plays a role in plant 

indication transduction through abiotic and biotic stress 

responses (65,66). The function of polyamines in helping 

plants adapt to salt stress conditions has been 

demonstrated. Under salt stress conditions, Calendula 

officinalis L. plants were given exogenous Spm and Spd to 

see what effects they had on their development and 

physiological characteristics (67). Furthermore, PA 

metabolism is linked to the creation of NO (68), which is an 

important signalling constituent for plant growth (69). It 

has been demonstrated that polyamines and plant growth 

regulators are crucial for the start and control of the 

programmed cell death process. A variety of secondary 

metabolites known as phenol amides are produced when 

a phenolic moiety is conjugated with polyamines or 

deaminated aromatic amino acids. (70,71). The catabolism 

of PA compounds is a non-reversible process through 

which the cells can be supplied with carbon and nitrogen, 

which are used as precursors for cellular components (72). 

In order to better understand the functions of PAs in plant 

growth and development and the mechanisms underlying 

them, it is important to understand how PA metabolism 

interacts with plant hormones and how it affects signalling 

molecules. 

Physiological action of polyamines 

Polyamines and the Flowering 

Higher plants go through a phase of vegetative growth 

before beginning a phase of proliferation and growth, then 

leaf and bud tissues undergo differentiate physiological 

turnover to the tissues of flower bud, which then cultivates 

into a floral part of plants, it's referred to as flower bud 

reproduction (73). Putrescine, Spermidine, and Spermine 

levels were elevated at prior developmental periods, 

whereas Putrescine and Spermine levels stayed constant 

(74). Polyamines, which are important and ubiquitous 

molecules required for cell growth and differentiation, are 

oxidatively de-aminated by copper amine oxidases and 

amine oxidases that include flavin (75).  PA is thought to be 

a plant growth regulator (10).   

 Polyamines and reproductive development appear 

to be closely related, according to a number of lines of 

experimental data, it was found that PAs were more 

prevalent in Arabidopsis flowers in any other organ, and 

adding invitros PAs to plants that were not flowering 

significantly increased their flowering response (76). 

Gibberellic acid (GA3) and spermine (SPM), two plant 

growth regulators, have been characterized as extending 

the postharvest life of flowers (77) Spm enhanced the 

quality of the flower and vase life of cut rose blossoms 

(78). On the other hand, feeding of Spd is directly 

correlated to the time of flowering in Arabidopsis thaliana 

(79). 

Fig 2. Biosynthesis pathway of main PAs in plants (12) 

1 Put 
broccoli, cauliflower, eggplant, jiló (scarlet eggplant), tomato, green onion, 

parsley, spinach, capers, cassava, heart of palm and bean sprouts 
30 

2 Put, spd, spm Soybeans 31 

3 Spm, Spd, put Maize grain, Common wheat 32 

4 Spm, Spd, put 
Fruits: Apple – bananas – cherry – kiwi – pineapple – orange - mandarin - avocados, 

strawberry 
33,34,35,36 

5 Spm, Spd, put 

Vegetables:  Broccoli – cucumber – cauliflower – celeriac – courgette – eggplant - 

cabbage green beans – lettuce – mushroom - green pepper – onion - potato – 
carrot – spinach – tomato 

37,38 

6 Spm, Spd, put Legumes: lentils -  soybean - red beans – peas - soybean milk - tofu – sprouts – miso 
34,36,37, 

39,40,41,42,43 

7 Spm, Spd, put Cereals: wheat germ – Rice - white bread 34, 35, 37, 44 

8 Spm, Spd, put Nuts: chestnuts - Almonds - pistachios 34, 39 

9 Spm, Spd, put spinach leaf cells - intact chloroplasts-  thylakoid membranes 45 

Table 1. Distribution of Polyamines 
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Polyamines and Plant Senescence 

PAs change as the plant grows. Endogenous PAs were 

found to be lowest in the senescent tissues in whole plants 

(80). A decrease in levels of PA appears to be an important 

precursor to senescence signals (81). Delayed leaf 

senescence was linked to higher Spm levels and higher NO 

levels (82). (83) discovered that chlorophyll degraded 

quickly and Put collected through senescence, whereas 

exogenous Spm or Spd inhibited protein breakdown and 

reduced chlorophyll harm. PA synthesis inhibitors in 

peonies extended the lifespan and delayed flower 

senescence, but PAs reduced faster flower senescence 

(84). Even during nematode pathogenesis, the tomato 

plant's physiological reactions to the polyamines were 

found to be improved (85). 

Polyamines and Temperature Stress 

PAs can stimulate photosynthesis while also rising plant 

antioxidant ability and osmotic adjustment ability under 

high-temperature stress (86). PAs serve numerous roles in 

all plants, and the primary physiological processes 

underlying the tolerance of high-temperature vary 

between plant species. PAs have the ability to bind to the 

cell membrane's phospholipid site, increasing cold 

resistance and preventing cytolysis (87). When the chilling 

temperature was applied to sweet pepper and zucchini 

fruits, the Put content expanded rapidly, accompanied by 

terrifying deterioration (88). Put accumulation, on the 

other hand, enhanced Spm was a defence reaction to cold 

damage, which caused chilling damage. They found that 

the spermidine, spermine, and Put levels eventually rose 

when loquat fruit was kept at low temperatures (89). 

The Role of Polyamines with Oxidative Stress 

PAs can activate a variety of enzymes known as 

antioxidants in plants, permitting them to successful 

defence against reactive oxygen species and then decrease 

oxidative stress, which is caused by a diversity of 

environmental triggers. Spm and Put pretreatment of 

maize leaves improved their resistance to the oxidative 

damage caused by paraquat (90). To combat the 

detrimental impact of different environmental stressors on 

plant processes polyamines have been advocated as a 

viable option. (91) Under hypoxia stress, exogenous Spd 

elevated the amount of Spd and Spm while reducing the 

amount of Putrescin in cucumber seedling rootstock. (92). 

It was also discovered that cold-treated or cold polyamine-

treated groups had higher specific antioxidant enzyme 

activity than comparable controls, including catalase and 

ascorbate peroxidase. The treated plants' H2O2 and 

malondialdehyde levels were significantly reduced as a 

result (93). The impacts of Cd2+ and Cu2+ on the 

peroxidation of lipids were reduced by Spm treatment. 

(94).  PAs have the potential to harm cells under conditions 

of stress because their degradation generates the powerful 

oxidizers hydrogen peroxide (H2O2) and acrolein. (95). H2O2 

is, on the other hand, a molecule that signals that may 

pass through a stressful signal transduction pathway. 

 As a result, PAs appear to be redox regulators of 

homeostasis in plants that show a dual role in oxidative 

stress (96). Numerous studies revealed that polyamine 

oxidase (PAO) genes are essential for a variety of abiotic 

and biotic stress responses (97). 
 

Discussion 

All living organisms contain polyamines, which are 

involved in a variety of metabolic processes in plants like 

cell division, proliferation, expansion, differentiation, and 

programmed cell death to protect them from various 

stresses (98). They are important for cells and are known 

as endogenous growth regulators (99). 

 The capability of polyamines to interact via 

negatively charged sites in molecules like lipids, proteins, 

and nucleic acids is one of the reasons for their wide range 

of functions, also some natural compounds like phenolic 

compounds. Additionally, it has been discovered that a 

few byproducts of polyamine catabolism play important 

signalling functions in a variety of physiological, cellular, 

and developing processes (100). For example, 

transglutaminases (TGases) covalently link polyamines to 

particular proteins. TGases play a central role in 

photosynthesis in plants (101). According to Belda-Palazón 

et al. (102), the spermidine-dependent hypusination 

pathway may have novel roles in plant improvement and 

responses to hormonal, dietary, and environmental 

signals. 

 According to research by Nambeesan et al. (103), 

PAs have also been revealed to enhance longevity in a 

number of organisms, including tomato fruit, and to 

extend the shelf life of tomato fruit. They also participate 

in both transcriptional and translational gene regulation 

(104). In previous research, tomato fruits with high levels 

of the anabolic biogenic amines Spm and Spd, which are 

produced as a result of yeast S-adenosyl methionine 

decarboxylase expression, would increase an expression of 

SA biosynthesis genes, resulting in increased SA creation.  

 Putrescine N-methyltransferase is a crucial enzyme 

of the second metabolism and is involved in the 

biosynthesis of tropane alkaloids, nicotine and 

calystegines. An in-silico study demonstrated structural as 

well as functional characterization and developed three-

dimensional computational models of putrescine N-

methyltransferase proteins. Recently the number of 

reports illustrating that crosstalk between PA and 

phytohormones in plants to respond to abiotic stresses 

has increased and exposed the favorable influence of the 

co-application of exogenous PA and phytohormones (105).  

 

Conclusion 

In this review, we conclude that polyamines are active 

natural compounds having at least two positively charged 

amino groups that play important roles in many biological 

purposes in plants. .The involvement of polyamines in a 

variety of plant processes, including DNA replication, gene 

transcription, organ development, cell division, fruit 

development and leaves senescence, ripening, and abiotic 

stresses, is supported by a substantial body of research. As 

a result, the main genes ADC, ODC, or SAMDC have been 

overexpressed or down regulated, altering the amount of 

https://plantsciencetoday.online
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PA in cells. Overexpression of heterologous ADC or ODC 

typically results in increased Put levels without affecting 

Spd or Spm. In contrast, overexpression of the pathway's 

genes downstream (SAMDC or Spd synthase) typically 

results in higher levels of Spd and Spm, demonstrating 

that the levels of  Spm and Spd are tightly regulated by 

cellular homeostasis. The phytochemical, polyamines 

have an important impact on the contents of bioactive 

compounds with antioxidant activity besides in the activity 

of the key antioxidant enzymes in fruits during the ripening 

and senescence processes. It can be inferred that 

polyamines have wide applications due to their effect on 

the properties of phenolic compounds and flavonoids. 
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